
Computers and Electrical Engineering 38 (2012) 243–257
Contents lists available at SciVerse ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate/compeleceng
A comparative analysis of performance improvement schemes
for cache memories q

Krishna Kavi ⇑, Izuchukwu Nwachukwu, Ademola Fawibe
The University of North Texas, Denton, TX 76203, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 February 2011
Received in revised form 19 December 2011
Accepted 19 December 2011
Available online 10 January 2012
0045-7906/$ - see front matter � 2011 Elsevier Ltd
doi:10.1016/j.compeleceng.2011.12.008

q Reviews processed and approved for publication
⇑ Corresponding author.

E-mail addresses: krishna.kavi@unt.edu, kavi@cs
There have been numerous techniques proposed in the literature that aim to improve the
performance of cache memories by reducing cache conflicts. These techniques were pro-
posed over the past decade and each proposal independently claimed to reduce conflict
misses. However, because the published results used different benchmarks and different
experimental setups, it is not easy to compare them. In this paper we report a side-by-side
comparison of these techniques. We also evaluate the suitability of some of these techniques
for caches with higher set associativities. In addition to evaluating techniques for their
impact on cache misses and average memory access times, we also evaluate the techniques
for their ability in reducing the non-uniformity of cache accesses.

The conclusion of our work is that, each application may benefit from a different tech-
nique and no single scheme works universally well for all applications. We also observe
that, for the majority of applications, XORing (XOR) and Odd-multiplier indexing schemes
perform reasonably well. Among programmable associativity techniques, B-cache per-
forms better than column-associative and adaptive-caches, but column-associative caches
require very minimal extensions to hardware. Uniformity of cache accesses is improved
most by B-cache technique while column-associative cache also improves cache access
uniformities.

Based on the observation that different techniques benefit different applications, we
explored the use of multiple, programmable addressing mechanisms, each addressing
scheme designed for a specific application. We include some preliminary data using multi-
ple addressing schemes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The primary contribution of the paper is a comprehensive comparative evaluation of several addressing schemes that aim
to reduce conflict misses in cache memories. The techniques studied in this paper were proposed over the past decade and
each proposal independently claimed to reduce conflict misses. However, because the published results used different
benchmarks and different experimental setups, it is not easy to compare them. In this paper, we report a side-by-side compar-
ison of these techniques. Many of these techniques focused on direct-mapped caches. In this paper, we also explore the suit-
ability of these techniques for caches with higher set-associativities.

We introduce new indexing schemes that are a combination of other methods. In addition, we also evaluate the unifor-
mity of memory accesses achieved by different techniques. We use statistical measures including Kurtosis and Skewness of
the distribution of accesses to different cache sets for this purpose.
. All rights reserved.

by Editor-in-Chief Dr. Manu Malek.

e.unt.edu (K. Kavi), iun0001@unt.edu (I. Nwachukwu), ademolafawibe@unt.edu (A. Fawibe).

http://dx.doi.org/10.1016/j.compeleceng.2011.12.008
mailto:krishna.kavi@unt.edu
mailto:kavi@cse.unt.edu
mailto:iun0001@unt.edu
mailto:ademolafawibe@unt.edu
http://dx.doi.org/10.1016/j.compeleceng.2011.12.008
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng


244 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
Our reason for this study is to see if cache memories can be designed with multiple, programmable addressing mecha-
nisms, each addressing scheme designed for a specific application. We are currently conducting experiments to evaluate
multiple programmable address decoders with cache memories. In this paper, we have included some preliminary data from
such studies.

The performance of processors is limited by the memory access speeds. Cache memories can hide some of the long access
times to main memories. Because of the limited sizes of caches, it is important to minimize cache misses, particularly misses
due to conflicts. In conventional direct mapped caches the next data item whose memory address index bits map to that line
evicts data that currently resides in that cache line. Associative caches mitigate such evictions by employing several cache
lines for each set. However, on a cache access to a set-associative cache the tags of all the lines in a given set are checked to
see if the block exists in cache. This operation increases access times and/or energy consumed by caches.

In addition to cache conflict misses in direct mapped caches, several researchers (for example, [1–4]) have reported that
not all cache sets (or lines) are accessed equally and the heavily accessed sets lead to most of the conflict misses and thus to
poor performance. Consider for example Fig. 1(a), which shows the misses per set of a directly-mapped L-1 data cache for the
SPEC 2006 Gromacs benchmark (x-axis corresponds to cache line number and y-axis corresponds to the number of cache
misses). Spreading the cache accesses more uniformly across all cache sets may reduce the conflict misses. Fully associative
caches will improve cache uniformity since a data item can be placed anywhere in the cache. Fig. 1(b) shows how the uni-
formity of accesses (for Gromacs) improves when a 16-way associative cache is used. Note that the range of misses (y-axis)
in Fig. 1(b) is much smaller than that in Fig. 1(a). However, higher associativities require more complex hardware.

Previously we observed that the degree of non-uniformity depends on the application [2,5]. For example, MCF (a SPEC
benchmark) exhibits reasonably uniform behavior. In some benchmarks, even if most accesses fall to a small number of sets,
most of these accesses are hits, and thus causes no performance problems. We may need to apply different techniques
depending on the severity of non-uniformity of accesses. Fortunately several solutions are available. The solutions fall into
two groups: finding optimal cache-indexing schemes and dynamically remapping addresses to less utilized cache sets.

