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1. Introduction

The past couple of decades have seen tremendous progress in the technology of computing

devices, both in terms of functionality and performance.  It is predicted that over the next five years,

it will be possible to fabricate processors containing billions of transistor circuits operating at

GigaHertz speeds  [DARPA97].  While there has been a continuing growth in the density of DRAM

memory chips, improvements in the access times and I/O bandwidth of memory parts have not kept

pace with processor clock rates.  This has widened the relative performance of processors and

memory.  The memory latency problem is further compounded by complex memory hierarchies

which need to be traversed between processors and main memory.  In Symmetric Multiprocessors

(SMPs), which have become dominant in commercial and scientific computing environments,

contention due to the shared bus located between the processor’s L2 cache and the shared main

memory subsystem adds additional delay to the memory latency.  The delays becomes even more

severe for scalable Distributed Shared Memory (DSM) systems that span the spectrum; from systems

with physically distributed memory and hardware support for cache coherency, to Networks of

Workstations (NOWs) interconnected by a LAN or WAN and software support for shared-memory

abstraction.  In either case, a miss on the local memory requires a request to be issued to the remote

memory, and a reply to be sent back to the requesting processor.  Stalls due to the round-trip

communication latency are and will continue to be an aggravating factor that limits the performance

of scalable DSM systems.

Memory latency, while growing, is not a new phenomenon.  There have been varied efforts to

resolve the memory latency problem.  The most obvious approach is to reduce the physical latencies

in the system.  This involves making the pathway between the processor requesting the data and the

remote memory that contains the data as efficient as possible, e.g., reducing the software overhead of

sending and receiving messages and improving the connectivity of networks.  The second approach is

to reduce the frequency of long latency operations, by keeping data local to the processor that needs

it.  When data locality cannot be exploited, prefetching or block transferring (as opposed to cache-

line transfers) of data can be used.  Caches are the most prevalent solution to the problem of memory

latency.  Unfortunately, they do not perform well if an application’s memory access patterns do not
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conform to hard-wired policies.  Furthermore, increasing cache capacities, while consuming an

increasingly large silicon areas on processor chips, will only result in diminishing returns.

Although the aforementioned approaches reduce latency, they do not eliminate it.

Multithreading has emerged as a  promising and exciting avenue to tolerate the latency that cannot be

eliminated.  A multithreaded system contains multiple “loci of control” (or threads) within a single

program; the processor is shared by these multiple threads leading to higher utilization.  The

processor may switch between the threads to not only to hide memory latency but other long latency

operations, such as I/O latency, or interleave instructions on a cycle-by-cycle basis from multiple

threads to minimize pipeline breaks due to dependencies among instructions within a single thread.

Multithreading has also been used strictly as a programming paradigm on general purpose hardware

to exploit thread parallelism on SMPs and to increase applications’ throughput and responsiveness.

However, lately, there is an increasing interest in providing hardware support for multithreading.

Without adequate hardware support, such as multiple hardware contexts, fast context-switch, non-

blocking caches, out-of-order instruction issue and completion, register renaming, we will not be able

to take full advantage of the multithreading model of computation.  As the feature size of logic

devices reduces, we feel that the silicon area can be put to better use by providing support for

multithreading.

The idea of multithreading is not new.  Fine-grained multithreading was implicit in the

dataflow model of computation [Lee94].  Multiple hardware contexts (i.e., register files, PSWs) to

speed up switching between threads were implemented in systems such as Dorado [Pier83], HEP

[Smith85], and Tera [Alverson90].  Some of these systems were not successful due to a lack of

innovations in programming languages, run-time systems, and operating system kernels.  There is,

however, a renewed interest in multithreading primarily due to a confluence of several independent

research directions which have united over a common set of issues and techniques.  A number of

research projects are underway for designing multithreaded systems that include new architectures,

new programming languages, new compiling techniques, more efficient interprocessor

communication, and customized microkernels.  Some of these projects have produced substantial

improvements over single threaded abstractions.  The success of multithreading as a viable

computational model depends on the integration of these efforts.
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This article is organized as follows:  Section 2 discusses multithreading in terms of user-level

programming models, such as TAM [Culler93], Cilk [Blumofe95], and Cid [Nikhil94].  Section 3

reviews the execution models and run-time support of multithreading.  Thread libraries and kernel-

level thread support will be the main focus of this section.  Section 4 discusses the architectural

support for multithreading with emphasis on reducing the cost of context switching.  Section 5

provides an overview of various multithreaded architectures along with their key features.  The survey

includes Tera MTA, StarT, EM-X, Alewife, M-Machine, and Simultaneous Multithreading.  Section 6

presents analytical models for studying the performance of multithreading.  Finally, Section 7

concludes the article with a brief discussion of future developments and challenges in multithreading.

2. Programming Models

Multithreading has become increasingly popular with programming language designers,

operating system designers, and computer architects as a way to support applications.  In this section

we will concentrate on multithreaded models as seen from a programmer perspective.  Concurrency

can be supported by a programming languages in many ways.  It can be achieved by providing user-

level thread libraries to C and C++ programmers, whereby the programmer can insert appropriate

calls to these libraries to create, invoke, and control threads.  A variety of such libraries have been

available to programmers, including C-threads, Pthreads, and Solaris Threads.  We will discuss these

libraries in the next section.  

Some programming languages provide concurrency constructs as an integral part of the

language.  ADA-95 permits users to create and control concurrent programming units known as tasks

[ISO 94].  Synchronization among tasks can be achieved using either shared-memory (protected

objects) or message-passing (rendezvous using select and accept statements).  Consider the following

function which forks (recursively) threads to compute Fibonacci numbers.  Forking of tasks is

accomplished by allocating a pointer type that points to a task type.  Each new task spawns two

additional tasks to compute Fib(N-1) and Fib(N-2), and waits for the results from the spawned tasks.
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In most implementations, individual ADA-95 tasks of a program are bound to threads provided by

the system (either kernel-level or user-level threads).  ADA-95 facilitates a various means for creating,

initiating, and managing synchronization among tasks. Single tasks are scheduled as soon as the

block in which they are defined is entered. Variables of task types are enabled for execution as soon

as the body containing the variable declarations is entered. Access (pointer type) variables to tasks

types become enabled when allocated. Task cease to exit when they complete execution, and only

when all their child tasks complete executions. Tasks can be explicitly aborted. The primary

synchronization in ADA is the rendezvous mechanism using select and accept statements. Entry

points can be guarded. In ADA-95, the concept of protected objects is introduced to implement

monitors and conditional waiting inside a monitor.

Function Fibonacci (N : In Integer) Return Integer  Is

Task Type Fib Is
---
--- This is the task specification (prototype).
--- Task type is declared here with two entry points. Tasks can rendezvous at these entry points
----

Entry Get_Input  (N: In Integer);
Entry Return_Result (Result : Out Integer);

End Fib;

Type Fib_Ptr Is Access Fib; -- A pointer to the task type is defined here

Function Create_Fib_Task Return Fib_Ptr Is
Begin
---
--- This function is used to create and spawn new tasks of type Fib by allocating the pointer type.
--- The function is needed to eliminate recursive definition inside the task body below.
----

Return New Fib;  --- The construct New allocates the task
End Create_Fib_Task;

Task Body Fib Is
---
--- This is the task body for the task Fib
---

Input, Result_N, Result_N_1, Result_N_2 : Integer;
Fib_N_1, Fib_N_2 : Fib_Ptr;

Begin
Accept Get_Input (N : In Integer) Do
---
--- This entry point is used to receive the argument
---

Input := N;
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End Get_Input;

If (Input <= 2) Then
Result_N := Input;

Else
 Fib_N_1 := Create_Fib_Task; -- create a new thread to compute Fib (N-1)

Fib_N_2 := Create_Fib_Task; -- create a new thread to compute Fib (N-2)
Fib_N_1.Get_Input (Input - 1); -- The spawned task Fib(N-1) receives the argument n-1
Fib_N_2.Get_Input (Input - 2); -- The spawned task Fib(N-2) receives the argument n-2

Fib_N_1.Return_Result (Result_N_1); -- Receive the result from task Fib(N-1)
Fib_N_2.Return_Result (Result_N_2); -- Receive the result from task Fib(N-2)
Result_N := Result_N_1 + Result_N_2;

Accept Return_Result (Result : Out Integer) Do
---
--- This entry point is used to return the result to the parent
----

Result := Result_N;
End Return_Result;

End If;
End Fib;

--- This is the main procedure that contains the task Fib declaration.

