In FGM2L, we integrate atomistic computer simulations and materials characterization to investigate complex structures of materials, structural origin of properties with a focus on glass and glass-ceramic materials for energy, biomedicine, microelectronics, and environmental applications. Students are trained with both simulation and experimental skills to work on challenging scientific and engineering problems on federally or industrially funded projects. We welcome motivated students at all levels to perform high impact materials researches. The main research areas are summarized below.

Atomistic Computer Simulations of Material Behaviors

Potential development for atomistic simulations of glass and ceramics

Interatomic potentials are critical to atomistic simulations of materials. Our group develop interatomic potentials for silicate, borosilicate, and phosphosilicate glasses, as well as reactive potentials to study glass-water interactions, through empirical fitting and QM calculations

  • L. Deng and J. Du, “Development of boron oxide potentials for atomistic computer simulations of multicomponent oxide glasses”, Journal of American Ceramic Society, 102 2482-2505 (2019).
  • L. Deng and J. Du, “Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses”, Journal of Non-Crystalline Solids, 453 177-194 (2016).
  • T.S. Mahadevan, J. Du, “Hydration and Reaction Mechanisms on Sodium Silicate Glass Surfaces from Molecular Dynamics with Reactive Force Fields”, Journal of American Ceramic Society, 102 3676-3690 (2020). [abstract]
Glass structure and structure-property relations

Glass materials have many unique properties such as optical, dielectric, mechanical and others but the structure of glass lacks long range order hence defies any single experimental characterizations. We utilize both classical and ab initio based materials simulations to study the complex glass structures and structure-property relations of glass materials.

  • X. Lu, M. Ren, L. Deng, C. Benmore, J. Du, “Structure features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations”, Journal of Nuclear Materials, 515 284-293 (2019). [abstract]
  • J. Du, L. Kokou, J. R. Rygel, Y. Chen, C. Pantano, R. Woodman and J. Belcher, "Structure of Cerium Phosphate Glasses: Molecular Dynamics Simulations", Journal of American Ceramic Society, 94 2393-2401 (2011). [abstract]
  • L. Kokou, J. Du, "Rare Earth Ion Clustering Behavior in Europium Doped Silicate Glasses: Simulation Size and Glass Structure Effect", Journal of Non-Crystalline Solids, 358 3408-2417 (2012). [abstract]
  • X. Lu, J. Du, “Quantitative structure-property relationship (QSPR) analysis of calcium aluminosilicate glasses based on molecular dynamics simulations”, Journal of Non-Crystalline Solids, 530 119772 (2020). [abstract]
Simulations of glass corrosion and glass-environment interactions

Glass corrosion and glass-environment interactions play an important role from glass processing, packaging, to glasses for biomedical and nuclear waste disposal applications. MD simulations with reactive potentials and MC simulations were used to understand the corrosion mechanisms in glass materials.

  • L. Deng, K. Miyatani, M. Suehara, S. Amma, M.Ono, S. Urata, J. Du, “Ionexchange mechanisms and interfacial reactions of sodium silicate glasses in aqueous enviornments from reactive molecular dynamics simulations”, npj Materials Degradation, 5 1 pp1-13 (2021). [open access]
  • L. Deng, K. Miyatani, S. Amma, M. Suehara, M. Ono, Y. Yamamoto, S. Urata, J. Du, “Reaction mechanisms and interfacial behaviors of sodium silicate glass in aqueous environment from Reactive Force Field based molecular dynamics simulations”, Journal of Physical Chemistry C, 123 [35] 21538-21547 (2019).
  • J. Rimsza, J. Du, “Interfacial Structure and Evolution of the Water-Silica Gel System by Reactive Force Field Based Molecular Dynamics Simulations”, Journal of Physical Chemistry C, 121 11534-11543 (2017). [abstract]
Simulations of defect, surface and interface of materials

Defects play an important role in materials properties and behaviors. By using atomistic simulations, we investigate various types defect structures and their effect on electronic, mechanical and other properties.

  • W. Sun, V. Ageh, T. Scharf, J. Du, “Experimental and Computational Studies on Stacking Faults in Zinc Titanate”, Applied Physics Letter, 104, 241903 (2014). [abstract]
  • J. Du and L. R. Corrales, K. Tsemekhman, J. Bylaska, "Electron, Hole and Exciton Self-trapping in Germanium-doped Silica Glass from DFT Calculations with Self-interaction Correction", Nuclear Instruments and Methods in Physics Research B, 255 188-194 (2007). [abstract]
  • W. Sun, J. Jha, N. Shepherd, J. Du, “Interface structures of ZnO/MoO3 and their effect on workfunction of ZnO surfaces from first principles calculations”, Computational Material Science, 141 162-269 (2018). [abstract]
Other simulation methods Monte Carlo, Machine Learning applications in material science
  • X. Lu, L. Deng, J. Du, J. Vienna, “Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning”, Journal of Non-Crystalline Solids, 120490 pp1-9 (2021). [abstract]
  • S. Kerisit, J. Du, “Monte Carlo simulations of borosilicate glass dissolution using molecular dynamics generated glass structures”, Journal of Non-Crystalline Solids, 522 119601 pp1-7 (2019). [abstract]
  • D. Mei, J. Du and M. Neurock, "First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Reduction over Platinum Nanoparticles under Lean-Burn Conditions", Industrial and Engineering Chemical Research, 49, 10364-10373 (2010). [abstract

Functional Glasses and Glass-Ceramic Materials

Glass for nuclear waste disposal

Vitrification is a widely accepted method to immobilize nuclear waste to provide clean energies and ensure safe environment. We investigate borosilicate, aluminosilicate and other glasses for waste applications by using simulations and experiments. Particularly, we try to understand the structures of these glasses and how they interact with the environment (or the corrosion behaviors).