1.1. Optimal indexes

Mapping an address to a cache set relies on the use of a portion of the address. Consider an address space of 2N bytes (i.e.,
N address bits), and a cache with 2n lines of 2b bytes (for a capacity of 2n+b bytes). We will use m bits out of the N address bits
to locate a set with k lines (k-way associative), where m = {n � log2(k)}; and use b additional bits to locate a byte, leaving
(N �m � b) bits as the tag. In traditional caches we use lower-end m bits for indexing, defining modulo 2m hashing (Fig. 2).

In a more general view we can consider this process as finding a hash function that maps a given key (representing the
specified address) to a bucket (a cache line or set) in which the data may (or may not) be found. Cache access uniformity
may be improved by finding a ‘‘perfect hash function’’. The size of the bucket determines the set-associativity. Similar to
the use of linked lists to resolve collisions in hashing, we can view cache associativity (or bucket size) as collision resolution,
and not all buckets need to be of the same size. It should be noted that finding a perfect hash function (i.e., selecting address
bits representing the hash function) is NP-complete [1]. In the Section 2, we will present several heuristics for computing
cache indexes.

1.2. Dynamic relocation of addresses (or programmable associativity)

As stated in the previous section, higher associativities can lead to more uniform utilization of cache and reduce conflict
misses. However, higher associativity also requires more complex hardware and may increase access times to cache. In
Fig. 1. Non-uniform accesses of a direct-mapped (a) and 16 way associative cache (b).



 
TAG INDEX BYTE OFFSET 

Fig. 2. Cache address mapping.

K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 245
column-associative caches [6], the cache is viewed first as a direct mapped cache – by mapping an address to a specific cache
line. If the desired element is not found, the cache is then viewed as 2-way associative and the second element of the set is
searched – the alternate location is obtained by complementing the most significant bit of the index. This approach provides
a higher associativity only when needed. Consider the following variation to column associativity (Fig. 3).

We add two fields to traditional caches: L and Partner Index (V is the traditional Valid bit). The L field indicates if the
cache line is associated with another line and the Partner index identifies the alternate cache line. This is different from ‘‘col-
umn associativity’’ since any two cache-lines can form a set. We can select less frequently used cache lines as partners to
more frequently used cache lines. We can either use profiling or dynamically match cache lines as partners by keeping count
of accesses and/or misses with each line. In principle we can extend the ‘‘partner index’’ idea to create a linked list of cache
lines, effectively increasing the set-associativity for ‘‘hot’’ or heavily accesses lines. It should be noted that the length of the
linked list can be viewed as the associativity for the original index, and since the length of the linked list depends on the
conflicts for a given index, we use the term ‘‘programmable associativity’’ to refer to this technique. Of course, the longer
the list, the more cycles are expended in finding the desired object. While this approach offers a great deal of flexibility,
the solution can be costly because of the extra bits in cache and extra cycles needed to find an address. Other implementa-
tions can achieve similar goals with restricted flexibility. We will describe some such techniques in Section 3.

The focus of the paper is on architectural solutions. However, software solutions to improve cache localities have been
investigated by several researchers (for example, [7–17]). Spatial localities of data can be improved using compile time
and/or runtime analysis of dynamically allocated objects and relocating them to contiguous locations in memory. For exam-
ple, pool allocators [14] allocate linked lists in consecutive locations of memory (or pools) in order to improve spatial local-
ities of objects. In [11,12], the authors propose a generalized approach to associate attributes that can be used by custom
memory allocators. In addition to the size of an object, one can associate attributes that specify how objects should be allo-
cated with respect to virtual pages or cache lines, or how objects should be allocated in relation to other (related) objects.
However, it is unclear how a programmer would be able to understand and specify appropriate attributes; an incorrect or
overly conservative specification might defeat the intended purpose of such attributes.

The rest of the paper is organized as following. Section 2 introduces various indexing schemes for addressing caches. Sec-
tion 3 introduces different techniques to remap a data address to a different cache location (i.e., programmable associativ-
ities). We present the results and analyses of our experimental evaluations in Section 4. Section 5 provides our conclusions
and our goals for further research.
2. Optimal cache indexing schemes

Traditional cache addressing methods use lower order bits as an index into the cache, as described in the previous section
(Fig. 2). Here, we describe several techniques that suggest other ways of addressing caches.
2.1. Quality of index bits

This technique relies on address traces resulting from a program execution. From the traces the unique addresses
accessed by the program are identified. Givargis [1] defines two measures with address bits of the unique addresses. The
quality of a bit as an index depends on how often the bit takes the value of zero and one. High quality implies that the
bit takes zero and one values equally across all the (unique) addresses accessed by the program. The correlation metric iden-
tifies the correlation between a pair of bits – there is a high correlation if the two bits either take the same value or
 

TAG V L Partner Index DATA

Fig. 3. Associating hot and cold sets (or programmable associativity).



246 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
complementary values in all the addresses. Bits with the largest quality values and low correlation are selected until all the m
bits needed to index 2m cache sets are identified.

The first step in the algorithm is to calculate the quality value Qi for each address bit. The quality value is calculated as
follows:
Qi ¼
minðZi;OiÞ
maxðZi;OiÞ
Here, Zi, Oi denote the number of times bit i takes the values of zero and one, respectively, among all unique addresses in the
trace. The maximum value for Qi is 1, when the address bit assumes 0 and 1 equally.

