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Abstract. In order to deliver high performance under stringent power
constraints, future systems may include die-stacked memories with pro-
cessing-in-memory (PIM) cores. Because of their proximity to the mem-
ory, PIMs are expected to target applications which require high band-
width, implying that PIMs do not need the same computational capa-
bilities as traditional host processor and can therefore be implemented
using slower, low-leakage transistors to increase energy efficiency. Such
systems must carefully balance design-time choices, such as the circuits
used to build the devices, and run-time choices, such as DVFS states and
the preferred hardware platform on which to run the application. This
paper explores these parameters in a GPGPU PIM system with a large
compute-optimized host and a collection of bandwidth-optimized PIMs.
We develop high-level performance and power models and use them to
find optimal DVFS and kernel placement decisions for a series of GPGPU
applications targeting maximum energy efficiency. We find, for instance,
that the energy efficiency of PIM systems is greatly affected by DVFS;
simply selecting the optimum hardware (host/PIM) results in 7× higher
ED2 than migrating work in conjunction with DVFS.

Keywords: Processing-in-Memory, DVFS, GPGPU, High Performance
Computing, Energy Efficiency, Computer Architecture, 3D-DRAM

1 Introduction

With the breakdown of Dennard scaling, architects rely on increasingly sophisti-
cated dynamic voltage and frequency scaling (DVFS) controls to optimize perfor-
mance while meeting stringent power, energy, and thermal targets [2, 5, 15, 19].
For related reasons, modern processors are increasingly adding heterogeneous
accelerators, most commonly GPUs [10, 20]. As techniques such as DVFS and
heterogeneous processing increase the computational efficiency of processors, the
memory system is becoming a growing performance and energy bottleneck [4].
Recent stacked memory technologies, such as Hybrid Memory Cube (HMC) [16]
and High Bandwidth Memory (HBM) [9], can provide higher bandwidth and re-
duced access energy compared to traditional technologies such as DDR4. Some



2

researchers propose to use 3D die stacking to place cores in a logic layer under the
memory dies and migrate some computation closer to memory, a configuration
referred to as processing-in-memory (PIM) [1, 7, 13, 17, 21, 23]. In these studies,
a collection of PIM devices are used along with a traditional “host” processor
[17, 18, 21, 23]. The host can be optimized for traditional compute-heavy work-
loads and can be implemented using high-performance transistors. In contrast,
PIMs can be optimized for bandwidth-intensive workloads, can be implemented
using lower-power circuits, and can be smaller and run at lower frequencies. This
can significantly increase energy efficiency and reduce difficulties from tight PIM
thermal constraints [6].

In this paper, we evaluate the effects of DVFS on the power and performance
of a PIM-enabled system while taking into account the architectural and pro-
cess differences between a compute-focused host and PIMs optimized for memory
bandwidth. We develop power and performance models which capture the key
differences between these devices and use them to study the design space. Our
findings show that running some compute-intensive kernels on low-frequency
host cores decreases ED2 by 2×, while others see up to 4.5× benefit from the
lower-powered PIMs. Memory-intensive applications can reduce ED2 10× com-
pared to the host when the PIMs can run at lower frequencies. Compared to
simply migrating workloads, making DVFS decisions in conjunction with migra-
tion decisions can result in a 7× reduction in ED2. In addition, a mix of DVFS
and workload migration can allow applications to achieve higher performance
under tight power caps. To the best of our knowledge, we are the first to explore
the impact of DVFS on power and performance of GPU-based PIM systems.
The key contributions of this paper are:

• An analytical power model which captures the differences in leakage and
dynamic power of host and PIM devices.

• An evaluation of optimal hardware platform (host vs. PIM) for OpenCLTM

kernels in order to achieve maximum energy efficiency.
• Evaluation of maximum achievable performance under different power con-

straints.

The rest of the paper is organized as follows. In Section 2, we explain the system
organization. Section 3 describes the performance and power models. Section 4
describes the details of our methodology and experimental setup. In Section 5,
we present our results and discuss the findings. Section 6 covers the related work
and Section 7 concludes the paper.