Result : Integer;
Fib_N := Fib_Ptr;

Begin
Fib_N := Create_Fib_Task;
Fib_N.Get_Input (N);
Fib_N.Return_Result (Result);
Return Result;

End Fibbonnacci;

Java programming language supports multithreading by defining classes for creation and

synchronization of threads [Berg 95].  Consider the following Java implementation of Fibonacci

numbers.  As in the ADA-95, Java threads are blocking (and coarse-grained).  The parent thread that

created and started two new threads to compute Fibonacci(N-1) and Fibonacci(N-2) must wait for the

threads to complete using a barrier synchronization “Join”. Java is based on C++. In the example

below, a class Fibonacci is defined as thread class. In the body of the class, two new threads for

computing Fibonacci of N-1 and N-2 are created recursively. The parent will wait (using Join) the

two child threads complete execution; and the values returned by the child threads are added. Some

of the characteristic of Java threads are listed in the next section.

public class Fibonacci extends Thread
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 { int fib;
Fibonacci(int n)
{ fib = n;
}
public void run()
{ if(fib == 0 || fib == 1)

{ fib = 1;
}
e l se
{ Fibonacci thread1 = new Fibonacci(fib-1);  // create a child thread for N-1

Fibonacci thread2 = new Fibonacci(fib-2); // create a child thread for N-2
thread1.start(); // execution of created thread starts here.
thread2.start();// execution of created thread starts here.
try
{ thread1.join(); // wait for child threads

thread2.join();// wait for child threads
fib = thread1.getFib() + thread2.getFib();

}
catch( InterruptedException e)

// Java requires this section to handle exceptions
{ e.printStackTrace();
}

}
} // end of run()
public final int getFib()
{ return fib;
}
public static void main(String arg[]) // this is the main program
{ Fibonacci fib;

int n = new Integer(arg[0]).intValue();
fib = new Fibonacci(n);
fib.start();
try
{ fib.join();

System.out.println("The Fibonacci for "+ n + " is: "+ fib.getFib());
}
catch( InterruptedException e)
{ e.printStackTrace();
}

}
}

Programming languages with support for multithreading normally permit coarse-grained and

blocking threads.  The blocking nature requires synchronization among the threads using such

common techniques as mutual exclusion using semaphores or mutexes, condition variables, events,

rendezvous, guards and monitors.  They provide for thread scheduling constructs such as yield,

suspend, detach, abort or terminate.  Some functional programming languages such as Multilisp

[Halstead85] and Id90 [Nikhil91] have proposed a different attack on multithreading, often

supporting fine-grained threads.  In such languages, actions that traditionally block or synchronous

are made nonblocking and asynchronous.  For example, in traditional von Neumann languages,
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function calls are synchronous: when a function is invoked, the thread of control is transferred to the

called function (blocking the execution of the caller) and the control is returned to the caller upon its

completion.  In Multilisp, function calls (called futures) are nonblocking so that several futures can

be invoked without waiting for their completion.  Likewise languages can be designed with other

asynchronous or nonblocking actions.  In general, a multithreaded programming language may

permit programs where even conditional statements can be made asynchronous.  Languages based on

data-driven model of synchronization support fine-grained and nonblocking threads.  In such

systems, a thread is not ready for execution until all its synchronizations requirements are satisfied;

and once initiated, the thread executes to completion with no further synchronization requirements.

In the remainder of this section, we will introduce three such languages.

2 . 1 Threaded Abstract Machine (TAM)

TAM [Culler93] has its roots in the dataflow model of execution, but can be understood

independently of dataflow.  A language called Threaded Machine Language, TL0, was designed to

permit programming using the TAM model.  TAM recognizes three major storage resources—code-

blocks, frames, and structures—and the existence of critical processor resources, such as registers.  A

program is represented by a collection of re-entrant code-blocks, corresponding roughly to individual

functions or loop bodies in the high-level program text.  A code-block comprises a collection of threads

and inlets.  Invoking a code-block involves allocating a frame—much like a conventional call frame—

depositing argument values into locations within the frame, and enabling threads within the code-block

for execution.  Instructions may refer to registers and to slots in the current frame: the compiler

statically determines the frame size for each code-block and is responsible for correctly using slots and

registers under all possible dynamic thread orderings.  The compiler also reserves a portion of the frame

as a continuation vector, used at run-time to hold pointers to enabled threads.  The global scheduling

pool is the set of frames that contain enabled threads.  

Executing a code-block may fork several frames concurrently, since the caller is not suspended

as in a conventional language.  Therefore, the set of frames in existence at any time form a tree (the

activation tree) rather than a stack, reflecting the dynamic call structure.  This is shown in Figure 1.  To

allow greater parallelism and to support languages with non-strict function call semantics, the arguments
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to a code-block may be delivered asynchronously.  An activation is enabled if its frame contains any

enabled threads.  At any time, a subset of enabled activations may be resident on processors.

Threads come in two forms, synchronizing and non-synchronizing.  A synchronizing thread

specifies a frame slot containing the entry count for the thread.  Each fork to a synchronizing thread

causes the entry count (synchronization count) to be decremented, but the thread executes only when

the count reaches zero, indicating that all synchronization requirements were met.  A non-synchronizing

thread is ready for executing immediately.  Synchronization occurs only at the start of a threads: once

successfully initiated, a thread executes to completion.  Fork operations may occur anywhere in a thread,

causing additional threads to be enabled for execution.  An enabled thread is identified by a

continuation—its instruction pointer and frame pointer.  A thread ends with an explicit stop instruction,

which causes another enabled thread to be scheduled.  Conditional flow of execution is supported by

switch, which forks one of two threads based on a boolean input value.  The compiler is responsible for

establishing correct entry counts for synchronizing threads.  This is facilitated by allowing a

distinguished initialization thread in each code-block, which is the first thread executed in an activation

of the code-block.  Long latency operations, such as I-Fetch or Send, implicitly fork a thread that

resumes when the request completes.  This allows the processor to continue with useful work while the

remote access is outstanding.
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The storage hierarchy is explicit in TAM.  In addition, scheduling is explicit and reflects the

storage hierarchy.  In order to execute threads from an activation, the activation must be made

resident.  When an activation is made resident on a processor, it has access to processor registers.

Furthermore, it remains resident and executing until no enabled threads for the activation exist.  The

set of threads executed during a single residency is called a quantum.

The following is an implementation of the Fibonacci program in TL0:

FRAME_BODY RCE = 3 -- defines a frame with 3 arguments
islot1.i, islot1.i, islot2.i -- one argument and two results
pfslot1.pf, pfslot2.pf -- frame pointers for recursive calls
sslot0.s -- synchronization variable for thread 6
pfsloto.pf, jsloto.j -- parent’s frame pointer and inlet

REGISTER -- Registers used
breg0.b, ireg0.i -- boolean and integer temps

INLET 0 -- recv parent frame ptr, retrun inlet and argument
RECEIVE pfslot0.pf, jslot0.j, isloto.i
FINIT -- initialize frame
SET_ENTER 7, t -- set enter-activation thread
SET_LEAVE 8, t -- set leave-activation thread
POST 0.t
STOP

INLET 1 -- receive frame pointer of first recursive call
RECEIVE pfslot1.pf
POST 3.t
STOP

INLET 2 -- receive result from first recursive call

Ready 
Queue

Activation Tree     

Function Foo

Inlet 1

Thread 2

Thread 5

Thread 15

Continuation
vector

Ready frame link

Synchronization
counters

Local 
variables

 Code-BlockActivation Frame
Ready 
Queue

Activation Tree     

Function Foo

Inlet 1

Thread 2

Thread 5

Thread 15

Continuation
vector

Ready frame link

Synchronization
counters

Local 
variables

 Code-BlockActivation Frame

Figure 2: TAM activation tree
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RECEIVE islot1.i
POST 5.t
STOP