The correlation between bits i and j is computed as follows:
Cij ¼
minðEij;DijÞ
maxðEij;DijÞ
where Eij, Dij and denotes the number of times bits i and j have equal or complementary values, respectively.
A correlation matrix describes all pairwise correlations. The bit with the highest quality value is selected and the dot

product between the quality value vector and the correlation for the selected bit is the new quality vector. From these value
vectors, m index bits with the highest values are chosen.

It should be noted that Givargis’s method does not differentiate between frequently accessed and rarely accessed
addresses in computing quality of bits. This may disadvantage frequently accessed addresses causing conflicts with rarely
accessed addresses.
2.2. Address conflict patterns

Patel et al. [18] exhaustively searches for the index bit combinations that results in the least number of conflict misses for
a memory trace. The goal is to find index bits that results smallest conflict cost as defined below. The algorithm is centered
around computing direct conflict pattern (DCPij) between two addresses Ai and Aj: DCPij is computed by performing a bit-
wise comparison of the two addresses. Then the total conflict cost CPi for address Ai is computed by bit-wise ORing DCPij val-
ues for every address Aj that follows Ai in the trace, before Ai is accessed again. The conflict cost is then computed for the
length of the trace L. The goal is to identify address bits that cause the least number of conflicts for the given address trace.
It should be noted that, unlike Givargis’s method, Patel’s technique accounts for the frequency of accesses of addresses in the
trace. As can be seen from the description above, this method is computationally prohibitive. We will not include this meth-
od in our experimental evaluations.
2.3. Prime-modulo hashing function

Unlike previous techniques that rely on address traces, the next several techniques define different addressing functions
[19] without regard to specific address traces. In Prime-modulo hashing, the set to which a given address maps is computed
using modulo with respect to a prime number.
HðaiÞ ¼ aimodp
The prime number p is selected such that it is less than or equal to the number of cache sets. The difference between prime
modulo indexing and traditional hashing is that we use a prime number instead of the total number of sets in the cache. The
hardware to compute prime modulo function can be complex and the time to complete the operation can be long. And, cache
fragmentation occurs because not all sets in the cache will be utilized. The table below (Table 1) shows the fragmentation (or
wasted cache resource) for different cache sizes.

With larger caches the fragmentation is not significant and thus this technique may be more appropriate for L-2 or Last
Level caches.
Table 1
Prime modulo fragmentation.

Cache sets Cache sets used by prime modulo Fragmentation (%)

256 251 1.95
512 509 0.59

1024 1021 0.29
2048 2039 0.44
4096 4093 0.07
8192 8191 0.01

16,384 16,381 0.02



K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 247
2.4. Odd-multiplier displacement indexing

In odd-multiplier displacement hashing [19] the traditional modulo is performed after an offset is added to the original
index xi. The offset is the product of a multiplier pand the tag Ti.
HðaiÞ ¼ ðp � Ti þ xiÞmodn
Here, n is the total number of sets in cache. This function is based on hashing functions in Aho and Ullman [20] and is
related to Raghavan and Hayes’s RANDOM-H functions [21]. The choice of the odd multiplier determines the performance
of this technique. Some multipliers that work well are 9, 21, 31, and 61.

2.5. Exclusive-OR (XOR) hashing

In this technique set index bits (xi) are exclusive-ored with selected bits chosen form the tag part (ti) of the address [19].
HðaiÞ ¼ ti � xi
XOR operation reduces conflicts as follows. When the set index bits are the same for two different addresses, at least one
of the tag bits will be different for the addresses. When tag bits are XORed with index bits, the conflicting addresses will be
mapped to different cache lines. However, this may cause conflicts with other addresses.

2.6. Givargis-XOR

We propose a hybrid of Givargis optimal bits selection algorithm and the XOR hashing scheme. It works as follows, in-
stead of XORing the index bits with tag bits immediately preceding the index bits, an optimal set of tag bits as defined
by Givargis method [1] is XORed with the index bits.

In this paper, we compare techniques described here except Patel’s [18] technique since it is computationally intractable
for large address traces.

3. Programmable associativity

A fully associative cache with perfect replacement policy will access all cache lines equally likely, because data can be
placed anywhere in the cache. However, fully associative caches with perfect replacement policies are not realistic. Here,
we describe some techniques that increase the effective associativities for cache lines that incur higher misses, without
increasing the associativity of the entire cache. It should be noted, however, most of these techniques incur additional cycles
to locate the item in a secondary location when a miss occurs in the primary location.

3.1. Column associative cache

In column-associative (or pseudo-associative) caches [6], the cache is fist viewed as a direct mapped cache – by mapping
an address to a specific cache line. If the desired element is not found, the cache is then viewed as 2-way associative and the
second element of the set is searched. The alternate location is obtained by ‘‘flipping’’ (or complementing) the most signif-
icant bit of the index. When there is a miss in both locations, the data residing in the original index location is moved to the
alternate location and the rehash bit of the alternate set is set to 1. When a direct miss occurs in a set whose rehash bit is set
to one, new data is written into that set and the rehash bit is reset to zero, indicating that it is indexed conventionally.