2 Baseline System organization

Figure 1(a) shows an illustration of the system we study. At the heart of the node
is a heterogeneous chip containing both a CPU and GPU. This design is also
equipped with 3D-stacked DRAM [9, 16], which can deliver the high bandwidth
necessary for the on-chip GPU. 3D die stacking allows for tight integration of
optimized DRAM and logic dies. As such, it allows near-data computing in the
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Fig. 1. Baseline system (a) and kernel performance scaling on GPUs (b)

form of PIM, where computation devices embedded on the logic layer can utilize
the high in-stack bandwidth to improve the performance of memory-intensive
applications [1, 17, 21, 23]. A multitude of PIM designs have been explored, such
as PIMs built from low-power CPU cores [17, 21], GPGPUs [23], and recon-
figurable logic [7]. While low-power CPU PIMs were shown to be very energy
efficient, they were able to utilize only a fraction of the available in-stack mem-
ory bandwidth [8]. A multitude of CPU cores could push more bandwidth but
would exceed the power and thermal envelope of the memory stack. Zhang et al.
proposed a PIM architecture based on GPU accelerators (GPGPUs) [23]. These
highly multi-threaded vector processors are suitable for running highly-parallel
application kernels and provide high computational and memory throughput. At
the same time, the GPU compute units are simple in-order cores, which makes
the architecture energy efficient and provides opportunity for embedding them in
the logic layer of 3D-stacked DRAM. Furthermore, mature programming models
(e.g., OpenCLTM) ease the programmability of such devices. In this study, we
focus on GPUs as PIMs and compare their power and performance to the host
on-chip GPUs. In a heterogeneous PIM system, GPU PIM compute units will be
aimed at improving the energy efficiency and performance of memory-intensive
code. The host GPU will primarily be used for compute-intensive code, since it
has less memory bandwidth and more compute resources than the PIMs.

3 Performance and Power Models

3.1 Performance Model

In order to assess the performance for our target hardware configurations, we
rely on an analytical GPU performance modeling framework [22]. Such models
are more effective for large design space explorations than cycle-level simula-
tors, and they capture enough detail to reasonably estimate future hardware
performance [14].
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Fig. 2. V/f characteristics and relative leakage power for different types of devices.

The model described in [22] has between 10% and 30% error, which is com-
parable to state-of-the-art system simulators [3]. The idea is to run a series of
GPU kernels on native hardware and collect performance statistics for each ker-
nel invocation for different hardware configurations. This allows us to obtain
knowledge about how each kernel’s performance scales with hardware resources
such as frequency, memory bandwidth and compute units. An example of kernel
scaling characteristic is shown in Figure 1(b).

Our model was built from over 200 kernels at 720 different hardware config-
urations across various frequencies, memory bandwidths and number of active
compute units on an AMD FireProTM W9100 GPU. The gathered scaling statis-
tics are clustered into groups with similar scaling characteristics. A machine
learning model is then trained which is later used to classify previously unseen
kernels into one of the scaling groups. We finally use the kernel scaling charac-
teristic to extrapolate kernel performance from a native hardware configuration
to a desired target hardware configuration (host/PIM).

3.2 Power Model

The total power for host/PIM devices is calculated as the sum of chip dynamic
power and leakage power. We modeled dynamic and leakage power in a way
that they capture host and PIM architectural differences (number of CUs, fre-
quency) and differences in process technology (host - high performance process,
PIM - low power process). The difference in process technology affects the volt-
age/frequency (V/f) characteristics of the devices which, in turn, affects dynamic
and leakage power. Our models assume a feature size of 14nm.

DVFS Characteristics Modern computer chips are designed using multiple
types of transistors, i.e. a mixture of low-, medium-, and high-threshold transis-
tors, to target different design tradeoffs, e.g. high-performance vs. low power.

Low-threshold voltage (Low-Vt) devices are used in timing-critical paths,
but have high leakage power. High-threshold voltage (High-Vt) devices have
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Fig. 3. Leakage power values for host and PIM with different Vt distributions. A low-
power PIM with minimal leakage power (such as PIM-95/5) would be desirable in order
to minimize total PIM power consumption.

low leakage power but are slower, and are typically used in circuits that are
off the timing-critical paths. Medium-threshold voltage (Mid-Vt) devices offer
a tradeoff between High-Vt and Low-Vt devices by having medium power re-
quirements and medium delay. In general, low power chips are designed using a
larger percentage of High-Vt devices and high-performance chips with a larger
percentage of Mid-Vt and Low-Vt devices. The host processor is assumed to ex-
ecute compute-intensive code and will therefore be a high-performance device.
PIMs are assumed to be an equivalent of a low-power device, and will have sig-
nificantly lower leakage power than the host and run on lower frequencies and
consume less dynamic power.