INLET 3 -- receive frame pointer of second recursive call
RECEIVE pfslot2.pf
POST 4.t
STOP

INLET 4 -- receive result from second recursive call
RECEIVE islot2.i
POST 5.t
STOP

THREAD 0 -- test argument against 2
LT brego.b = islot0.i 2 i
SWITCH breg0.b 1.t 2.t
STOP

THREAD 1 -- if argument <2, return argument
MOVE ireg0.i = 1.i
FORK 6.t -- thread 6 retuns this value
STOP

THREAD 2 -- allocate frames for recursive calls
MOVE sslot0.s = 2.s -- set synchronization counter
FALLOC 1.j = FIB.pc
FALLOC 3.j = FIB.pc
STOP

THREAD 3 -- send n-1 to first recursive call
SUB ireg0.1 = islot0.1 1. i
SEND pfslot1.pf[0.i] <-fp.pf 2.j ireg0.i
STOP

THREAD 4 -- send n-2 to second recursive call
SUB ireg0.1 = islot0.1 2. i
SEND pfslot2.pf[0.i] <-fp.pf 4.j ireg0.i
STOP

THREAD 5 -- waits for results from both calls
SYNC sslot0.s
ADD ireg0.i = islot1.1 islot2.i -- add the two results
FORK 6.t
STOP

THREAD 6 -- send result to parent
SEND pfslot0.pf[jslot0.j] <- ireg0.i
FREE fp.pf
SWAP -- swap to next activation
STOP

THREAD 7 -- enter point for this activation
STOP

THREAD 8 -- leave this activation
SWAP
STOP

Here, Thread 0 checks if the argument received is less than 2.  If the value is greater than 2,

two new fibonacci activations are allocated (corresponding to the recursive calls).  The allocation of

frames is performed by Thread 2.  It is possible to indicate that the activations be executed either on

local or a remote processor.  The arguments n-1 and n-2 for the two recursive calls are computed and
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sent by Thread 3 and Thread 4, respectively.  Thread 5 waits for two results from the spawned

activation frames (indicated by the synchronization counter value of 2).  The two received values are

added, and the result is sent to the parent by Thread 6.  If the argument is less than 2, Thread 1

calculates the base value (=1), and thread 6 returns this value to the parent.

There are four Inlets, two to receive the frame pointers for the recursive calls, and two to

receive results from the spawned frames.  The synchronization counter of a thread is decremented

when either a thread or an inlet “posts” to that thread.

2 . 2 Cilk

Cilk [Blumofe95] language is an extension of C, providing an abstraction of threads in

explicit continuation passing1  style.  The Cilk run-time supports “work stealing” for scheduling

threads and achieves load balancing across a distributed processing environment.  A Cilk program

consists of a collection of procedures, each in turn consists of threads.  These threads of a Cilk

program can be viewed as the nodes of a directed acyclic graph as shown in Figure 2.  Each

horizontal edge represents a creation of a successor thread, a downward vertical edge represents the

creation of child threads while the curved upward edges represents data dependencies.

                                                
1 More recent implementation of Cilk (e.g., Cilk 5) have deviated from Continuation Passing style, and chose

shared memory for passing arguments.
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Like TAM threads, Cilk threads are non-blocking.  This requires the creation of successor

threads which receive results form child threads.  The successor thread is blocked until the necessary

synchronization events (or release conditions) arrive.  Cilk threads can spawn child threads to execute

a new procedure.  The child threads normally return values or synchronize with the successor threads

created by their parent thread.

The run-time system keeps track of the active threads and threads awaiting initiation.  The

data structure used for thread management is called a “Closure”.  A closure consists of a pointer to

the code of the thread, a slot for each of the input parameters for the thread, and a join counter

indicating the number of missing values (or synchronization events).  The closure (hence the thread)

becomes ready to execute when the join counter becomes zero; otherwise the closure is known as

waiting.  The missing values are provided by other threads using “continuation passing” which

identifies the thread closure and the argument position in the thread closure.  The following shows a

Cilk program segment for computing the Fibonacci numbers.

thread fib (cont int k, int n)
{
     if (n<2)

send_argument (k, n)
     else{    

cont int x, y;
spawn_next sum (k, ?x, ?y);  /* create a successor thread
spawn fib (x, n-1);     /* fork a child thread
spawn fib (y, n-2);     /* fork a child thread
}

    thread sum (cont int k, int x, int y)
    send_argument (k, x+y);     /* return results to parent’s successor
}

The program consists of two threads, fib and its successor sum (which waits for the recursive

fib calls to complete and provide the necessary values to sum).  The fib thread tests the input

argument n, and if it is greater than 2, it spawns the successor thread sum by passing the continuation

k, and the indication that sum requires two inputs x and y before becoming enabled.  It also spawns

two (recursive) child threads with n-1 and n-2 as their arguments, as well as the slot where they

should send their results (specified by the cont parameter).  The statement send_argument sends
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the results to the appropriate continuation.  The closures for the above Fibonacci program is shown in

Figure 3.  The similarities between the Cilk run-time system and the continuation passing methods

used in dynamic dataflow systems  should be clear to the reader.

Cilk run-time system uses an innovative approach to load distribution known as “work

stealing”.  In short, an idle worker randomly selects a heavily loaded processor, and steals a portion

of its work.  Note that only ready to execute threads are stolen, to avoid the complications that could

result in locating the continuation slots of the stolen threads.

2 . 3 Cid

Unlike TAM and Cilk, Cid threads can block waiting for synchronization [Nikhil94].  Each

Cid thread can be viewed as a C function with appropriate mechanism to specify synchronization.

The simplest type synchronization is based on Join (and join variables).  Consider the following Cid

implementation of the Fibonacci function.

int fib(int n)
{   int fibN1, fibN2;
    cid_initialized_jvar(joinvariable);

if (N<2) return n

c
o
d
e

sum

fib

fib

0

0

2

cont

cont

cont

n-1

n-2

x

y

Join counter

Figure 5: The closures for the Fibonacci program.
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    else
{   cid_fork(joinvariable;) fibN1=fib(n-1); fibN2=fib(n-2);
    cid_jwait(&joinvariable);
     return fibN1+fibN2; } }

When the value of N is greater than 2, two new threads are forked using cid_fork to

compute fib(n-1) and fib(n-2).  The cid_fork also indicates that these computations

synchronize using join on the joinvariable specified.  The parent thread will wait for the

completion of the child threads and then returns the sum of fib(n-1) and fib(n-2) and signals

appropriate joinvariable.  Note that the Cid system is responsible for initializing the joinvariable

(as indicated by cid_initialized_jvar).

As can be seen from the description of the various programming models shown above,

concurrency using multithreading is becoming prevalent in modern programming languages.

Traditional imperative languages support coarse-grained threads, where the thread synchronization is

based on locks, rendezvous or monitors (protected object of ADA-95).  Functional and data-driven

languages often permit fine-grained and non-blocking threads, using continuation passing and

synchronization counters.  Thread libraries can be used with languages such as C and C++ to

interleave different sections of the program, mimicking concurrency.  We feel that the popularity of

Java will only increase the interest in multithreading at programming level, and more programming

languages will introduce constructs for the creation and management of multithreaded programs.

3 . Execution Models

In this section we describe how the underlying system can support multiples threads.  We will

only concentrate on Operating System level or run-time support for threads.  Section 4 will discuss

architectural level support for multithreading.  The notion of threads evolved from a need for an

execution model that supports cooperating activities within a process.  A thread can be viewed as an

unit of execution that is active within a process, sharing certain resources such as files and address

space with other threads in the process space.  However, each thread is associated with its own

execution status.  This notion of threads or lightweight processes was originally supported in Mach

[Boykin93].  The main advantage of such a threaded model is to permit programming applications



- 16 -

using “virtual processes” such that a process can continue execution even when one or more of its

threads are blocked.  Figure 4 illustrates the concept of threads as related to conventional Unix like

processes.

