Title Unwanted SMTP Paths and Relays
Publication Type Conference Paper
Year of Publication 2007
Authors Palla, S, Dantu, R
Conference Name 2007 2nd International Conference on Communication Systems Software and Middleware
Date Published Jan
Keywords Computer science, content-based spam filters, Counterfeiting, Credit cards, email spam filters, emails wantedness analysis, end-to-end path analysis, Filters, IMAP message status flags, information filtering, information filters, Information security, Legislation, Multimedia communication, relay analysis, Relays, SMTP paths analysis, unsolicited e-mail, Unsolicited electronic mail, Web page design
Abstract

Based on the social interactions of an email user, incoming email traffic can be divided into different categories such as, telemarketing, Opt-in family members and friends. Due to a lack of knowledge in the different categories, most of the existing spam filters are prone to high false positives and false negatives. Moreover, a majority of the spammers obfuscate their email content inorder to circumvent the content-based spam filters. However, they do not have access to all the fields in the email header. Our classification method is based on the path traversed by email (instead of content analysis) since we believe that spammers cannot forge all the fields in the email header. We based our classification on three kinds of analyses on the header: i) EndToEnd path analysis, which tries to establish the legitimacy of the path taken by an email and classifies them as either spam or non-spam; ii) Relay analysis, which verifies the trustworthiness of the relays participating in the relaying of emails; iii) Emails wantedness analysis, which measure the recipients wantedness of the senders emails. We use the IMAP message status flags such as, message has been read, deleted, answered, flagged, and draft as an implicit feed back from the user in Emails wantedness analysis. Finally we classify the incoming emails as i) socially close (such as, legitimate emails from family, and friends), ii) socially distinct emails from strangers, iii) spam emails (for example, emails from telemarketers, and spammers) and iv) opt-in emails. Based on the relation between spamminess of the path taken by spam emails and the unwantedness values of the spammers, we classify spammers as i) prospective spammers, ii) suspects, iii) recent spammers and iv) serial spammers. Overall, our method resulted in far less false positives compared to current filters like SpamAssassin. We achieved a precision of 98.65% which is better than the precisions achieved by SPF and DNSBL blacklists.

DOI 10.1109/COMSWA.2007.382440

Publication Status:

UNT Department:

UNT Center: