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Abstract

This chapter describes hardware and application profiling tools used by researchers and
application developers. With over 30 years of research, there have been numerous tools
developed and used, and it will be too difficult to include all of them here. Therefore, in
this chapter, we describe various areas with a selection of widely accepted and recent
tools. This chapter is intended for the beginning reader interested in exploring more
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about these topics. Numerous references are provided to help jump-start the interested
reader into the area of hardware simulation and application profiling.

We make an effort to clarify and correctly classify application profiling tools based
on their scope, interdependence, and operation mechanisms. To visualize these fea-
tures, we provide diagrams that explain various development relationships between
interdependent tools. Hardware simulation tools are described into categories that
elaborate on their scope. Therefore, we have covered areas of single to full-system sim-
ulation, power modeling, and network processors.

ABBREVIATIONS
ALU arithmetic logic unit

AP application profiling

API application programming interface

CMOS complementary metal-oxide semiconductor

CPU central processing unit

DMA direct memory access

DRAM dynamic random access memory

DSL domain-specific language

FS full system

GPU graphics processing unit

GUI graphical user interface

HP hardware profiling

HPC high-performance computing

I/O input/output

IBS instruction-based sampling

IR intermediate representation

ISA instruction set architecture

ME microengine

MIPS microprocessor without interlocked pipeline stages

MPI message passing interface

NoC network on chip

OS operating system

PAPI performance application programming interface

PCI peripheral component interconnect

POSIX portable operating system interface

RAM random access memory

RTL register transfer level

SB superblock

SCSI small computer system interface

SIMD single instruction, multiple data

SMT simultaneous multithreading

TLB translation lookaside buffer

VC virtual channel

VCA virtual channel allocation

VLSI very large-scale integration

VM virtual machine
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1. INTRODUCTION

Researchers and application developers rely on software tools to help

them understand, explore, and tune new architectural components and opti-

mize, debug, or otherwise improve the performance of software applica-

tions. Computer architecture research is generally supplemented through

architectural simulators and component performance and power efficiency

analyzers. These are architecture-specific software tools, which simulate or

analyze the behavior of various architectural devices. They should not be

confused with emulators, which replicate the inner workings of a device.

We will refer to the collective of these tools simply as hardware profilers.

To analyze, optimize, or otherwise improve an application’s performance

and reliability, users utilize various application profilers. In the following

subsections, we will distinguish between various aspects of application

and hardware analysis, correctness, and performance tuning tools. In

Section 2, we will discuss application profiling (AP) tools. In Section 3,

we will discuss hardware profiling (HP) tools. Sections 2 and 3 follow the

diagrams in Fig. 3.1. Finally, we will conclude the chapter in Section 4.

1.1. Taxonomy
Many tools overlap in their scope and capabilities; therefore, some tools cov-

ered in this chapter are not mutually exclusive within the established cate-

gories. For example, both instrumentation tools and profiling libraries can

Figure 3.1 Application and hardware profiling categories.
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analyze an application’s memory behavior, albeit from different perspectives.

We must also note that several other tools are built on top of libraries; how-

ever, they are classified into different groups based on their scope of appli-

cation. Likewise, hardware profilers can profile memory subcomponent

behavior for a given application. Assuming the simulation environment

resembles the native system’s hardware, one can expect the profiled behavior

to be similar to an actual execution behavior. In this chapter, we classify the

tools based on their scope of application.

Our categorization starts by distinguishing between AP and HP. Hard-

ware profiling tools are divided into system and component simulators,

power estimation tools, network-system simulators, and architectural

emulators. We must note that the terms emulation and simulation are

sometimes used interchangeably, but the difference is often seen in com-

pleteness. Emulators are faithful imitations of a device, whereas simulators

may simulate only certain behaviors of a device. The usefulness of emula-

tors is primarily in their ability to run software, which is incompatible with

host hardware (e.g., running codes designed for microprocessor without

interlocked pipeline stages (MIPS) processors on Intel x86 processors).

Researchers and developers use simulators when interested in a subset of

behaviors of a system without worrying about other behaviors; the goal

is to simulate faithfully the behaviors of interest. For example, cycle-

accurate simulators can be used to observe how instructions flow through

a processor execution cycles but may ignore issues related to peripheral

devices. This subcategory will be annotated with an s or e in our table

representation.

Technically speaking, network-system simulators and power estimation

tools should be considered as simulators. We felt that a separate category

describing these tools is appropriate because most tools in this category

are very specific in their modeling that they distinguish themselves from

other generic instruction set simulators.

Some tools are closely related to tool suites and thus cannot be pigeon-

holed into a specific group. We will list these tools in the category of

hybrids/libraries. The category of hybrids includes a range of application

and hardware profilers. For example, the Wisconsin Architectural Research

Tool Set [1] offers profilers and cache simulators and an overall framework

for architectural simulations. Libraries are not tools in the sense that they are

readily capable of executing or simulating software or hardware, but they are
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designed for the purpose of building other simulators or profilers. Table 3.1

lists a number of HP tools listed in Section 6.