Multithreaded programming model is becoming very common since most modern operating

systems (including DEC Unix, Solaris, Windows, Windows-NT, Rhapsody) support threads.  In

addition, standardized user-level libraries are being provided by numerous vendors.  Such packages

permit users to create and manage threads.  It should be noted that OS threads and user-level thread

packages normally support coarse-grained threads that are blocking.

3 . 1 Design Issues

The execution models for multithreading can be distinguished from several view points:

implementation (user-level vs. kernel-level), scheduling (preemptive vs. non-preemptive, binding of

threads to processors and LWP’s) and thread management functions (mutual exclusion, barriers, etc.).

Threads can be implemented either at the kernel-level or user-level (see Figure 5).  User-level threads

([Bershad90], [Eykholt92], [Freeley92], [Stein92]) are created and managed entirely at the user-level,
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Figure 4. Processes and Threads
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and the kernel has no knowledge of the existence of these threads.  Such packages can be

implemented on top of any operating system with or without kernel-level threads.  The run-time

system will intercept any calls made by user-level threads that could potentially block.  The run-time

system will not make the system call, but suspends the thread and schedules a new user thread.  The

required call is made if it results in no blocking or when there are no runnable user threads.  The

major advantage of such threads is efficiency in implementing thread functionality.  It has been

found that user-level thread management functions are as much as two orders magnitude faster than

kernel-level thread management functions.  This in turn permits each user-level process with a larger

number of threads, leading to more user-level concurrency.  However, since the kernel is unaware of

the existence of such threads, when one user-level thread is blocked in the kernel, the entire process is

blocked, thus nullifying the benefits of multithreading.  Other disadvantages include a lack of control

for preempting threads, or the ability to directly notify a thread of kernel events.

Kernel-level threads are essentially lightweight processes (LWP) which have the same address

space as the “parent” process (see Figure 4).  Hence it is less expensive to create threads than

processes, and less expensive to switch between threads than between processes.  However, kernel-level

thread management functions are more expensive than those for user-level threads.  Moreover, since

each thread requires some kernel resources, the number of threads that can be supported within a

process space is limited.  These factors dictate that only coarse grained concurrency be used to

exploit multithreading using kernel-level threads.
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More recently, thread packages are becoming available that multiplex several user-level

threads onto one or more kernel-level threads (or LWPs), resulting in hybrid threads.  Each user

process can have multiple LWP’s, and the run-time system can bind user-level threads to these LWPs.

In such systems, scheduling occurs at two levels.  The multiplexing of use-level threads onto LWP’s is

under the control of the run-time system, while the scheduling of LWP onto physical processors is

under the control of the kernel.  The hybrid model was originally implemented in Scheduler

Activations [Anderson91].  When a user-level thread (scheduled on a LWP) is blocked, the kernel

notifies (upcall) the run-time system and provides sufficient information about the event that caused

the block.  The run-time system will then schedules another user-level thread (possibly on another

LWP).  When the blocking event is cleared, the kernel notifies the run-time system, which either

schedules the blocked thread or starts a new thread.

Thread implementations can also be distinguished based on the scheduling control given to

the user:

Non-preemptive scheduling. In such systems, a thread runs until it is blocked on a resource request

or completes its execution, before releasing the processing resources.  In some recent

implementations, it is possible for a thread to voluntarily “yield” the processing resources.  Such

non-premptive scheduling is possible only for user-level thread packages, since the kernel cannot

permit run-away threads that do not relinquish their resources.  For well behaved programs, this

model is very efficient since very little run-time scheduling is involved.  Another advantage of this

model is that it reduces the reliance on locks for synchronizing threads, since the running thread

knows when it is giving up control of the processor.  The reduced use of locks will reduce the

overhead due to thread synchronization functions.  The major drawback of this model is that, for

some CPU-intensive applications, very little performance gains can be obtained using multithreading.

Preemptive scheduling. When threads can be preempted, we can consider various scheduling

approaches to dynamically schedule runnable threads, including priority scheduling and time-sliced

(round-robin) scheduling.  The priority based scheduling can also be used with non-preemptive

model, where the selection of a new thread to run occurs when the running thread blocks or yields.

In most systems, the thread priority is fixed and assigned statically.  When time-slicing is used, the

running thread is preempted when its time-slice expires, and it awaits its turn in the round-robin
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queue.  Kernel-level threads often permit pre-emption of running threads on interrupts or when a

higher priority thread becomes runnable.  In most systems, the kernel attempts to prevent the

starvation of lower priority threads, by periodically increasing their priority.

Thread packages also differ in how user-level threads can be bound to processing resources.

In many-to-one model, all user-level threads are bound to a single processing resource (or kernel-

level LWP).  This is the only model feasible when the kernel does not support threads.  In one-to-one

model, each user-level thread is bound to a different kernel-level LWP.  Many-to-many model is the

most flexible since it allows different number of user-level threads to be bound to each kernel LWP.

Solaris systems support all of the above models, while DEC Unix 3.0 and WIN32 threads support

one-to-one model.  

In addition to the differences in the design decisions described above, thread implementations

differ in the thread management and synchronization functions they provide.  The following table

summarizes the thread functions supported by Pthreads, WIN32, and Solaris threads.  Java threads are

included for completeness sake, even though Java threads are a language feature, and they are either

supported using threads provided by the underlying run-time and/or kernel threads, or simulated with

interleaved execution of threads.

The multithreaded model of execution is becoming popular with programmers since user-

level thread packages and kernel threads are becoming readily available, along with debugging and

analysis tool ([Catanzaro94], [Kleiman96]).  A majority of the systems provide reasonable control on

the creation and management of threads.  They differ in the flexibility of synchronization primitives,

control over a thread’s priority, stack size for a thread, and ability to share the kernel resources across

multiple processing units.  There are experimental systems currently being developed that permit

even greater control over threads.  Such systems will allow the microkernel functionality to be

customized for a specific application, by specifying the actions to be performed in response any

thread function. Such systems (e.g., SPIN [Bershad94], Exo Kernel [Engler95]) are beyond the scope

of this paper.

Features                                Java                  POSIX              SOLARIS                 WIN32 Features
Java POSIX SOLARIS WIN32
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Java

User-Kernel Space K N/A K and U K
Cancellation No Yes No No
Priority Scheduling Yes Yes Yes Yes
Priority Inversion ? Yes Yes Yes
Mutex Attributes No Yes Yes No
Shared and Private Mutexs Yes Yes Yes No
Thread Attributes No Yes Yes No
Synchronization Yes Yes Yes Yes
Stack Size Control No Yes Yes Yes
Base Address Control No Yes Yes No
Detached Threads Yes Yes Yes No
Joinable Threads Yes Yes Yes No
Condition Variables Yes Yes Yes ?
Semaphores Yes Yes Yes Yes
Thread ID Comparison Yes Yes Yes No
Call-Once Functions Yes Yes Yes No
Thread Suspension Yes No Yes Yes
Specify Concurrency ? No Yes Yes
Reader / Writers Share Locking Yes No Yes No
Processor Specific Thread Allocation No No No Yes
Fork All Threads Yes No Yes No
Fork Calling Thread Only Yes Yes Yes No

K = Kernel-Level; U = User-Level

The following describes the various characteristics listed in the above table.

Base Address Control - Allows identification of where the thread will reside in physical memory.
Call-Once-Functions - An ability to limit execution of a particular function/rountine only once.

Subsequent call will return without execution and error.
Cancellation - Killing threads from within the program.
Detached Thread - A flag not to join a thread(s) at creation time.
Fork All Threads - A flag, which forces all thread-creation calls to be, forks with shared memory.
Joinable Threads - The ability to merge threads into a single execution context.
Kernel Level Threads - Threads that are handled/scheduled by the kernel.
Mutex - Mutex Exclusion.  A Mutex can lock specific section of memory using access flags.
Priority Inversion - As threads get I/O blocked, provides a re-prioritization of threads.
Priority Scheduling - Programmatically identifying the order, priority, or next threads to execute.
Processor Specific Thread Allocation - The ability to designate a specific thread to a specific

processor.  Useful for processors that handle special things like interrupts or exclusions.
Reader / Writer Locking  - In Solaris, threads can have one writer and several readers at the same time.
Semaphores - A pair of functions that lock data sets, p() and v() (lock and unlock).
Shared / Private Mutexes - Having separate spaces for mutexes.
Specifying Concurrency - The ability to identify which threads will be multiprocessed.
Stack Size Control - The ability to limit, resize or check the thread's stack usage.
Synchronization - Ensures multiple threads coordinate their activities.
Thread - The smallest context of execution.
Thread Suspension - Temporarily halting execution of a thread.
User Space Threads - Threads that are handled/scheduled within a single task by special libraries.
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4. Architectural Support for Multithreading

The previous sections discussed multithreading support from a purely software point-of-view.  