Figure 2(a) shows V/f characteristics of three different types of devices for
a 14nm process. Instead of modelling a V/f characteristic of a design with a
specific Vt distribution, we chose the V/f characteristics of both the host and
the PIMs to be equivalent to that of Mid-Vt devices and limit the operating
frequency ranges for host and PIM. We used this method because the Vt ratios
change based on the process maturity and process variation and thus it would be
impractical to model specific V/f curves for host/PIM. We choose the operating
frequency range for host to be 600MHz-1000Mhz and that of PIM 400MHz-
600MHz. We also study the impact on leakage power if the frequency ranges
require a different mix than the nominal one we picked.

Leakage Power Leakage power depends on operating voltage, temperature,
and the ratios of devices used in a chip design. We pick the ratios for host to
be representative of a high performance GPU with a 50/50 High-Vt/Mid-Vt
distribution. We performed a parameter sweep of three different device ratios
for the PIMs and observed their impact on leakage power. High-Vt/Mid-Vt ra-
tios included in the model are 60/40, 75/25, and 95/5 respectively. We model
the leakage power by estimating the leakage power value of host at the highest
voltage-frequency (V/f) point and then scale it to other V/f points using relative
leakage values between host and PIM. The relative leakage values between differ-
ent ratios are obtained from a circuit design tool. Figure 2(b) shows the relative
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leakage values for four different Vt distributions studied. Derived leakage power
numbers are shown in Figure 3. At identical frequencies (600MHz) PIM devices
will have up to 3× lower leakage than the host.

It is important to target low-leakage PIM designs for several reasons. First,
the power dissipation needs to be minimal so as to not exceed the 3d memory
stacks’ power and thermal limitations. Second, a higher power dissipation would
increase the stack temperature and the DRAM refresh rate. Third, most of
the applications executed on PIM will have lower dynamic power and therefore
leakage power will take up a significant portion in PIM total power. For the rest
of the paper we assume a 95/5 High-Vt/Mid-Vt distribution for the PIMs.

Dynamic Power The dynamic power of the host and PIM devices is a func-
tion of the target hardware configuration (frequency, voltage, number of CUs) as
well as the running kernels switching activity. We calculate the dynamic power
of host/PIM devices by scaling the dynamic power of a base hardware config-
uration such as an AMD FireProTM W9100 GPU to a desired target hardware
configuration (host/PIM - Table 1) using the following equation:

Pdynamic = MAXDP ∗ CUtarget

CUbase
∗ ftarget

fbase
∗
V 2
target

V 2
base

∗ CAC ∗ Cscaled (1)

The idea is to scale a known maximum dynamic power (MAXDP) consumed by
a high-end GPU (such as the AMD FirePro W9100 GPU) at a given frequency,
voltage, and number of compute units, to a target hardware configuration (f,
V, CUs). The assumption is that the PIM and host CUs will be architecturally
similar to present high-end GPUs, and therefore the maximum dynamic power
consumed per each CU will be roughly the same for the same feature size, fre-
quency and voltage. This way we can estimate the maximum dynamic power
consumed by the target hardware, i.e. at 100% switching activity. The actual
dynamic power consumed by a GPU kernel will depend on the chip switching ac-
tivity (shown as CAC in equation 1) during kernel execution. The total dynamic
power will therefore be a fraction of the target maximum dynamic power. Target
capacitance (as compared to the base GPU capacitance) will also be lower and
ultimately will lower the target dynamic power. We factor this in as the last
element of the equation Cscaled.

4 Methodology and Experimental Setup

4.1 Target Hardware Baseline

We assume the target node, as depicted in Figure 1, will have a high-performance
host APU and eight 3D DRAM stacks with low-power GPU PIM cores. Details
of the target system are listed in Table 1. We set the PIMs’ aggregate mem-
ory bandwidth to be 2× higher than the host’s, assuming that only 50% of the
possible in-stack bandwidth will be available to the host due to the high power
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Table 1. Target system parameters

host PIM

# of CUs 256 192 (8x24)

Mem. Bandwidth 1 TB/s 2 TB/s

Frequency (MHz) 600-1000 400-600

Tech. Node 14nm FinFET 14nm FinFET

Process high-performance low-power

consumption of the active links needed to support high off-chip memory band-
width. Each of the eight PIM stacks is assumed to have 24 embedded low-power
GPU CUs, for a total of 192 PIMs. The host APU is assumed to have 256 GPU
Compute Units (CUs) and has more compute power than the eight PIM stacks.
Such a high number of CUs is an optimistic assumption, however it will be
achievable with future technology scaling.