We will cover detailed tool capabilities in the subsequent sections.

Figure 3.1 is a graphic representation of our tool categories. The tools,

which are described in this chapter, are placed in one of the earlier men-

tioned categories. For example, emulators and simulators are more closely

Table 3.1 Hardware Profilers
Hardware Profilers

System/component simulators Network-system simulators

DRAMSim [2] NepSim [3]

DineroIV [4] Orion [5]

EasyCPU [6] Garnet [7]

SimpleScalar [8] Topaz [9]

ML_RSIM [10] MSNS [11]

M-Sim [12] Hornet [13]

ABSS [14] Power estimation tools

AugMINT [15] CACTI [16]

HASE [17] WATTCH [18]

Simics [19] DSSWATCH [20]

SimFlex [21] SimplePower [22]

Flexus [23] AccuPower [24]

SMARTS [25] Frameworks

Gem5 [26] CGEN [27]

SimOS [28] LSE [29]

Parallel SimOS [30] SID [31]

PTLsim [32]

MPTLsim [33]

FeS2 [34]

TurboSMARTS [35]
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related to each other than to AP tool; thus, they are listed under hardware

profilers. The list of all tools mentioned in this chapter is summarized in

Sections 5 and 6. The tables categorize the tools based on Fig. 3.1.

Software profilers and libraries used to build profiler tools are categorized

based on their functionality. We felt that application profilers are better dis-

tinguished based on their profiling methodology because some plug-in and

tools built on top of other platforms have some common functionalities.

Consider tools, which may fall under the category of instrumenting tools;

these tools could provide the same information as library-based tools that

use underlying hardware performance counters. The difference is in how

the profiler obtains the information. Most hardware performance counter

libraries such as performance application programming interface

(PAPI) [36] can provide a sampled measurement of an application’s memory

behavior. Binary instrumentation tool plug-ins such as Valgrind’s

Cachegrind or Callgrind can give the user the same information but may

incur overheads. Some recent performance tools utilize both performance

libraries and instrumentation frameworks to deliver performance metrics.

Therefore, a user attempting to use these tools must choose the appropriate

tool depending on the required profiling detail, overhead, completeness, and

accuracy.

Table 3.2 outlines the tools from Section 5 categorized as instrumenting

tools and sampling/event-driven tools and performance libraries and

interfaces.

1.2. Hardware Profilers
The complexity of hardware simulators and profiling tools varies with the

level of detail that they simulate. Hardware simulators can be classified based

on their complexity and purpose: simple-, medium-, and high-complexity

system simulators, power management and power-performance simulators,

and network infrastructure system simulators.

Simulators that simulate a system’s single subcomponent such as the cen-

tral processing unit’s (CPU) cache are considered to be simple simulators

(e.g., DineroIV [4], a trace-driven CPU cache simulator). In this category,

we often find academic simulators designed to be reusable and easily

modifiable.

Medium-complexity simulators aim to simulate a combination of architec-

tural subcomponents such as the CPU pipelines, levels of memory hierarchies,

and speculative executions. These are more complex than single-component
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simulators but not complex enough to run full-system (FS) workloads. An

example of such a tool is the widely known and widely used SimpleScalar tool

suite [8]. These types of tools can simulate the hardware running a single appli-

cation and they canprovideuseful informationpertaining tovariousCPUmet-

rics (e.g.,CPUcycles,CPUcache hit andmiss rates, instruction frequency, and

others). Such tools often rely on very specific instruction sets requiring appli-

cations to be cross compiled for that specific architecture.

To fully understand a system’s performance under reasonable-sized work-

load, users can rely on FS simulators. FS simulators are arguably themost com-

plex simulation systems. Their complexity stems from the simulation of all the

critical system’s components, as well as the full software systems including the

operating system (OS). The benefit of using FS simulators is that they provide

more accurate estimation of the behaviors and component interactions for

realistic workloads. In this category, we find the widely used Simics [19],

Gem5 [26], SimOS [28], and others. These simulators are capable of full-scale

system simulations with varying levels of detail. Naturally, their accuracy

comes at the cost of simulation times; some simulations may take several

Table 3.2 Application Profilers
Application Profilers

Instrumenting Sampling/event-driven

Performance libraries/kernel

interfaces

gprof [37] OProfile [38] PAPI [36]

Parasight [39] AMD CodeAnalyst [40] perfmon [41]

Quartz [42] Intel VTune [43] perfctr

ATOM [44] HPCToolkit [45] Debuggers

Pin [46] TAU [47] gdb [48]

DynInst [49] Open SpeedShop [50] DDT [51]

Etch [52] VAMPIR [53]

EEL [54]

Valgrind [55]

DynamoRIO [56]

Dynamite [57]

UQBT [58]
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hundred times or even several thousand times longer than the time it takes to

run the workload on a real hardware system [25]. Their features and perfor-

mances vary and will be discussed in the subsequent sections.