This section presents the hardware mechanisms used to support multithreading.  Hardware support

needed for multithreading varies depending on whether thread execution blocks on long latency

operation (i.e., blocked scheme) or is interleaved on a cycle-by-cycle basis (interleaved scheme).

Both schemes, however, require support for multiple hardware contexts (i.e., states) and context

switching, their implementations differ.

In the blocked scheme, the simplest way to support multiple contexts is to provide a register

file with each context.  This will reduce the cost of context-switching, however, these register

partitions are fixed and inflexible, making it difficult to utilize effectively when the number of

registers required per thread varies dynamically.  This problem can be alleviated by allowing the

contexts to share a large register file, but will likely to increase the register file access time.  

Once multiple threads exist in the processor, it must decide when to context-switch.  A

context-switch can occur when there is a cache miss.  This will require additional logic to signal cache

misses. A processor probably will not context-switch on a L1 cache miss since the latency to fetch the

cache line from L2 cache is small.  Whether to context-switch on a L2 cache will depend on the cost

of context switching, the thread run-length, and the latency of a L2 cache miss.  The context

switching cost depends on how much support is provided in the hardware, while thread run-length

depends on the miss rate.  Latency of L2 cache misses depends on the organization of a node.  A

single processor node will have lower latency than a node in a SMP.  Finally, context switching will be

necessary for misses on local memory that require requests to be sent to remote node.

Once the need to context-switch is detected, a number of possibilities exist for scheduling the

next available thread.  A simple technique that can be used is to select the next thread using round-

robin scheduling.  This can be implemented by a bit vector with warp-around indicating which
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threads are ready to be scheduled.  Having selected the next thread to schedule, a context-switch is

performed by saving the PC of the first uncompleted instruction from the current thread, squashing

all incomplete instructions from the pipeline, save the control/status registers from the current thread,

switch the control to the register file for the new context, restore the control/status registers from the

new thread, and start executing instructions from the PC of the new thread.
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5. Example Multithreaded Systems

Multithreading is desired when the performance of a parallel machine suffers from the latencies

involved in the communication and synchronization.  Multithreaded architectures provide various

software and hardware features in order to support multithreading, including lightweight

synchronization, fast context switching mechanism, effective and intelligent management of threads,

efficient communication mechanism, and shared-memory model for ease of programming.  This

section provides an overview of various multithreaded architectures and discusses some of the

software and hardware features that represent the past and the current research efforts in the

multithreading community.  The architectures included in the discussion are Tera [Alverson90],

MIT’s StarT project ([Ang92], [Chiou95], [Nikhil92]), Electrotechnical Lab’s EM-X ([Kodama95],

[Sakane95]), MIT's Alewife [Agrawal95], M-Machine [Filo95], and Simultaneous Multithreading

[Tullsen95, 96].  

5.1. Tera MTA

Tera MTA (MultiThreaded Architecture) computer is a multistream MIMD system developed

by Tera Computer Company [Alverson90]  It is the only commercially available multithreaded

architecture that will become available in 1997.  The designers of the system tried to achieve the

following three goals: (1) provide high-speed, highly-scalable architecture, (2) be applicable to a wide

variety of problems, including numeric and non-numeric problems, and (3) ease the compiler

implementation.
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The interconnection network of Tera is composed of pipelined packet-switching nodes in a

three-dimensional mesh with a wrap-around.  Each link is capable of transmitting a packet containing

source and destination addresses, an operation, and 64-bit data in both directions simultaneously on

every clock cycle.  For example, a 256 processor system consists of 4096 switching nodes arranged

in 16×16×16 toroidal mesh, among which 1280 nodes are attached to 256 processors, 512 data

memory units, 256 I/O cache units, and 256 I/O processors as shown in Figure 6.  In general, the

number of network nodes grows as a function of p
3
2 , where p  is the number of processors in the

system.  

Each processor in Tera can simultaneously execute multiple instruction streams from one to

as many as 128 active program counters.  On every clock cycle, the processor logic selects an

instruction stream that is ready to execute and a new instruction from a different stream may be

issued in each cycle without interfering with the previous instruction.  Each instruction stream

maintains the following information: one 64-bit Stream Status Word (SSW), 32 64-bit General

Purpose Registers (R0-R31), and eight 64-bit Target Registers (T0-T7).  Thus, each processor

maintains 128 SSWs, 4096 General Purpose Registers, and 1024 Target Registers, facilitating context

switching on every clock cycle.  Program addresses are 32 bits long, and the program counter is

. . . . . . . .

. . . .. . . .

256 Processors 256 I/O Processors

256 I/O Caches512 Memories

3-D Toroidal Mesh (16x16x16)

. . . . . . . .

. . . .. . . .

256 Processors 256 I/O Processors

256 I/O Caches512 Memories

3-D Toroidal Mesh (16x16x16)

Figure 6: The organization of Tera MTA
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located in the lower half of the its SSW.  The upper half is used to specify the various modes (e.g.,

floating-point rounding), trap mask, and four recently generated condition statuses.  Target Registers

are used for branch targets, and the computation of a branch address and the prediction of a branch

are separated, allowing the prefetching of target instructions.  A Tera instruction typically specifies

three operations: a memory reference operation, an arithmetic operation, and a control operation.

The control operation can also be another arithmetic operation.  Thus, if the third operation specifies

a arithmetic operation, it will perform a memory and two arithmetic operations per cycle.

Each processor needs to execute on the average about 70 instructions to maintain the peak

performance by hiding remote latencies (i.e., the average latency for remote access is about 70

cycles).  However, if each instruction stream can execute some of its instructions in parallel (e.g., two

successive loads), less than 70 streams are required to achieve the peak performance.  To reduce the

required numbers of streams, Tera architecture introduced a new technique called explicit-

dependence lookahead to utilize instruction-level parallelism.  The idea is that each instruction

contains a three-bit lookahead field that explicitly specifies how many instructions from this stream

will be issued before encountering an instruction that depends on the current instruction.  Since seven

is the maximum possible lookahead value with three bits, at most eight instructions can be executed

concurrently from each stream.  Thus, in the best case only nine streams are needed to hide 72 clock

cycles of latency, compared to 70 different streams required for the worst case.  

A full-size Tera system contains 512 128-Mbyte data memory units.  Memory is 64-bit wide

and byte-addressable.  Associated with each word are four additional access state bits consisting of

two data trap bits, a forward bit, and a full/empty bit.  The trap bit allows application-specific use of

data breakpoints, demand-driven evaluation, run-time exception handling, implementation of active

memory objects, stack limit checking, etc.  The forward bit implements invisible indirect addressing,

where the value found in the location is interpreted as a pointer to the target of the memory reference

rather than as the target itself.  The full/empty bit is used for lightweight synchronization.  Load and

store operations use the full/empty bit to define three different synchronization modes along with the
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access control bits defined in the memory word.  The values for access control for each operation is

shown below.

value LOAD STORE
0 read regardless write regardless and set full
1 not used not used
2 wait until full and then read wait until full and then write
3 read only when full and then set empty

empty
write only when empty and then set full

For example, if the value of the access control field is 2, LOAD and STORE operations wait until the

memory location is full (i.e., written) before proceeding.  When a memory access fails, it is placed in

a retry queue and memory unit retries the operation several times before the stream that issued the

memory operation results in a trap.  Retry requests are interleaved with new memory requests to avoid

the saturation of the communication links with the requests that recently failed.  