3.2. Adaptive caches

In Adaptive-cache [3], conflicting data items are relocated to new cache lines by using two tables. SHT (Set-reference His-
tory Table) keeps only the set indexes corresponding to Most Recently Used (MRU) sets and OUT (Out-of-position directory)
maintain indexes for items evicted from MRU sets. When an access to the cache occurs the OUT directory is accessed in par-
allel with the cache. If the data is in the cache, the set history table SHT is updated for MRU status. If the data is not present in
the cache, the OUT directory is accessed to see if an entry in OUT matches the tag of the address referenced; then the OUT
table provides the cache index of the alternate location that contains the address referenced. The data may be swapped be-
tween the primary cache location and the alternate location stored in OUT to improve future access latencies. The OUT direc-
tory is updated to reflect the new set holding data corresponding to the tag. To simplify cache management a disposable or d
bit is maintained for each cache block to indicate whether a block should be evicted or kept in an alternate location. The OUT
table is not consulted when the disposable bit is set [3].

On a miss, the data residing in a block is simply replaced if the disposable bit is set. However, if the disposable bit is reset,
then an alternate block has to be identified to hold the data that would otherwise be evicted from the cache. If the OUT direc-
tory has empty slots then an empty line is used to hold the data. The OUT directory is then updated with this new entry. On
the other hand if the OUT directory is full then the least-recently used slot in the OUT directory is used to hold the displaced



248 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
address. The SHT is updated on every access to maintain the table of MRU status of sets. The performance of this technique
depends on the number of entries in SHT and OUT tables. Based on experimentation good sizes for the SHT and OUT are 3/8
and 4/16 of the total number of lines in the cache.
3.3. B-cache

Zhang’s B-cache [4] reduces accesses to frequently missed sets and increases the accesses to less active sets. We will illus-
trate the functionality of a B-cache with a simple example. Let us assume that the following addresses reference a B-cache: 1,
4, 7, 1, 3, and 9. To keep the explanation simple let us ignore the byte-offset, and we will use 4-bit addresses that can be
divided into cache index and tag. We will use a 4-line direct-mapped cache for our example. In a traditional directly mapped
cache we need 2 bits as cache index, leaving 2 bits as tag. The B-cache changes the mapping by using only the least signif-
icant bits as cache index (referred to as non-programmable index or NPI) and uses the 2 bits that follow as programmable
cache index bits (called PI). This can be viewed as effectively partitioning cache into two halves; we refer the first half (00 &
10) as group 1 and refer the second half (01 & 11) as group 2. Under such a mapping, the first access to address 1 (‘‘0001’’)
will map to two possible cache lines and placed in one of two cache lines, say 01. The second reference 4 (‘‘0100’’) is placed in
00, while the third reference, 7 (‘‘0111’’) is placed cache line 11. The next reference to address 1 will result in a hit. Assuming
we will use LRU for replacement, the recency status of set 00 is updated. When address 3 (‘‘0011’’) is referenced, the line 11
(as compared to line 01) is selected because of the recency information. On every access the corresponding programmable
index is set (in this case the PI is 0). When address 9 (‘‘1001’’) is referenced, there is a miss in the cache. However using the
programmable index bit, we will select line 01 to store the address 9. If there is a miss in the cache but a hit in the PI, the
block with the PI match is the candidate for replacement. On a miss in both the PI and the cache, a line is chosen using a
replacement policy and the programmable index is reprogrammed with the PI of the new block.

B-cache effectively increases the set-associativity using programmable and non-programmable indexes. In fact, we can
view the example presented here as equivalent to a 2-way set associative cache. However, using two-programmable index
bits, B-cache should be viewed as a partially decoded 4-way associative cache. The length of the programmable and non-pro-
grammable index is determined by the mapping factor (MF) and B-cache associativity (BAS).
1 http
2 ww
MF ¼ 2PIþNPI

2OI
Here, OI is the number of index bits in the direct-mapped cache, PI and NPI are the number of programmable and non-
programmable bits. The B-cache associativity (BAS) determines how the cache is partitioned into clusters. In the example
above the 4-line cache is divided into two clusters each with two lines, thus BAS is 2. The miss-rate of a BAS cluster cache
approaches that of a BAS-way associative cache. The BAS value is computed as follows:
BAS ¼ 2OI

2NPI
In this paper, we compare the three techniques presented in this section. We will also explore the use of different index-
ing schemes (as described in Section 2) with B-cache programmable indexes.
4. Experimental methodology and results

Several SPEC1 2006 and MiBench2 benchmarks are run using the SimpleScalar toolset [22]. SimpleScalar is a cycle accurate
processor simulator that supports out-of-order issue and execution. All the benchmarks used are pre-compiled for the Alpha
instruction-set-architecture. We modified the cache memories in SimpleScalar to implement the various techniques described
in this paper. We collected statistics on hits, misses and total accesses per set.

Our simulations are based on 32 KB direct-mapped L1 data and instruction caches with 32 byte blocks, and a 256 KB uni-
fied L2 cache with 32 byte blocks. The sizes of OUT and SHT tables for the Adaptive-cache are 3/8 and 4/16 of the cache size
respectively. We use LRU replacement policy in our B-cache implementation.
4.1. Comparing indexing techniques

We explored how the different indexing schemes described in Section 2 perform in terms of cache accesses. We did not
evaluate Patel’s indexing scheme because of the intractability of the computations needed to find optimal indexes. In this
section we show the results of using Givargis, Odd multiplier, Prime modulo and XOR schemes for SPEC 2006 and Mibench
benchmarks.
://www.spec.org.
w.eecs.umich.edu/mibench/.