Energy consumed by applications is becoming very important for not

only embedded devices but also general-purpose systems with several

processing cores. In order to evaluate issues related to power requirements

of hardware subsystems, researchers rely on power estimation and power

management tools. It must be noted that some hardware simulators provide

power estimation models; however, we will place power modeling tools

into a different category.

In the realm of hardware simulators, we must touch on another category

of tools specifically designed to simulate accurately network processors and

network subsystems. In this category, we will discuss network processor

simulators such as NePSim [3]. For large computer systems, such as high

performance computers, application performance is limited by the ability

to deliver critical data to compute nodes. In addition, networks needed

to interconnect processors consume energy, and it becomes necessary to

understand these issues as we build larger and larger systems. Network sim-

ulation tools may be used for those studies.

Lastly, when available simulators and profiling tools are not adequate,

users can use architectural tool-building frameworks and architectural

tool-building libraries. These packages consist of a set of libraries specifically

designed for building new simulators and subcomponent analyzers. In this

category, we find the liberty simulation environment (LSE) [29], Red Hat’s

SID environment [31], SystemC, and others.

1.3. Application Profilers
Simulators are powerful tools that give insight into a device behavior under

varying runtime circumstances. However, if a user is trying to understand an

application’s runtime behavior, which is a crucial step when trying to opti-

mize the code, the user needs to rely on different class of tools. AP refers to

the ability to measure an application’s performance, diagnose potential prob-

lems, or otherwise log an application’s runtime information. For example, a

user may want to reduce an application’s memory consumption, which is a

common optimization required in embedded applications, and improve an

application execution speed, which is a requirement for high-performance

scientific applications, or the user simply needs to improve an application’s

reliability and correctness by tracking active and potential program errors.
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For such tasks, application developers rely on debugging tools, profiling

tools, and other performance libraries capable of delivering the needed

information. These tools vary in their accuracy, profiling speed, and capa-

bilities. Profiling generally involves a software tool called a profiler that ana-

lyzes the application. This is achieved either through analyzing the source

code statically or at runtime using a method known as dynamic program

translation.

Profiling tools can be further categorized into event-driven profiling,

sampling profiling, and instrumented profiling. Event-driven profiling col-

lects information about user-defined events, which may require hooks into

the OS. When a desired event is triggered, the tool will collect program

characteristic related to that event. Event-driven profiling tools have a ten-

dency to rely on the OS to collect necessary information. Sampled profiling

aims at collecting information at specified intervals or frequency. The goal is

to collect enough samples to acquire a statistically accurate picture of the

application. Note that some profiling libraries may be classified as sampling

profilers although wemust not confuse the libraries and tools that rely on the

libraries for functionality. There are various commercial sampling profilers

such as AMD CodeAnalyst [40], Intel VTune [43], and others.

Lastly, instrumentation profiling encompasses several subcategories that

involve insertion or transformation of source code at strategic sections, usu-

ally driven and limited by the instrumenting tool. Instrumenting tools can be

further categorized into compiler-assisted instrumentation (e.g., gprof [37]),

binary translation, binary instrumentation (e.g., Pin [46], DynInst [49],

ATOM [44]), and hybrids (e.g., Valgrind [55] and DynamoRIO [56]).

We will discuss the details of each of these categories in the subsequent

sections. It should be noted that many tools fit multiple categories; some-

times, this is due to evolution of tools based on need, and sometimes, this

is due to the very nature of the profiling. However, we categorized the tools

based on their primary functionality or capabilities.

1.4. Performance Libraries
Understanding application’s runtime behavior is generally supplemented

through AP tools. AP tools come in various forms such as debuggers, pro-

filers, or libraries. From a user’s perspective, a profiling tool is software that

manipulates an application by injecting foreign code fragments at strategic

locations of an application’s source code or executable code. The injected

code executes at the desired section and collects information on a number
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of application-triggered events or other application-specific timing informa-

tion. Similarly, profiling libraries refer to a subset of AP tools that offer spe-

cific application programming interfaces (APIs), which can be called from

the client application. In a general sense, profiling libraries are a bridge

between profiling tools and specialized hardware units called hardware per-

formance counters, or simply hardware counters, used for hardware perfor-

mance measurement. We will not list profiling libraries as part of hardware

profilers because performance counters are, more often than not, used for

software tuning. Implicitly, they provide information about the host hard-

ware during an application execution, but their intent is not driven by hard-

ware research. Another reason why profiling libraries are listed as application

profilers is because they cannot distinguish, unless user corrections are

applied, between application-triggered metrics and system noise during

the application’s execution.

2. APPLICATION PROFILING

2.1. Introduction
To our knowledge, the first paper on profiling was published in the early

1980s, gprof: a call graph execution profiler [37]. The need for gprof arose

out of the necessity to adequately trace the time spent on specific procedures

or subroutines. At that time, profilers were fairly simple and the tools only

reported very limited information such as how many times a procedure was

invoked. Gprof extended this functionality by collecting program timing

information. At compile time, gprof inserts timers or counters, and during

execution, the time spent within functions is aggregated. The end results, a

collection of time spent within each function, may be analyzed off-line. The

information provided by gprof is timing and function call counts with

respect to subroutines as a percentage of an application’s total executed time.

Gprof was unique for its time (and still useful today) because it allowed the

programmer to see where the majority of the execution time is spent. The

idea of gprof is to allow programmers to tune individual program routines.

Gprof is an example of a compiler-assisted profiling tool. Note that modern

compilers ship with gprof and other analysis tools. Compiler-assisted profil-

ing inserts profiling calls into the application during compilation process.

The inserted profiling routines are invoked when the application executes.

This means that the application will incur extra overhead. Gprof’s develop-

ment launched the research area of program profiling. Similar tools were
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developed soon after (e.g., Parasight [39] and Quartz [42]). They are similar

to gprof, but these tools targeted tuning of parallel applications.

Binary instrumentation tool research accelerated after the development of

the ATOM tool [44]. Binary translation tools translate a binary code into a

machine code. Their functionality is similar to a compiler. The difference

is that unlike compilers their input is a precompiled binary image. As the name

suggests, binary translators operate on a binary file, unlike compilers that oper-

ate on the source code. Another difference is that the translation tries to gather

other information about the code during the translation processes using an

interpreter. If a binary translation tool inserts, removes, or otherwise modifies

code from the original binary image, then we can call that tool as a code

manipulation tool. Binary translation comes in two forms: static binary trans-

lation and dynamic binary translation. Binary translators are usually used as

optimization frameworks, for example, DIXIE [59] and UQBT [58], because

of their ability to translate and modify compiled code. The limitation of static

binary translation is the inability to accurately account for all the code because

some code paths cannot be predicted statically. When higher accuracy is

needed, we should utilize dynamic binary translation. Dynamic translation

is slower than static, but dynamic translation is superior to static translation

in terms of code coverage. We must note that dynamic translation is not

always 100% accurate because it is possible that code paths may be dependent

on a specific set of input parameters. While dynamic translators are better at

coverage, or predicting taken code paths, they suffer in terms of performance.

This is because they must translate blocks of source code on the fly and then

execute the translated segments. The reason behind the performance degra-

dation is that in dynamic translation, the translation is performed at runtime

and program registers and its state needs to be preserved. Copying and

preserving the program registers adds to the total cost of the application’s

wall-clock time. Since the dynamic translation needs to be fast, complex

optimizations are not performed; thus, the translated code may be less effi-

cient. However, the benefits of dynamic translation often outweigh these

drawbacks: dynamic translators are more accurate than static because they

have runtime knowledge of the taken code paths and this results in better opti-

mizations or analysis for tools that utilize binary translators. Some speedup can

be achieved by caching translated code and thus eliminate repeated translations

of code segments. This is similar to the idea of CPU caches. Utilizing a code

cache reuses frequently used translated blocks. Only portions of the code need

to be kept in memory at any one time, thereby improving performance at the

expense of memory requirements.
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Binary instrumentation tools are different from other profiling tools

because their main approach lies in injecting program executable with addi-

tional code. The inserted code is then passed on to various plug-in tools for

additional analysis. Binary instrumentation similar to binary translation

comes in two forms: static binary instrumentation and dynamic binary

instrumentation. The trade-offs between the two mechanisms are also in

terms of performance and accuracy. Static binary instrumentation is faster

but less accurate, and dynamic binary instrumentation is slower but more

accurate. It is important to note that ATOM and most other instrumenting

tools are considered a tool-building system. This means that the underlying

functionality of binary instrumentation tools allows for other plug-in tools to

run on top of the framework. Development of ATOM has inspired other

developers to build other more capable tools. We can consider these five

instrumentation technique categories: manual, compiler-assisted, binary

translations, runtime instrumentation, and hybrids.

In addition, programmers canmanually instrument their code. Functions

that will collect some type of runtime information are manually inserted into

the application’s source code. These vary from simple print statements to

complex analysis routines specifically developed for debugging and profiling

purposes.

For clarity purposes, however, we can group binary translation, binary

instrumentation, and hybrids of these tools simply into runtime instrumen-

tation tools. Runtime instrumentation is the predominant technique among

modern profiling tools. It involves an external tool that supervises the appli-

cation being instrumented. The instrumented code may be annotated or

otherwise transformed into an intermediary representation. The plug-in

tools that perform various types of analyses use annotated code or the inter-

mediate representation. This also implies that the extent, accuracy, and effi-

ciency of the plug-in tools are limited by the capabilities provided by the

framework. The benefit of runtime instrumentation, particularly binary

instrumentation, is the level of binary code detail that plug-in tools can take

advantage of. Example frameworks in this area are Pin [46], Valgrind [55],

DynamoRIO [56], DynInst [49], and others.