5 . 2 StarT

The StarT project attempts to develop general-purpose scalable parallel systems while using

commodity components.  StarT-NG (Next Generation) is the first effort in developing such a system

[Ang92].  Based on a commercial PowerPC 620, a 64-bit, 4-way superscalar processor with a

dedicated 128-bit wide L2 cache interface and a 128-bit wide L3 path to memory, StarT-NG is a SMP

system that supports user-level messaging and globally-shared cache coherent memory.
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StarT-NG has 4 processor card slots, where one to four slots are filled with Network-

Endpoint-Subsystem (NES) cards.  Each NES contains a single PowerPC 620 processor with 4

MBytes of L2 cache and a Network Interface Unit (NIU) as depicted in Figure 7.  Each site has an

Address Capture Device (ACD) on the NES board, which is responsible for bus transactions.  When

an access to global shared-memory is necessary, one of the processors is dedicated to servicing the

ACD and is called a service processor (sP).  On the other hand, when a processor is used for running

application, the processor is called an application processor (aP).  

StarT-NG is built on a fat-tree network using MIT’s Arctic routers connected to NIU

[Boughton94].  The NIU’s packet buffers are memory-mapped into an application’s address space

enabling users to send and receive messages without kernel intervention.  The arrival of a message

can be signaled either by polling or interrupt.  Generally, PowerPC 620 polls the NIU by reading a

specified location of the packet buffer, resulting in lower overhead.  An interrupt mechanism can also
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be used either for a kernel message or a user message when the frequency of the message arrival is

estimated to be low, to minimize the overhead of polling.  The dual ported buffer space of NIU is

divided into four regions allowing receiving and transmitting of messages with both high and low-

level priorities.  

Cache-coherent distributed shared-memory in StarT-NG is implemented in software by

programming the ACD and sP.  This allows the designers of StarT-NG to experiment with various

cache-coherence protocols, such as cache-only memory architecture.

Influenced by the predecessor *T [Nikhil92], multithreading in StarT-NG relies heavily on

software support.  The instruction fork creates a thread by pushing a continuation specified in

registers onto a continuation stack.  For thread switching, the compiler is required to generate switch

(branch) instructions in the instruction stream.  Also, the compiler needs to generate the necessary

save/restore instructions to swap the relevant register values from the continuation stack, resulting in a

large context-switching cost.  StarT-NG examines how the multithreaded codes can run on a stock
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Figure 7: A site structure of StarT-NG



- 29 -

processor and emphasizes the importance of cache-coherent global shared-memory supported by

efficient message-passing.

StarT-Voyager, which replaces StarT-NG, is based on dual-PowerPC 604 SMP system

[Ang96].  Each SMP uses a typical PC/workstation class motherboard with two processors cards, but

one of the processors cards is replaced with an NES card.  Each NES card is then attached to the

Arctic network to facilitate a scalable architecture.  The NES has been programmed to support S-

COMA coherent shared memory that allows local DRAM to act as a cache for global data.  A two-

node StarT-Jr system [Hoe96], consisting of Pentium Pro processors connected by a network

interface attached to their PCI buses, was demonstrated at Fall Comdex95 in Las Vegas.  StarT-Jr

provides much of the same functionality of StarT-Voyager at a lower development cost and lower

performance.  A four-node StarT-Voyager system is expected to be completed in 1998.  

5 . 3 . EM-X

The EM-X parallel computer, which is a successor to EM-4 architecture [Sato92], is being

built at Electrotechnical Laboratory in Japan ([Kodama95], [Sakane95]).  EM-X architecture is based

on the dataflow model that integrates the communication pipeline into the execution pipeline by

using small and simple packets.  Sending and receiving of packets do not interfere with the thread

execution.  Threads are invoked by the arrival of the packets from the network or by matching two

packets.  When a thread suspends, a packet on the input queue initiates the next thread.  EM-X also

supports direct matching for synchronization of threads, and the matching is performed prior to the

buffering of the matching packets.  Therefore, one clock cycle is needed for pre-matching of two

packets, but the overhead is hidden by executing other threads simultaneously.  

The EM-X consist of EMC-Y nodes interconnected by a circular Omega Network with virtual

cut-through routing scheme.  The structure of its single chip processor EMC-Y is depicted in Figure

8.  The Switching Unit is a 3-by-3 crossbar connecting input and output of network and the
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processor.  Packets arriving at a processor are received in the Input Buffer Unit (IBU).  The IBU has a

on-chip packet buffer which holds a maximum of 8 packets.  When the on-chip buffer overflows,

packets are stored in data memory, and brought back to on-chip buffers when space becomes

available.  

EM-X implements a flexible packet scheduling by maintaining two separate priority buffers.

Packets in the high priority buffer are transferred to the Matching Unit (MU), and the low priority

packets are transferred to MU only when the high priority buffer is empty.  The MU prepares the

invocation of a thread by using the direct matching scheme [Kodama95].  This is done by first

extracting the base address of the operand segment from the incoming packet.  The operand segment

is basically an activation frame which is shared among threads in a function, and holds the matching

memory and local variables.  Next, the partner data is loaded from the matching memory specified in

the packet address, and the corresponding presence flag is cleared.  Then, a template (i.e., a code

frame) is fetched from the top of the operand segment, and the first instruction of the enabled thread
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Figure 8: A structure of EMC-Y.
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is executed on the Execution Unit (EXU).  The EXU is a RISC-based thread execution unit with 32

registers.  The EXU provides four SEND instructions for invoking a thread, accessing remote memory,

returning the result after the thread execution, and implementing variable size operand segments or a

block access of remote memory [Kodama95].

EM-X performs a remote memory access by invoking packet handlers at the destination

processor, and the packets are entirely serviced by hardware which does not disrupt the thread

execution in the execution pipeline.  The round trip distances of the Omega Network in EM-X are 0,

5, 10, and 15 hops for request/reply sequences with the average of 10.13 hops requiring less than

1 μ sec on a unloaded network.  On a loaded network, the latency is 2.5 μ sec on the average with

random communication of 100 Mpackets/sec.  

5.4. Alewife

MIT’s Alewife machine improves scalability and programmability of modern parallel systems

by providing software-extended coherent cache, global memory space, integrated message-passing,
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and support for fine-grained computation.  Underneath the Alewife’s abstraction of globally shared

memory, each PE has a physically distributed memory managed by a Communication and Memory

Management Unit (CMMU).  This memory hardware manages the locality by caching both private

and shared data on each node.  A scalable software-extended scheme called LimitLESS maintains the

cache coherence [Chaiken91].  The LimitLESS scheme implements a full-map directory protocol

which can support up to five read requests per memory line directly in hardware and by trapping into

software for more widely-shared data.

Each Alewife node, shown in Figure 9, consists of a Sparcle processor, 64 Kbytes of direct-

mapped cache, 4 Mbytes of data and 2 Mbytes of directory, 2 Mbytes of private unshared memory, a

floating-point unit, and mesh routing chip.  The nodes communicate via two-dimensional mesh

network using wormhole routing technique.  

Sparcle is a modified SPARC processor that facilitates block multithreading, fine-grained

synchronization, and rapid messaging.  The register windows of SPARC are modified to represent

four independent contexts in Sparcle: one for trap handlers and other three for user threads.  A

context-switch is initiated when the CMMU detects a remote memory access and causes a

synchronous memory fault to Sparcle.  The context switching is implemented by a short trap handler

that saves the old program counter and status register, switches to a new thread by restoring a new

program counter and status register, then returns from the trap to begin execution in the new

context..  Currently, the context-switching takes 14 clock cycles, but it is expected to be reduced to

four clock cycles.
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Sparcle also provides new instructions that manipulates the full/empty bits in memory for

data-level synchronization [Agrawal93].  For example, ldt (read location if full, else trap) and stt

(write location if empty, else trap) instructions can be used to synchronize on an element-by-element

basis.  When a trap occurs due to a synchronization failure, the trap handler software decides what

must be done next.