  • F. S. Frankel, J. D. Vienna, J. Lian, X. Guo, S. Gin, S. H. Kim, J. Du, J. V. Ryan, J. Wang, W. Windl, C. D. Taylor, J. Scully, “Recent Advances in Corrosion Science Applicable to Disposal of High-Level Nuclear Waste”, Chemical Review, 121 12327-12383 (2021). [abstract]
  • S. Gin, M. Collin, P. Jollivet, M. Fournier, Y. Minet, L. Dupuy, T. Mahadevan, S. Kerisit, J. Du, “Dynamics of self-organization explains passivation of silicate glasses”, Nature Communications, 9 2169 pp1-9 (2018) [open access]
  • X. Guo, S. Gin, P. Lei, T. Yao, H. Liu, D. K. Schreiber, D. Ngo, G. Viswanathan, T. Li, S. H. Kim, J. D. Vienna, J. V. Ryan, J. Du, J. Lian, G. S. Frankel, “Self-accelerated corrosion of nuclear waste forms at material interfaces”, Nature Materials, 407 2439 pp1-9 (2020). [abstract]
  • J. Du, X. Lu, S. Gin, J-M Delaye, L. Deng, M. Taron, N. Bisbrouck, M. Bauchy, J. D. Vienna, “Predicting the Dissolution Rate of Borosilicate Glasses by using QSPR Analysis based on Molecular Dynamics Simulations”, Journal of American Ceramic Society, 104 4445-4458 (2021). [abstract]
Glass and glass-ceramic solid state electrolytes

All solid state battery is the next generation battery technologies and one of the key material is solid state electrolytes. We investigate glass and glass-ceramic solid state electrolytes by deeper understanding of defect mediated diffusion in these materials.

  • P.-H. Kuo, J. Du, “Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2-x(PO4)3 solid state electrolytes”, Journal of Physical Chemistry C, 123 27385-27398 (2019). [abstract]
  • P.-H. Kuo, J. Du, “Crystallization behavior of Li1+xAlxGe2-x(PO4)3 glass-ceramics: Effect of composition and thermal treatment”, Journal of Non-Crystalline Solids, 525 119680 pp1-10 (2019). [abstract]
  • C. Chen, J. Du, “Lithium Ion Diffusion Mechanism in Lithium Lanthanum Titanate Solid-State Electrolytes from Atomistic Simulations”, Journal of American Ceramic Society, 98, 534-542 (2015). [abstract]
  • J. Du and C.-H. Chen, "Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals", Journal of Non-Crystalline Solids, 358 3531-3538 (2012).[abstract]
Bioactive glasses: synthesis, characterization, and modeling

Bioactive glasses are inorganic glasses that can bond to hard and/or soft tissue and can be applied to various biomedical applications from bone repair, coatings to metallic implants, and scaffolds for tissue engineering.

  • Y. Xiang and J. Du, "Effect of Strontium Substitution on the Structure of 45S5 Bioglasses", Chemistry of Materials, 23 2703-2717 (2011). [abstract]
  •  X. Lu, L. Deng, P.-H. Kuo, M. Ren, I. Buterbaugh, J. Du, “Effects of Boron Oxide Substitution on the Structure and Bioactivity of SrO-Containing Bioactive Glasses”, Journal of Material Science, 52 8793-8811 (2017). [abstract]
  •  P.-H. Kuo, S. S. Joshi, X. Lu, Y.-H. Ho, Y. Xiang, N. B. Dahotre, J. Du, “Laser coating of bioactive glasses on bioimplant titanium alloys”, International Journal of Applied Glass Science, 10 307-320 (2019). [abstract]
  • M. Ren, X. Lu, L. Deng, P-H Kuo, J. Du, “B2O3/SiO2 substitution effect on structure and properties of Na2O-CaO-SrO-P2O5-SiO2 bioactive glasses from molecule dynamics simulations”, Physical Chemistry and Chemical Physics, 20 14090-14104 (2018). [abstract]
Low k dielectric materials: structure, property and plasma etching effect

Low k dielectric materials are used in microelectronics such as very-large-scale integration (VLSI). To the atomic and microstructures of these materials, we use classical and ab initio computer simulations to understand their structure-property relations and processes such plasma etching.

  • M. Chaudhari, J. Du, S. Behera, S. Manandhar, S. Gaddam, and J. Kelber, "Fundamental mechanisms of oxygen plasma-induced damage of ultralow-k organosilicate materials: The role of thermal 3P atomic oxygen", Applied Physics Letter, 94 204102 (3pp) (2009). [abstract]
  • M. Chaudhari and J. Du, "Reaction mechanisms of thermal atomic oxygen interaction with organosilicate low k dielectric materials from ab initio molecular dynamics simulations", Journal of Vacuum Science and Technology A, 29 031303 (6pp) (2011). [abstract]
  • J. Rimsza, L. Deng, J. Du, “Molecular dynamics simulations of nanoporous silica and organosilicate glasses using reactive force field (ReaxFF)”, Journal of Non-Crystalline Solids, 431 103-111 (2016). [abstract]
  • J. Rimsza, J. Du, “Surface reactions and structural evolution of organosilicate glass under Ar plasma bombardment”, Computational Material Science, 110 287-294 (2015). [abstract]

Sponsors