4.2 Benchmark Selection

We selected 15 applications from a wide range of publicly available GPU bench-
mark suites. These benchmarks tend to exhibit enough parallelism to utilize,
and are expected to scale to, the target hardware configurations. In addition,
the benchmarks selected rely on algorithms for which we can easily split data
and tasks such that the PIMs primarily access their local DRAM stacks. The 15
selected applications are categorized based on their performance scaling charac-
teristics [12]. Compute bound benchmarks - lavaMD, NBody, MonteCarloAsian,
MaxFlops, CoMD - contain mostly kernels which scale with compute resources.
Memory bound benchmarks - kmeans, MatrixTranspose, miniFE, DeviceMemory
- contain mostly kernels which scale with memory bandwidth. Balanced bench-
marks - b+tree, MatrixMultiplication exhibit different scaling behavior for dif-
ferent compute/bandwidth ratios. We also select benchmarks which have a mix
of compute/memory/balanced kernels - backprop, GEMM, BoxFilter, XSbench
to show the impact of kernel placement on total runtime/power consumption
when kernels have different scaling characteristics.

4.3 Experiments

We collected performance counters for each kernel invocation of the 15 bench-
marks and estimate their power/performance using previously described power
and performance models. We also include the energy spent on memory accesses.
We evaluated the optimal hardware choices to run the kernels when using DVFS
and compared them to cases where all benchmark kernels run on either the host
or PIM devices, while targeting maximum energy efficiency (minimum ED2).
Figure 4 shows the motivation of the potential tradeoffs. We also evaluated the
maximum performance under power constraints and show how optimal hardware
choice shifts to PIMs, which consume significantly less power. It is assumed that
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once a kernel is running on the host/PIM it will remain there (i.e., it will not
migrate between devices) for all invocations of that kernel.

5 Results and Analysis

For the purpose of analyzing the energy efficiency we evaluated the energy-delay2

metric because it represents a tradeoff between energy and performance. Figure
5 compares the ED2 value for ED2 optimal placement with ED2 of host-only and
PIM-only placement. We observe that for highly compute intensive benchmarks
like MaxFlops and NBody, the host has significantly better ED2 and is the op-
timal choice. Interestingly, these two applications achieve minimum ED2 when
running at the highest DVFS points. This implies that PIMs aren’t necessarily
the most energy-efficient choice for computation. Other benchmarks have bet-
ter ED2 when all kernels run on the PIMs, except CoMD where 2 kernels have
better ED2 when running on the PIMs while the others are best on the host.
Figure 5 shows how PIMs are an optimal choice in many cases when targeting
energy efficiency. This shows that the addition of PIMs to a heterogeneous node
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Fig. 5. ED2 comparison when trying to optimize for minimum ED2. Very high compute
intensive applications achieve minimum ED2 while running on host. This means that
host will be more energy efficient for such applications than PIM regardless of the
higher power consumption.
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Fig. 6. Maximum Performance under Power Constraints

architecture can yield high throughput and high energy efficiency even when
compared to host running at lower DVFS states. In many cases, including appli-
cations that are somewhat compute-bound, the work would move to PIM, which
significantly reduces power at the expense of small performance loss. Exceptions
are highly compute intensive applications like b+tree, MaxFlops, and NBody.