2.2. Instrumenting Tools
Instrumentation is a technique that injects analysis routines into the applica-

tion code to either analyze or deliver the necessary metadata to other analysis

tools. Instrumentation can be applied during various application development
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cycles. During the early development cycles, instrumentation comes in the

form of various print statements; this is known as manual instrumentation.

For tuning and optimization purposes, manual instrumentation may invoke

underlying hardware performance counters or OS events.

Compiler-assisted instrumented utilizes the compiler infrastructure to

insert analysis routines, for example, instrumentation of function bound-

aries, to instrument the application’s function call behavior.

Binary translation tools are a set of tools that reverse compile an appli-

cation’s binary into intermediate representation (IR) suitable for program

analysis. The binary code is translated, usually at basic-block granularity,

interpreted, and executed. The translated code may simply be augmented

with code that measures desired properties and resynthesized (or rec-

ompiled) for execution. Notice that binary translation does not necessarily

include any instrumentation to collect program statistics. The instrumenta-

tion in this sense refers to the necessity to control the client application by

redirecting code back to the translator (i.e., every basic block of client appli-

cation must be brought back under the translator’s control).

Instrumentation at the lowest levels is applied on the application’s exe-

cutable binaries. Application’s binary file is dissected block by block or

instruction by instruction. The instruction stream is analyzed and passed

to plug-in tools or interpreters for additional analysis.

Hybrids are tools that are also known as runtime code manipulation

tools. We opted to list hybrid tools as a special category because some tools

in this group are difficult to categorize. Hybrid tools apply binary translation

and binary instrumentation. The translation happens in the framework’s

core and the instrumentation is left to the plug-in tools (e.g., Valgrind [55])

(Table 3.3).

2.2.1 Valgrind
Valgrind is a dynamic binary instrumentation framework that was initially

designed for identifyingmemory leaks. Valgrind and other tools in this realm

are also known as shadow value tools. That means that they shadow every

register with another descriptive value. Valgrind belongs to a complex or

heavyweight analysis tools in terms of both its capabilities and the complex-

ities. In our taxonomy, Valgrind is an instrumenting profiler that utilizes a

combination of binary translation and binary instrumentation. Referring to

the chart in Fig. 3.1, Valgrind falls into the hybrid category. The basic

Valgrind structure consists of a core tool and plug-in tools. The core tool

is responsible for disassembling the client application’s binary file into an
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IR specific to Valgrind. The client code is partitioned into superblocks

(SBs). An SB, consisting of one or more basic blocks, is a stream of approx-

imately 50 instructions. The block is translated into an IR and passed on to

the instrumentation tool. The instrumentation tool then analyzes every SB

statement and inserts appropriate instrumented calls. When the tool is fin-

ished operating on the SB, it will return the instrumented SB back to the

core tool. The core tool recompiles the instrumented SB into machine code

and executes the SB on a synthetic CPU. This means that the client appli-

cation never directly runs on the host processor. Because of this design,

Valgrind is bound to a specific CPU andOS. Valgrind supports several com-

binations of CPUs and OS systems including AMD64, x86, ARM, and

PowerPC 32/64 running predominately Linux/Unix systems.

Several widely used instrumentation tools come with Valgrind, while

others are designed by researchers and users of Valgrind:

• Memcheck: Valgrind’s default tool Memcheck enables the user to detect

memory leaks during execution. Memcheck detects several common

C and Cþþ errors. For example, it can detect accesses to restricted

memory such as areas of heap that were deallocated, using undefined

values, incorrectly freed memory blocks, or a mismatched number of

allocation and free calls.

• Cachegrind: Cachegrind is Valgrind’s default cache simulator. It can

simulate a two-level cache hierarchy and an optional branch predictor.

If the host machine has a three-level cache hierarchy, Cachegrind will

simulate the first and third cache level. The Cachegrind tool comes with

a third-party annotation tool that will annotate cache hit/miss statistics

per source code line. It is a good tool for users who want to find potential

memory performance bottlenecks in their programs.

Table 3.3 Application Profiling Instrumenting Tools
Instrumenting Tools

Compiler-
Assisted

Binary
Translation

Binary
Instrumentation

Hybrids/Runtime
Code Manipulation

gprof [37] Dynamite [60] DynInst [49] DynamoRIO [57]

Parasight [39] UQBT [58] Pin [46] Valgrind [55]

Quartz [42] ATOM [44]

Etch [52]

EEL [54]
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• Callgrind: Callgrind is a profiling tool that records an application’s func-

tion call history. It collects data relevant to the number of executed

instructions and their relation to the called functions. Optionally, Cal-

lgrind can also simulate the cache behavior and branch prediction and

relate that information to function call profile. Callgrind also comes with

a third-party graphic visualization tool that helps visualize Callgrind’s

output.