Fast message handling is implemented via special instructions and memory-mapped interface

to the interconnection network.  To send messages, Sparcle first writes a message to the

interconnection network queue using stio instruction, and then ipillaunch instruction is used to

launch the message into the network.  A message contains the message opcode, the destination node

address, and data values (e.g., content of a register or address and length pair which invokes DMA on

blocks from memory).  The arrival of a message invokes a trap handler that loads the incoming

message into registers using ldio instruction or initiate a DMA sequence to store the message into

memory.  
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Figure 9: The Organization of Alewife Node
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5.5. M-Machine

M-machine is an experimental multicomputer being developed by MIT.  The M-Machine

efficiently exploits increased circuit density by devoting more chip area to the processor.  It is

claimed that a 32-node M-Machine system with 256 MBytes of memory has 128 times the peak

performance of uniprocessor with the same memory capacity at 1.5 time the area, 85 times

improvement in peak performance/area [Filo95].  The M-Machine consists of a collection of

computing nodes interconnected by a bidirectional 3-D mesh network.  Each node consists of a

multi-ALU processor (MAP) and 8 MBytes of synchronous DRAM.  A MAP contains four execution

clusters, four cache banks, a network interface, and a router.  Each of the four MAP clusters is a 64-

bit, three-way issue, pipelined processor consisting of a Memory Unit, an Integer Unit, and a Floating-

Point Unit as shown in Figure 10.  The Memory Unit is used for interfacing to the memory and the

To C-Switch

Figure 10: The MAP architecture and its four clusters.
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cluster switch (C-Switch).  The cache is organized as four word-interleaved 32-KByte banks to permit

four consecutive accesses.  Each word has a synchronization bit which is manipulated by special load

and store operations for atomic read-modify-write operations.

M-Machine supports a single global virtual address space through a global translation

lookaside buffer (GTLB).  GTLB is used to translate a virtual address into physical node identifier in

the message.  Messages are composed in the general registers of a cluster and launched automatically

using user-level send instructions.  Arriving messages are queued in a register-mapped FIFO, and a

system-level message handler performs the requested operations specified in the message.

Each MAP instruction contains one to three operations and may execute out-of-order.  The

M-Machine exploits instruction-level parallelism by running up to 12 parallel instruction sequences

(called H-Thread) concurrently.  In addition, MAP interleaves the 12-wide instruction streams (called

V-Thread) from different threads of computation to exploit thread-level parallelism and to mask

To C-Switch
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various latencies that occur in the pipeline, (i.e., during memory accesses and communication).  Six

V-Threads are resident in a cluster, and each V-Thread consists of four H-Threads.  Each V-Thread

consists of a sequence of 3-wide instructions containing an integer, a memory, and a floating-point

operation.  Within an H-Thread, instructions are issued in order, but may complete out of order.

Synchronization and communication among H-Threads in the same V-Thread is done using a

scoreboard bit associated with each register.  However, H-Threads in different V-Threads may only

communicate and synchronize through memory and massages.

5.6. Simultaneous Multithreading

Simultaneous multithreading (SMT) is a technique that allows multiple independent threads

from different programs to issue multiple instructions to a superscalar processor’s functional units.

Therefore, SMT combines the multiple instruction-issue features of modern superscalar processors

with the latency-hiding ability of multithreaded architectures, alleviating the problems of long

latencies and limited per-thread parallelism.  This means that the SMT model can be realized without

extensive changes to a conventional superscalar processor architecture.  
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Figure 11 shows a hardware organization of an 8-thread simultaneous multithreading

machine proposed in [Tullsen95, 96].  The processor execution stage is composed of three Floaing-

Point Units and six Integer Units.  Therefore, the peak instruction bandwidth is nine.  However,

throughput of the machine is bounded to eight instructions per cycle due to the bandwidth of Fetch

and Decode Units.  Each Integer and Floating-Point Instruction Queue (IQ) holds 32 entries, and the

caches are multi-ported and interleaved.  In addition, an 8-thread SMT machine has 256 physical

registers (i.e., 32-registers per each thread) and 100 additional registers for register renaming.  

The throughput of the basic SMT system is 2% less than a superscalar with similar hardware

resources when running on a single thread due to the need for longer pipelines to accommodate a

large register file.  However, its estimated peak throughput with multiple threads is 84% higher than

that of a superscalar processor.  Also, the system throughput peaks at 4 instructions per cycle, even

with eight threads.  This early saturation is caused by the three factors: (1) small IQ size. (2) limited

fetch throughput (only 4.2 useful instructions are fetched per cycle), and (3) lack of instruction-level
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Figure 11: A Basic Simultaneous Multithreading Hardware Architecture
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parallelism.  However, the performance of simultaneous multithreading hardware can be improved by

modifying the Fetch Unit and Instruction Queues.  The fetch throughput can be improved by

optimizing fetch efficiency (i.e., partitioning fetch unit among threads), fetch effectiveness (i.e.,

selective instruction fetch or fetch policies), and fetch availability (i.e., eliminating conditions that

block the fetch unit).  

It has been shown that the best performance is obtained when the Fetch Unit is partitioned in

such a way that eight instructions are fetched from two threads, and the priority is given to the threads

with the smaller number of  instructions in the decode stage [Tullsen 96].  Fetch misses can be

reduced by examining the I-cache tag one cycle earlier, and then selecting only threads that cause no

cache miss.  However, this scheme requires extra ports on the I-cache tags and increases misfetch

penalties due to an additional  pipeline stage needed for early tag lookup.  The resulting performance

shows a factor of 2.5 throughput gain over a conventional superscalar architecture when running at 8

threads, yielding a 5.4 instructions per cycle.  These experiments lead to following observations.

• Techniques such as dynamic scheduling and speculative execution in a superscalar processor

are not sufficient to take full advantage of a wide-issue processor without simultaneous

multithreading.

• Instruction scheduling in SMT is no more complex than that of a dynamically scheduled

superscalar processor.

• Register file data paths in SMT are no more complex than those in a superscalar, and the

performance implication on the register file and its longer pipeline is small.

• The required instruction fetch throughput is attainable without increasing the fetch bandwidth

by partitioning the Fetch Unit and intelligent instruction selection to fetch.  

6. Performance Models

Whether we deal with finely multithreaded or coarsely multithreaded architecture, there are

limitations to the improvements in processor utilization that can be achieved.  The most important
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limitation is applications running on a multithreaded system may not exhibit sufficiently large

degrees of parallelism to permit the identification and scheduling of multiple threads on each

processor.  Even if sufficient parallelism exists, the cost of multithreading should be traded off

against any loss of performance due to active threads sharing the cache and processor cycles wasted

during context switches.  In this section we will outline analytical models that can be used to describe

these competing aspects of multithreaded systems.

In the simplest case, we assume that the processor switches between threads only on long

latency operations, such as remote memory accesses.  Let L denote a fixed latency for such

operations. Let R be the average amount of time that each thread executes before encountering a

long latency operation.  Let C be the (fixed) overhead in switching between threads.  Consider the

case when there is only one thread.  The processor utilization can be described by

U1 = R

R + L
. (Eq. 1)

The utilization is limited by the frequency of long latency operations, ρ = 1/ R, and the average time

required to service the long latency operation L.

If L is much larger than C, the time to switch between threads, then useful work can be

performed during the latency operations.  In addition, if the number of threads is sufficiently large,

long latency operations can be completely hidden.  In such a case, the processor utilization can be

described as

U
R

R CNSAT
=

+
, (Eq. 2)

where NSAT is the number of threads required to totally mask L.  Note that increasing the number of

threads beyond NSAT will not increase the processor utilization.  We will denote this as saturation

number of threads which satisfies:

N
R L

R CSAT ≥ +
+

(Eq. 3)

If there are insufficient number of threads to totally mask the latency L, the processor

utilization can be described by

U
NR

R LN =
+

(Eq. 4)



- 40 -

Note that the overhead of switching among thread does not appear in the above equation since this

time would have been idle (or wasted) in a single threaded system.