http://www.cs.binghamton.edu/~msim/
http://www.cs.binghamton.edu/~msim/


K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 249
In Figs. 4 (SPEC) and 5 (MiBench), we show the percentage reduction in cache misses achieved using these techniques,
when compared to traditional (modulo) indexing scheme. A negative value indicates an increase in cache miss rates when
compared to traditional indexing scheme.
4.1.1. Remarks
These figures show that none of the techniques perform consistently well. On average, Givargis technique performs worst

among the techniques studies in this paper, while XOR, Prime-modulo and odd-multiplier techniques perform reasonably
well. XOR requires very minimal hardware (XOR gates) while odd-multiplier requires an integer multiplier unit. Prime-mod-
ulo is not practical since it requires hardware to compute a prime modulo. Givargis’s [1] method needs no additional hard-
ware but the off-line analysis can be expensive. The reason for the poor performance of Givargis’ method is that it does not
differentiate between frequently accessed and rarely accessed addresses. Moreover, when applications’ memory access differ
from run to run, it will be necessary to apply this off-line analysis for each run. Previous studies [1] indicated that Givargis’s
technique produces improvements when used with smaller line sizes.
4.1.2. Impact of indexing schemes with higher associativities
We then explored the impact of the various indexing schemes when higher associativities are used. We explored L-1 ca-

ches with 2-, 4-, 8- and 16-way associativities. The results are shown in Table 2.
Once again, Givargis’ technique performs poorly. The cache miss rate improvements for other techniques are minimal and

as expected the improvements are diminished with higher associativities.
Fig. 4. Percent reduction in miss-rates for SPEC 2006 benchmarks.

Fig. 5. Percent reduction in miss-rates for Mibench benchmarks.



Table 2
Percentage cache miss-rate reduction for a 2, 4, 8, and 16 way associative cache with different cache indexing schemes.

Benchmark XOR Odd_Multiplier Prime_Modulo Givargis

Two way
astar 1.54 0.38 0.38 �216.92
bzip2 2.89 3.31 3.31 �21.07
calculix �6.67 0.00 �11.11 �122.22
gromacs 0.93 0.00 0.93 �18.69
hmmer 2.30 16.59 5.07 �23.96
libquantum 0.00 0.00 0.26 0.00
mcf 0.06 �0.50 �0.44 �17.91
milc 0.00 0.00 0.00 �1575.86
namd 12.12 7.58 6.06 �266.67
sjeng �28.00 16.00 16.00 �324.00
Average �1.48 4.34 2.05 �258.73

Four way
astar 0.87 0.87 0.44 �58.08
bzip2 4.19 4.19 4.19 �48.17
calculix 0.00 2.70 0.00 �97.30
gromacs 0.00 0.00 0.00 �51.90
hmmer 0.71 1.43 1.43 �54.29
libquantum 0.00 0.00 0.26 0.00
mcf �0.36 �0.57 �0.64 �28.35
milc 0.00 0.00 0.00 �665.52
namd 0.00 0.00 0.00 �1016.67
sjeng 0.00 0.00 0.00 �530.00
Average 0.54 0.86 0.57 �255.03

Eight way
astar 0.00 0.00 0.00 �37.61
bzip2 1.37 1.37 1.37 �91.10
calculix 0.00 0.00 0.00 �61.76
gromacs 0.00 2.44 2.44 �187.80
hmmer 0.00 0.00 0.82 �59.84
libquantum 0.00 0.00 0.26 0.00
mcf �0.61 �0.61 �0.53 �33.64
milc 0.00 0.00 0.00 �320.69
namd 0.00 0.00 0.00 �977.78
sjeng 0.00 0.00 0.00 �375.00
Average 0.08 0.32 0.44 �214.52

Sixteen way
astar 0.00 0.00 0.46 �34.26
bzip2 1.00 1.00 1.00 �173.00
calculix 0.00 0.00 3.03 �54.55
gromacs 0.00 0.00 0.00 �306.90
hmmer 0.00 0.00 0.00 �65.22
libquantum 0.00 0.00 0.26 0.00
mcf �0.95 �0.95 �0.87 �39.42
milc 0.00 0.00 0.00 �48.28
namd 0.00 0.00 0.00 �950.00
sjeng 0.00 0.00 0.00 �212.50
Average 0.01 0.01 0.39 �188.41

250 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
4.2. Comparing column associative, adaptive and B-caches

Figs. 6 and 7 show the percentage reduction in miss-rates achieved by these techniques when compared to traditional
direct mapped caches, for SPEC 2006 and Mibench benchmarks. Miss-rates alone, however, do not fully demonstrate the per-
formance improvement of these schemes. A better metric to use is the average memory access time (AMAT), which accounts
for the extra cycles incurred in the implementation of some of these techniques. We estimated that the Adaptive-cache in-
curs three extra cycles if there is a hit in the OUT directory. This is because of the cycles used to search the OUT directory and
for the second cache lookup of that entry. Consequently, the hit-time is split into two fractions, one for direct hits to the
cache and the other for hits in the OUT directory. In case of column-associative cache, we added one extra cycle when data
is not found in the primary location but found in the secondary location. Figs. 8 and 9 show the reduction in average memory
access times (AMAT) achieved by these schemes.
4.2.1. Remarks
In general all three methods reduce cache misses. When using average memory access times (AMAT) for comparison,

B-cache outperforms the other methods, because this method does not incur additional cycles to locate an address unlike



Fig. 6. Percent reduction in miss-rates for SPEC 2006 benchmarks.

Fig. 7. Percent reduction in miss-rates for Mibench benchmarks.