• Helgrind: Helgrind is a thread error detection tool for applications writ-

ten in C, Cþþ, and Fortran.

It supports portable operating system interface (POSIX) pthread

primitives. Helgrind is capable of detecting several classes of error that

are typically encountered in multithreaded programs. It can detect errors

relating to the misuse of the POSIX API that can potentially lead to var-

ious undefined program behavior such as unlocking invalid mutexes,

unlocking a unlocked mutex, thread exits still holding a lock, and

destructions of uninitialized or still waited upon barriers. It can also

detect error pertaining to an inconsistent lock ordering. This allows it

to detect any potential deadlocks.

• Massif: Massif is a heap profiler tool that measures an application’s heap

memory usage. Profiling an application’s heap may help reduce its

dynamic memory footprint. As a result, reducing an application’s mem-

ory footprint may help avoid exhausting a machine’s swap space.

• DHAT: DHAT is a dynamic heap analysis tool similar to Massif. It helps

identify memory leaks and analyze application allocation routines that

allocate large amounts of memory but are not active for very long, allo-

cation routines that allocate only short lived blocks or allocations that are

not used or used incompletely.

• Lackey: Lackey is a Valgrind tool that performs various kinds of basic

program measurements. Lackey can also produce very rudimentary

traces that identify the instruction and memory load/store operations.

These traces can then be used in a cache simulator (e.g., Cachegrind

operates on a similar principle).

• Gleipnir: Gleipnir is a program profiling and tracing tool built as a third-

party plug-in tool [61]. It combines several native Valgrind tools into a

tracing–simulating environment. By taking advantage of Valgrind’s

internal debug symbol table parser, Gleipnir can trace memory accesses

and relate each access to a specific program internal structure such as

thread; program segment; function, local, global, and dynamic data

structure; and scalar variables. Gleipnir’s ability to collect fine-grained
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memory traces and associate each access to source level data structures

and elements of these structures makes it a good candidate tool for

advanced cache memory simulation and analysis. The data provided

by Gleipnir may be used by cache simulators to analyze accesses to data

structure elements or by programmers to understand the relation

between dynamic and static memory behavior. The goal of Gleipnir is

to provide traces with rich information, which can aid in advanced anal-

ysis of memory behaviors. Gleipnir aims to bridge the gap between a

program’s dynamic and static memory behavior and its impact on appli-

cation performance.

2.2.2 DynamoRIO
DynamoRIO [56] is a dynamic optimization and modification framework

built as a revised version of Dynamo. It operates on a basic-block granularity

and is suitable for various research areas: code modification, intrusion detec-

tion, profiling, statistical gathering, sandboxing, etc. It was originally devel-

oped for Windows OS but has been ported to a variety of Linux platforms.

The key advantage of DynamoRIO is that it is fast and it is designed for

runtime code manipulation and instrumentation. Similar to Valgrind,

DynamoRIO is classified as a code manipulation framework and thus falls

in the hybrid category in Fig. 3.1. Unlike other instrumentation tools,

Dynamo does not emulate the incoming instruction stream of a client appli-

cation but rather caches the instructions and executes them on the native

target. DynamoRIO intercepts control transfers after every basic block

because it operates on basic-block granularity. Performance is gained

through various code block stitching techniques, for example, basic blocks

that are accessed through a direct branch are stitched together so that no con-

text switch, or other control transfer, needs to occur. Multiple code blocks

are cached into a trace for faster execution. The framework employs an API

for building DynamoRIO plug-in tools. Because DynamoRIO is a code

optimization framework, it allows the client to access the cached code

and perform client-driven optimizations.

In dynamic optimization frameworks, instruction representation is key

to achieving fast execution performance. DynamoRIO represents instruc-

tions at several levels of granularity. At the lowest level, the instruction holds

the instruction bytes, and at the highest level, the instruction is fully decoded

at machine representation level. The level of detail is determined by the rou-

tine’s API used by the plug-in tool. The levels of details can be automatically
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and dynamically adjusted depending on later instrumentation and optimiza-

tion needs.

The client tools operate through hooks that offer the ability to manip-

ulate either basic blocks or traces. In DynamoRIO’s terminology, a trace

is a collection of basic blocks. Most plug-in tools operate on repeated exe-

cutions of basic blocks also known as hot code. This makes sense because the

potential optimization savings are likely to improve those regions of code. In

addition, DynamoRIO supports adaptive optimization techniques. This

means that the plug-in tools are able to reoptimize code instructions that

were placed in the code cache and ready for execution.

Dynamic optimization frameworks such as DynamoRIO are designed to

improve and optimize applications. As was demonstrated in Ref. [56], the

framework improves on existing high-level compiler optimizations.

The following tools are built on top of the DynamoRIO framework:

• TaintTrace: TaintTrace [62] is a flow tracing tool for detecting security

exploits.