5.1 Maximum Performance under Power Constraints

The host can deliver higher performance for applications that are very com-
pute intensive. The question remains whether this will remain true under power
constraints, and at which point the PIMs will deliver better performance than
the host. To confirm that PIMs are in many cases indeed a better choice, even
when host is running at a lower DVFS state, we evaluated what is the maxi-
mum performance we can get from a benchmark when each kernel consumes less
power than a specified power constraint. There will be a performance optimal
hardware choice for each kernel, and this will change depending on the power
limit. Figure 6 compares the maximum performance under different power caps
for 3 benchmarks. We show a subset of all benchmarks because others show
similar behavior and same conclusions can be made. We see that the host al-
ways consumes at least 100W (at the lowest DVFS state) and cannot perform
under power constraints lower than 100W. PIMs can on the other hand deliver
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Fig. 7. Comparison of ED2 values when host and PIM employ DVFS with a case
where host and PIM run only at highest DVFS states (host-1000MHz, PIM-600MHz).
By using DVFS in conjunction with PIMs we can on average improve the minimum
achievable ED2 by 7x, and in cases of memory intensive benchmarks by 40x-100x.
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good performance even under tight power budgets due to their low power con-
sumption. In cases of memory bound benchmarks like XSBench, PIMs always
deliver significantly higher performance due to higher memory bandwidth. An
interesting case is lavaMD, where the PIM outperforms the host at some inter-
mediate DVFS state. This is because the application can compensate the lower
performance of lower DVFS state by exploiting higher memory bandwidth.

5.2 Discussion

When optimizing applications for maximum energy efficiency, benchmarks which
consist of heavily compute intensive kernels achieve 2× lower ED2 when running
on host at highest DVFS states (1000MHz). However, other compute intensive
kernels achieve lower ED2 when running on PIM (1.5× - 4.5× lower than on
host), while suffering minimum performance losses (20%-50%) over performance
optimal case. While optimal hardware choices play a significant role, the ad-
dition of DVFS to the system proves to be crucial in maximizing the energy
efficiency. Figure 7 compares the minimum achievable ED2 value of a host/PIM
system with DVFS to a host/PIM system without DVFS (running on high-
est DVFS state). We can see that by using DVFS to complement the already
energy-efficient system design we can on average improve the energy efficiency
by 7×, and in some cases between 40×-100×. When optimizing applications for
maximum performance for systems with lower power budgets we can achieve
1.2× - 2.5× better performance if we pick the right hardware (host/ PIM) and
allow for DVFS. For small power budgets, PIMs can achieve better performance
than the host at a lower DVFS state, while for power budgets lower than 100W,
the host would exceed the power limit while PIMs would be able to remain op-
erational and deliver performance comparable to host for a fraction of power
consumed. Our findings strengthen the hypothesis of PIMs being a useful het-
erogeneous platform and show the importance of DVFS as a mean to maximize
performance and energy efficiency in HPC systems with PIM. Additionally, our
study allows for future exploration of optimizations when multiple applications
are executing in the system by trading off power and performance of different
applications to achieve combined optimum performance gains.

6 Related Work

Zhang et al. [23] proposed a PIM architecture based on GPGPUs and evaluated
the performance and power benefits of such systems. However, this work only
considered a single operating point for the host and PIMs, and evaluated host and
PIM execution in isolation. We extend this work to include the characterization
of the impact of DVFS and co-optimization of both host and PIM. In addition,
we created power models which can capture the differences between host and
PIM and evaluate the system on application level and not just kernel level.

Schulte et al. [11] investigated the effect of varying engine frequency/voltage,
memory bandwidth and number of compute units on GPU performance and
power. The authors explored DVFS for standalone GPUs. We instead consider
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the presence and co-optimization of heterogeneous execution engines (i.e., high-
performance host and low-power PIM).

Ščrbak et al. [21] explored a variety of design choices in ARM-based PIM
systems, including caches, frequency/voltage and their effect on the overall en-
ergy efficiency of the system. The research remained focused on ARM-based PIM
architectures and doesn’t explore GPUs as an alternative.

7 Conclusion

In this paper we explored the effects of DVFS on energy efficiency of a GPU PIM
system while accounting for architectural and process differences of the host and
PIM devices. We developed analytical power and performance models to cap-
ture these differences and use them to explore the PIM DVFS design space. Our
findings show that a PIM system with DVFS is more energy-efficient than a
PIM system without DVFS, and results in 7× lower ED2 values on average. By
utilizing DVFS for host we can additionally decrease ED2 by 2× for compute-
intensive applications and by 4.5× when using DVFS with PIMs. Furthermore,
when using DVFS and low-power PIMs and optimizing performance for systems
with tight power budgets, we can achieve 1.2×-2.5× better performance if we
pick the right hardware (host/PIM) and DVFS point. Our study allows for fu-
ture exploration of optimizations when multiple applications are simultaneously
executing in the system. We will evaluate such optimizations in future work.

AMD, the AMD Arrow logo, AMD FirePro, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple Inc.
used by permission by Khronos. Other names used herein are for identification
purposes only and may be trademarks of their respective companies
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