Fig. 8. Percent reduction in average memory access times for Mibench benchmarks.

K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 251
adaptive-cache and column-associative techniques. On the other had, column-associative method is the simplest technique
to implement. B-cache relies on a specific implementation of caches (viz., designed with multiple banks of SRAM).



Fig. 9. Percent reduction in average memory access times for SPEC 2006 benchmarks.

Fig. 10. Miss-rate reductions over conventional B-caches.

252 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
Adaptive-cache requires additional tables (OUT and SHT) and incurs additional cycles to locate entries in these tables. How-
ever, adaptive-cache technique may be useful in managing non-uniform caches (NUCA) and cooperative shared caches (see
Section 4.4).

4.2.2. Different indexing schemes with B-cache
We wanted to explore the possibility of changing indexing schemes with B-cache. More specifically, we compared

B-cache using traditional indexing for programmable indexes against B-cache using XOR, Prime-modulo and odd-multiplier
techniques for selecting programmable index bits. Fig. 10 shows the percentage reduction (or increase) in misses resulting
from the various indexing schemes when compared B-cache using traditional indexing for SPEC 2006 benchmarks. In most
cases the new indexing methods show some reductions in cache misses. B-cache using XOR and odd-multiplier techniques
show larger improvements than Prime-modulo technique. For some benchmarks, however, new indexing schemes actually
increase cache misses.

4.3. Evaluation of uniformity of memory accesses

While results so far show some improvements in terms of miss rates, we also wanted to explore the uniformity of cache
accesses achieved by various techniques. Zhang [4] measured uniformity by computing the percentage of sets that are ‘‘Fre-
quently Hit Set (FHS)’’, ‘‘Frequently Missed Set (FMS)’’, and ‘‘Least-Accessed Set (LAS)’’. A set is FHS if it received at least two
times the average number of hits; a set is FMS if it received at least twice the average number of misses and a set is LAS if it
received less than half the average number of hits. In order to more formally describe the behavior of cache access patterns,
it is necessary to convert the accesses and misses into probability distributions. We can then measure various statistical



Fig. 11. Kurtosis values for the misses per set for SPEC 2006 benchmarks.

Fig. 12. Kurtosis values for hits for SPEC 2006 benchmarks.

K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 253
values knows as central moments. Most commonly used moments are: mean (first moment) and standard deviation (second
moment). Higher moments describe the shape of the distribution. We use two such moments in this paper.
4.3.1. Skewness and Kurtosis
Skewness (third central moment) is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or

data set, is symmetric if it looks the same to the left and right of the center point (mean). If the left tail is more pronounced
than the right tail, the function is said to have negative skewness. If the reverse is true, it has positive skewness.

Kurtosis (fourth central moment) is a measure of whether the data are peaked or flat relative to a normal distribution.
That is, data sets with high Kurtosis tend to have distinct peaks and have long tails. This also indicates very few values near
the peaks. Data sets with low Kurtosis tend to have a flat top near the mean rather than sharp peaks. A uniform distribution
would be the extreme case with zero Kurtosis. For our purpose, a highly non-uniform behavior results in a high Kurtosis,
while a more uniform access behavior leads to lower Kurtosis.

In order to better assess the uniformity achieved across the sets we computed the Kurtosis and Skewness of hits and
misses to each of the 1024 L1 cache lines for Adaptive, B- and Column-associative caches. The results are shown in Figs.
11–14. We did not include similar data for the various indexing schemes, since those techniques do not significantly change
the uniformity of accesses (and this is apparent from the miss reduction data shown in Figs. 4 and 5).



Fig. 13. Skewness values for the misses per set for SPEC 2006 benchmarks.

Fig. 14. Skewness values for the hits per set for SPEC 2006 benchmarks.

254 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
4.3.2. Remarks
As can be seen from the Figs. 11 and 13, the Kurtosis and Skewness values for cache misses show a reduction (or improved

uniformity of accesses). In particular, the Adaptive-cache shows significant reductions in Kurtosis (Fig. 11) and Skewness
(Fig. 13). The goal of the techniques evaluated in this paper is to reduce conflict misses by distributing accesses more uni-
formly across the cache. At the same time, hits can remain non-uniform because they do not cause performance penalties.
This is evident from the Kurtosis (Fig. 12) and Skewness (Fig. 14) for hits. The negative skewness indicates that for that
benchmark, misses have been relocated to lower numbered cache sets.
4.4. Multiple indexing schemes

Our reason for this study is to see if cache memories can be designed with multiple, programmable addressing mecha-
nisms, each addressing scheme designed for a specific application. Here, we provide some preliminary results of using dif-
ferent indexing schemes for multiple threads. We used MSim3 to simulate SMT like multithreaded system. While XOR
technique performs better than other indexing techniques for single threaded applications (data presented thus far), this is
3 www.cs.binghamton.edu/~msim/.

http://www.cs.binghamton.edu/~msim/


bitcount _adpcm

fft_susan

qsort _basicm
ath

qsort _fft

qsort _patricia

libqua ntum
_m

ilc

m
ilc _nam

d

grom
acs_nam

d

bzip2 _libquantum

fft _basicm
ath_

patricia _susan

susan_bitcount_adpcm
_patricia

Average

0

20

40

60

80

Multi-threaded Applications

%
 Im

pr
ov

em
en

t i
n 

AM
AT

Fig. 16. Percentage reduction in AMAT using Adaptive caches in multithreaded systems.

bitcount_adpcm

_libquantum

fft_susan

gro m
acs_ nam

d

m
ilc_ nam

d

qsort _basicm
ath

qsort_patricia

fft _basicm
ath_

patricia_
susan

susan_bitcount_adpcm
_

patricia

A
verage

0
20
40
60
80

Multi-Threaded Benchmarks

%
 R

ed
uc

tio
n 

in
 M

is
s-

R
at

e

bzip2

Fig. 15. Multiple address decoders for multithreaded systems.