Using the above equations, the speedup that can be achieved is given by

S
U

U

N N N
R L

R C
N

N
SAT

= =
<

+
+

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪1

if 

otherwise (Eq. 5)

As shown in Eq. 5, the minimum number of threads needed to achieve maximum utilization, NSAT

≥ ( ) ( )R L R C+ + , depends on time between thread switches (R), the time to service long latency

operation (L), and the thread switching overhead (C).  For example, a fine grained multithreaded

system, R=1, with negligible thread switching overhead (e.g., using multiple hardware contexts)

requires at least (1+L) threads to achieve optimum utilization.  When C is not negligible, R should be

much larger (i.e., coarser-grain multithreading) to achieve useful performance gains using

multithreaded systems.

The above model ignored the performance impact due to higher cache miss rates in a

multithreaded system and higher demands on the network placed by higher processor utilization.  In

addition, the above model assumed fixed latencies, and fixed frequency of long latency operations in

threads.  If we assume that a thread switch occurs on every cache miss, then we can equate cache miss

rate m with the frequency of long latency operations, ρ = 1 R.  Realistically, a thread switch occurs

only on nonlocal cache misses.  The speedup of a multithreaded system can be rewritten as
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1

1

if 
 

 otherwise
(Eq. 6)

The cache miss penalty is the primary contributor to L.  Note that we assume constant cache miss rate

and miss penalty in the above equation.  The effect of thread switch on other long latency operations

such as synchronization delays can also be added to above equation.

In deriving Eq. 6, we have assumed that cache miss rate and miss penalties are not effected by

multithreading. However, cache miss rate is negatively effected by increasing the degree of

multithreading.  Likewise, the miss penalty increases with the number of threads due to higher

network utilization (leading to longer delays in accessing remote memory modules).

Let us consider the impact of multiple threads on network delays (or miss penalties).  The

average rate of networks requests by a single thread is equal to the miss rate m = 1/R.  As the number

of threads is increased, the rate of requests is increased proportionately to mN, until N becomes equal
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from the network as T N= −( )−μ λ 1
, where μ is the service time and λ

N is the rate of arrivals.

Assuming Poisson distribution for the cache misses, we obtain T mN= −( )−μ 1.

Note that the above derivation must be modified to account for the non-Poisson process that

underlies cache misses.  Network service time must reflect the topology, bandwidth, and routing

algorithms of specific networks.  For example, in [Agrawal 92], the miss penalties due to multiple

threads assuming a k-ary n-dimensional cube network was computed.  This analysis shows that

network delays increase almost linearly with the number of threads, which is given as

T
T BNk

m
T

BNk

m
NB n

k

k
= + − + − +⎛
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⎠ + −⎛
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0
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2
2

2 6
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2
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3
, (Eq. 7)

where M represents the memory access time, B is the message size, n is the network dimension, k is the

radix of the network radix, and T0 represents the network delay without contention, i.e.,

T nk M Bd0 2 1= + + − , where kd  represents the average number of hops a message travels in each

dimension.

In order to compute the impact of multiple threads on cache miss rates, let us review the

behavior cache memories.  It has been shown that the components of cache misses can be classified as

nonstationary, intrinsic-interference, multiprogramming-related, and coherency-related invalidations.

Nonstationary misses, mns , are due to “cold start” misses that bring blocks into the cache for the first

time.  Intrinsic-interference misses, mintr , result from misses caused by conflicts among cache blocks

of a working set that compete for the same cache set.  Multiprogramming related misses account for

the cases when one thread displaces the cache blocks of another thread.  Coherency related

invalidation, minv , occur in multiprocessor systems where the changes made in one processor may

require invalidation of other processor cache entries.

Increasing the degree of multithreading will effect both the intrinsic-interference and

multiprogramming components of cache misses.  When more threads occupy the cache, we can

assume that each thread is allocated a smaller working set, and this in turn leads to higher intrinsic

conflicts.  Likewise, as the number of threads is increased, the multiprogramming-related component

also increases since there is a higher probability that cache blocks of active threads displace those of
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inactive threads.  The miss rates in the presence of N threads is derived by Agrawal [Agrawal 92],

which is given as.

m N m m m N
cfixed intr intr( ) ≈ + + −( ) +⎛

⎝
⎞
⎠1 1

1
, (Eq. 8)

where c represents the collision rate and mintr is a function of c, working set u, the time interval used to

measure the working set τ , and the number of cache sets S, i.e.,

m
c u

Sintr ≈
τ

2

It is interesting to note that with sufficiently large cache memories, the multiprogramming

related component of the cache miss rate is not effected by the number of threads.  This is because,

the cache memory is large enough to hold the working sets of all resident threads.  The number of

threads proportionately increases the intrinsic-interference component of cache misses.  Set

associativity is another issue that significant affects the performance of cache memories for

multithreaded systems; higher associativities can compensate for the increased intrinsic interference in

a multithreaded system.  The collision rate parameter used in deriving cache miss rates by Agrawal

[Agrawal92] must be described as a function of set associativity.  Alternatively, set associativity can be

modeled by treating the cache memory as several smaller direct mapped caches, each allocated to a

different thread.  This is the case when instructions from different threads are interleaved to achieve

higher pipeline utilizations.

7. Conclusions and Prognostication

The past couple of decades have seen tremendous progress in the technology of computing

devices, both in terms of functionality and performance.  It is predicted that over the next five years,

it will be possible to fabricate processors containing billions of transistor circuits operating at

GigaHertz speeds [DARPA97].  While there has been a continuing growth in the density of DRAM

memory chips, improvements in the access times and I/O bandwidth of memory parts have not kept

pace with processor clock rates.  This has widened the relative performance of processors and

memory.  The memory latency problem is further compounded by complex memory hierarchies

which need to be traversed between processors and main memory.  Multithreading is becoming

increasingly popular as a technique for tolerating memory latency.  It requires concurrency and
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complicated processors. However it offers the advantage of being able to exploit MIMD concurrency

as well as interleave multiple users so as to maximize system throughput.

In this paper we have introduced the multithreaded paradigm as supported in programming

languages, rutime systems, OS-kernels, and in processor architectures.  We have also presented simple

analytical models that can be used to investigate the limits of multithreaded systems.  Without

adequate hardware support, such as multiple hardware contexts, fast context-switch, non-blocking

caches, out-of-order instruction issue and completion, register renaming, we will not be able to take

full advantage of the multithreading model of computation.  As the feature size of logic devices

reduces, we feel that the silicon area can be put to better use by providing support for multithreading.

The addition of more cache memory (or more levels of cache) will result in only insignificant and

diminishing performance improvements.  The addition of more pipelines (as in superscalar) will only

prove effective with multithreading model of execution.

Hardware support alone is not sufficient to exploit the benefits of multithreading.  We believe

that the performance benefits of multithreading can only be realized when the paradigm is applied

across all levels: from applications programming to hardware implementations.  Fortunately, a

number of research projects are underway for designing multithreaded systems that include new

architectures, new programming languages, new compiling techniques, more efficient interprocessor

communication, and customized microkernels.  

New programming languages supporting both fine-grained and coarse-grained multithreaded

concurrency are becoming available.  Unless applications are programmed using these languages, the

exploitable parallelism (in single threaded applications) will be very limited.  New compile-time

analysis and optimization approaches must be discovered to map user-level concurrency onto

processor level threads.  For example, it may be necessary to rethink register usages: it may be

worthwhile loading multiple registers (belonging to different threads) with the same value, thus

eliminating unnecessary data dependencies.  It may be necessary to aggressively use speculative

execution, and mixing instructions from unrelated threads to increase thread run-lengths.

While some of the research projects described in this paper have produced improvements over

single threaded abstractions, in a majority of cases, they have shown only small or incremental

improvements in performance.  One of the issues often ignored by multithreaded systems is the
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performance degradation of single-threaded applications, due increased hardware data paths.

Recently, numerous alternate approaches to tolerating memory latencies have been proposed,

including DataScalar [Berger97], Multscalar [Sohi95], preload/prefetch techniques ([Baer91],

[Dahlgren93], [Farkas95].  There has been a proposal for moving the processor onto DRAM chips, to

reduce the latency [Saulsbury96].  It is our belief that multithreaded model of execution should be

combined with some of these approaches proposed for sequential (single-threaded) execution

systems.  For example, the preloading can be adapted to multithreaded systems.  The success of

multithreading as a viable computational model depends on the integration of these efforts.
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