• Dr. Memory: Dr. Memory [63] is a memory profiling tool similar to

Valgrind’s Memcheck. It can detect memory-related errors such as

accesses to uninitialized memory, accesses to freed memory, improper

allocation, and free ordering. Dr. Memory is available for bothWindows

and Linux OSs.

• Adept: Adept [64] is a dynamic execution profiling tool built on top of

the DynamoRIO platform.

It profiles user-level code paths and records them. The goal is to capture the

complete dynamic control flow, data dependencies, and memory references

of the entire running program.

2.2.3 Pin
Pin [46] is a framework for dynamic binary program instrumentation that

follows the model of the popular ATOM tool (which was designed for

DEC Alpha-based systems, running DEC Unix), allowing the program-

mer to analyze programs at instruction level. Pin’s model allows code

injection into client’s executable code. The difference between ATOM

and Pin is that Pin dynamically inserts the code while the application is

running, whereas ATOM required the application and the instrumenta-

tion code to be statically linked. This key feature of Pin allows it to attach

itself to already running process, hence the name Pin. In terms of taxon-

omy, Pin is an instrumenting profiler that utilizes dynamic binary instru-

mentation. It is in many ways similar to Valgrind and other dynamic
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binary instrumentation tools; however, Pin does not use an intermediate

form to represent the instrumented instructions. The primary motivation

of Pin is to have an easy to use, transparent, and efficient tool-building

system.

Unlike Valgrind, Pin uses a copy and annotates IR, implying that every

instruction is copied and annotated with metadata. This offers several ben-

efits as well as drawbacks. The key components of a Pin system are the Pin

virtual machine (VM) with just-in-time (JIT) compiler, the Pintools, and

the code cache. Similar to other frameworks, a Pintool shares a client’s

address space, resulting in some skewing of address space; application

addresses may be different when running with Pin compared to running

without Pin. The code cache stores compiled code waiting to be launched

by the dispatcher. Pin uses several code optimizations to make it more

efficient.

For a set of plug-in tools, an almost necessary feature is its access to the

compiler-generated client’s symbol table (i.e., its debug information).

Unlike Valgrind, Pin’s debug granularity ends at the function level. This

means that tracing plug-in tools such as Gleipnir can map instructions only

to the function level. To obtain data-level symbols, a user must rely on

debug parsers built into the plug-in tool.

Pin uses several instrumentation optimization techniques that improve

the instrumentation speed. It is reported in Refs. [46,55] that Pin outper-

forms other similar tools for basic instrumentation. Pin’s rich API is well

documented and thus attractive to users interested in building Pin-based

dynamic instrumentation. Pin comes with many examples; Pintools can

provide data on basic blocks, instruction and memory traces, and cache

statistics.

2.2.4 DynInst
DynInst [65] is a runtime instrumentation tool designed for code patching

and program performance measurement. It expands on the design of

ATOM, EEL, and Etch by allowing the instrumentation code to be

inserted at runtime. This contrasts with the earlier static instrumentation

tools that inserted the code statically at postcompile time. DynInst provides

a machine-independent API designed as part of the Paradyn Parallel Per-

formance Tools project. The benefit of DynInst is that instrumentation can

be performed at arbitrary points without the need to predefine these points

or to predefine the analysis code at these points.
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The ability to defer instrumentation until runtime and the ability to insert

arbitrary analysis routines make DynInst good for instrumenting large-scale

scientific programs. The dynamic instrumentation interface is designed to be

primarily used by higher-level visualization tools.

The DynInst approach consists of two manager classes that control

instrumentation points and the collection of program performance data.

DynInst uses a combination of tracing and sampling techniques. An internal

agent, the metric manager, controls the collection of relevant performance

metrics. The structures are periodically sampled and reported to higher-level

tools. It also provides a template for a potential instrumentation perturbation

cost. All instrumented applications incur performance perturbation because

of the added code or intervention by the instrumentation tool. This means

that performance gathering tools need to account for their overhead and

adjust performance data accordingly.

The second agent, an instrumentation manager, identifies relevant points

in the application to be instrumented. The instrumentation manager is

responsible for the inserted analysis routines. The code fragments that are

inserted are called trampolines. There are two kinds of trampolines: base

and mini trampolines. A base trampoline facilitates the calling of mini tram-

polines, and there is one base trampoline active per instrumentation point.

Trampolines are instruction sequences that are inserted at instrumentation

points (e.g., beginning and end of function calls) that save and restore reg-

isters after the analysis codes complete data collection. DynInst comes with

an API that enables tool developers to build other analysis routines or new

performance measurement tools built on top of the DynInst platform.

There are several tools built around, on top of, or utilizing parts of the

DynInst instrumentation framework:

• TAU: TAU [47] is a comprehensive profiling and tracing tool for ana-

lyzing parallel programs. By utilizing a combination of instrumentation

and profiling techniques, TAU can report fine-grained application per-

formance data. Applications can be profiled using various techniques

using TAU’s API. For example, users can use timing, event, and hard-

ware counters in combination with application dynamic instrumenta-

tion. TAU comes with visualization tools for understanding and

interpreting large amounts of data collected.