K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 255
not the case for multi-threaded systems, because the low order address bits of the data accessed by the threads will not differ
much. This implies that the index bits and some of the tag bits of addresses will be the same for multiple threads. For this reason
we used Odd-multiplier indexing with different multipliers for each thread.

Fig. 15 shows the percentage reduction in cache miss rates (when compared to using a single addressing technique based
on conventional modulo indexing). Data points with 2 names represents the case when 2 threads are running and data points
with 4 names reflects the case when 4 threads are running concurrently. As can be seen, using different address decoding for
each application can significantly improve the performance of shared caches. We are currently extending the experimenta-
tion for multicore systems running multiprogramming and high-performance applications.

We are also exploring how Pier’s adaptive cache [3] can benefit multithreaded and multicore system. Since the low order
bits of all applications in multicore systems will be similar, B-cache does not perform any better than Adaptive cache. In one
preliminary experiment, we divided the shared cache equally among the threads (either 2 or 4). We use Pier’s Adaptive ca-
ches with SHT and OUT tables so that lightly used sets of one thread can be ‘‘donated’’ to other threads – to hold frequently
conflicting items, effectively increasing the size of the cache partition for that thread. This can also be viewed as providing
victim cache for threads from underutilized cache portions of other threads. Fig. 16 shows our preliminary data.

The figure shows the percentage reduction in average memory access times (AMAT) using adaptive-caches (with parti-
tioned cache), when compared to traditional indexing (and no cache partitioning). The data shows that partitioned caches
using adaptive-cache method can substantially improve the performance of multithreaded systems with shared caches. It
is worthy to note that average memory access times (AMAT) includes the additional access delays incurred by adaptive ca-
ches in locating data items not present in their primary location.
5. Conclusion

In this paper, we conducted a side-by-side comparison of several techniques aimed at improving performance of direct-
mapped or low-associative caches. These techniques aim to reduce conflict misses by spreading cache accesses more



256 K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257
uniformly across cache sets. We reported the reduction (or increase) of cache miss rates and reduction (or increase) of aver-
age memory access times. To compare the uniformly achieved by the techniques we used Kurtosis and Skewness of accesses;
lower values for Kurtosis imply more uniform accesses across cache sets.

As can be seen from the data presented in this paper, none of the techniques improve cache perform consistently for all
benchmarks. Some techniques perform better than others for some benchmarks. On average, however, among the different
indexing schemes, XOR, odd-multiplier and Prime-modulo techniques perform reasonably well. XOR and odd-multiplier
techniques require very minimal addition to hardware. A variation to the XOR method can be to exclusive-or process or
thread-ID with index bits with shared caches (such as L2 or L3). This is likely to spread memory access of different threads
and minimize conflicts.

Among the programmable associative techniques, B-Cache consistently performs better, both in terms of miss-rates and
average memory access times. Column-associative requires very minimal hardware extensions. B-Cache improves the uni-
formity of memory accesses better than any other technique studies in this paper. Adaptive-caches may be useful in address-
ing NUCA (non-uniform caches).

Although not included in this paper, we explored the impact of cache block size on the effectiveness of the techniques
studied in this paper. In general, larger cache blocks (64 or 128 bytes) make these techniques less effective. This is particu-
larly true for Givargis and B-cache techniques.

Our reason for this study is to see if cache memories can be designed with multiple, programmable addressing mecha-
nisms, each addressing scheme designed for a specific application. We are currently conducting experiments to evaluate
multiple programmable address decoders with cache memories. We are exploring the use of Adaptive-caches for building
cooperative shared caches in multicore systems. The idea is to ‘‘donate’’ less frequently used sets from one core to other
cores, dynamically increasing available cache capacity at each core. In this paper we have included some preliminary data
from such studies.
Acknowledgements

This research is supported in part by the NSF Net-Centric Industry/University Research Center (Net-Centric IUCRC) and a
gift from AMD.
References

[1] Givargis T. Improved indexing for cache miss reduction in embedded systems. In: IEEE/ACM design automation conference (DAC). Anaheim; 2003. p.
872–80.

[2] Naz A, Adamo O, Kavi K, Janjusic T. Improving uniformity of cache access patterns using split data caches. In: Proceedings of ISCA conference on parallel
and distributed computer systems (PDCS-2009). KY: Louisville; 2009.

[3] Peir J, Lee Y, Hsu W. Capturing dynamic memory reference behavior with adaptive cache topology. In: Proceedings of the 8th international conference
on architectural support for programming language and operating systems (TOPLAS); 1998. p. 240–50.

[4] Zhang C. Balanced cache: reducing conflict misses of direct-mapped caches. In: ACM international symposium on computer architecture (ISCA-06);
2006. p. 155–66.

[5] Adamo O, Naz A, Kavi K, Janjusic T, Chung CP. Smaller split L-1 data caches for multi-core processing systems. Proceedings of IEEE 10th international
symposium on pervasive systems, algorithms and networks (I-SPAN 2009). Taiwan: Kao-Hsiung; 2009. p. 14–6.

[6] Agarwal A, Pudar SD. Column-associative caches: a technique for reducing the miss rate of direct-mapped caches. In: Proceedings of the international
symposium on computer architecture (ISCA-93); 1993. p. 179–80.

[7] Berger E, Zorn B, McKinley K. Reconsidering custom memory allocation. Proceedings of the 17th ACM conference on object-oriented programming
systems, languages and applications (OOPSLA ’02); 2002. p. 1–12.

[8] Calder B, Krintz C, John S, Austin T. Cache-conscious data placement. In: Proceedings of 8thACM international conference on architectural support for
programming language and operating systems (ASPLOS); 1998.

[9] Carr S, McKinley KS, Tseng C-W. Compiler optimizations for improving data locality. In: Proceedings of ACM international conference on architectural
support for programming language and operating systems (ASPLOS); 1994. p. 252–62.

[10] Chilimbi TM, Larus JR, Hill MD. Tools for cache conscious data structures. In: Proceedings of ACM conference on programming languages, design and
implementation (PLDI); 1999.

[11] Jula A, Rauchwerger L. How to focus on memory allocation strategies. Tech Rept TR 07-003, Department of Computer Science, Texas A&M University.
[12] Jula A, Rauchwerger L. Custom memory allocation for free. In: Proceedings of the 19th international conference on Languages and compilers for parallel

computing (LCPC ’06). New Orleans: Springer-Verlag; 2007. p. 299-313.
[13] Kulkarni C, Ghez C, Miranda M, Catthoor F, Man HD. Cache conscious data layout organization for conflict miss reduction in embedded multimedia

applications. In: IEEE transactions on computers, vol. 54(1); 2005.
[14] Lattner C, Adve V. Automatic pool allocation: improving performance by controlling data structure layout in the heap. Proceedings of ACM conference

on programming languages design and implementation (PLDI); 2005. p. 129–42.
[15] Luk CK, Mowry T. Compiler based prefetching for recursive data structures. In: Proceedings of the 7th international conference on architectural support

for programming languages and operating systems (ASPLOS VII); 1996. p. 222–33.
[16] Seidl ML, Zorn BG. Segregating heap objects by reference behavior and lifetime. Proceedings of the eight international conference on architectural

support for programming languages and operating systems (ASPLOS VIII); 1998. p. 12–23.
[17] Wolf, ME, Lam MS. A data locality-optimizing algorithm. In: Proceedings of ACM programming language, design and implementation (PLDI’91); 1991.

p. 30–44.
[18] Patel K, Macii E, Benini L, Poncino M. Reducing cache misses by application-specific re-configurable indexing. In: Proceedings of the 2004 IEEE/ACM

international conference on computer-aided design (ICCAD ’04); 2004. p. 125–30.
[19] Kharbutli M, Irwin K, Solihin Y, Lee J. Using prime numbers for cache indexing to eliminate conflict misses. Proceedings of the international symposium

on high performance computer architecture (HPCA); 2004.
[20] Aho AV, Ullman JD. Principles of compiler design. Addison-Wesley; 1997.
[21] Raghavan R, Hayes J. On randomly interleaved memories. In: Proceedings of the international conference on Supercomputing; 1990.



K. Kavi et al. / Computers and Electrical Engineering 38 (2012) 243–257 257
[22] Burger D, Austin TM. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin-Madison Computer Sciences Department of Technical Report
#1342; 1997.

Krishna Kavi is currently a professor and the Director of the NSF Net-Centric Industry/University Cooperative Research Center at the University of North
Texas. He also served as the Chair of CSE department at UNT. His research interests are in computer systems architecture, memory systems and software
engineering. He published more than 150 technical papers in these areas.

Izuchukwu Nwachukwu recieved his BS in Computer Engineering from the University of Arizona, and a MS from the University of North Texas, in 2008 and
2011, respectively. His research in computer architecture and cache memories. Currently he is working on the use of core specific indexing methods to
reducing miss-rates in multi-core systems.

Ademola Fawibe is a MS student in the Department of Computer Science and Engineering at the University of North Texas. He completed his BS in
Computer Science at the University of North Texas. His research interests fall in the computer architecture discipline, include cache architectures and
transactional memories.


	A comparative analysis of performance improvement schemes for cache memories
	1 Introduction
	1.1 Optimal indexes
	1.2 Dynamic relocation of addresses (or programmable associativity)

	2 Optimal cache indexing schemes
	2.1 Quality of index bits
	2.2 Address conflict patterns
	2.3 Prime-modulo hashing function
	2.4 Odd-multiplier displacement indexing
	2.5 Exclusive-OR (XOR) hashing
	2.6 Givargis-XOR

	3 Programmable associativity
	3.1 Column associative cache
	3.2 Adaptive caches
	3.3 B-cache

	4 Experimental methodology and results
	4.1 Comparing indexing techniques
	4.1.1 Remarks
	4.1.2 Impact of indexing schemes with higher associativities

	4.2 Comparing column associative, adaptive and B-caches
	4.2.1 Remarks
	4.2.2 Different indexing schemes with B-cache

	4.3 Evaluation of uniformity of memory accesses
	4.3.1 Skewness and Kurtosis
	4.3.2 Remarks

	4.4 Multiple indexing schemes

	5 Conclusion
	Acknowledgements
	References