• Open SpeedShop: Open SpeedShop [50] is a Linux-based performance

tool for evaluating performance of applications running on single-node

and large-scale multinode systems. Open SpeedShop incorporates

several performance gathering methodologies including sampling,
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call-stack analysis, hardware performance counters, profiling message

passing interface (MPI) libraries and input/output (I/O) libraries, and

floating-point exception analysis. The tool is supplemented by a graph-

ical user interface (GUI) for visual data inspection.

• Cobi: Cobi is a DynInst-based tool for static binary instrumentation. It

leverages several static analysis techniques to reduce instrumentation

overheads and metric dilation at the expense of instrumentation detail

for parallel performance analysis.

2.3. Event-Driven and Sampling Tools
Sampling-based tools gather performance or other program metrics by col-

lecting data at specified intervals. One can be fairly conservative with our

categories of sampling-based tools as most of them rely on other types of

libraries or instrumentation frameworks to operate. Sampling-based

approaches generally involve interrupting running programs periodically

and examining the program’s state, retrieving hardware performance counter

data, or executing instrumented analysis routines. The goal of sampling-

based tools is to capture enough performance data at reasonable number of

statistically meaningful intervals so that the resulting performance data distri-

bution will resemble the client’s full execution. Sampling-based approaches

are sometimes known as statistical methods when referring to the data

collected. Sampling-based tools acquire their performance data based on

three sampling approaches: timer-based, event-based, and instruction-based.

Diagram in Fig. 3.2 shows the relationships of sampling-based tools.

• Timer-based performance measurements: Timer-based and timing-

based approaches are generally the basic forms of AP, where the sampling

is based on built-in timers. Tools that use timers are able to obtain a gen-

eral picture of execution times spent within an application. The amount

of time spent by the application in each function may be derived from

the sampled data. This allows the user to drill down into the specific pro-

gram’s function and eliminate possible bottlenecks.

• Event-based performance measurements: Event-based measurements

sample information when predetermined events occur. Events can be

either software or hardware events, for example, a user may be inter-

ested in the number of page faults encountered or the number of spe-

cific system calls. These events are trapped and counted by the

underlying OS library primitives, thereby providing useful 16 informa-

tion back to the tool and ultimately the user. Mechanisms that enable
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event-based profiling are generally the building blocks of many

sampling-based tools.

• Instruction-based performance measurement: Arguably, the most accu-

rate profiling representations are tools that use instruction-based sam-

pling (IBS) approach. For example, AMD CodeAnalyst [40] uses the

IBS method to interrupt a running program after a specified number

of instructions and examine the state of hardware counters. The values

obtained from the hardware counters can be used to reason about the

program performance. The accuracy of instruction sampling depends

on the sampling rate.

The basic components of sampling tools include the host architecture,

software/hardware interfaces, and visualization tools. Most sampling tools

use hardware performance counters and OS interfaces. We describe several

sampling tools here.

Figure 3.2 Sampling tools and their dependencies and extensions.

125Hardware and Application Profiling Tools



2.3.1 OProfile
OProfile [38] is an open-source system-wide profiler for Linux systems.

System-wide profilers are tools that operate in kernel space and are capable

of profiling application and system-related events. OProfile uses a kernel

driver and a daemon to sample events. Data collected on the events are

aggregated into a file for postprocessing. The method by which OProfile

collects information is through either hardware events or timing. In case

the hardware performance counters are not available, OProfile resorts to

using timers. The information is enough to account for time spent in indi-

vidual functions; however, it is not sufficient to reason about application

bottlenecks.

OProfile includes architecture-specific components, OProfile file sys-

tem, a generic kernel driver, OProfile daemon, and postprocessing tools.

Architecture-specific components are needed to use available hardware

counters. The OProfile file system, oprofilefs, is used to aggregate informa-

tion. The generic kernel driver is the data delivery management technique

from the kernel to the user. The OProfile daemon is a user-space program

that writes kernel data back to the disk. Graphic postprocessing tools provide

user interfaces (GUIs) to correlate aggregated data to the source code.

It is important to note that to some extent, most open-source and com-

mercial tools consist of these basic components, and virtually, all share the

basic requirement of hardware performance counters or OS events, unless

they rely on binary instrumentation.

2.3.2 Intel VTune
Intel VTune is a commercial system-wide profiler for Windows and Linux

systems. Similar to OProfile, it uses timer and hardware event sampling

technique to collect performance data that can be used by other analysis

tools. The basic analysis techniques are timer analyses, which report the

amount of time spent in individual functions, or specific code segments.

Functions containing inefficiently written loops may be identified and

optimized; however, the tool itself does not offer optimizations and it is

left up to the user to find techniques for improving the code. Because

modern architectures offer multiple cores, it is becoming increasingly

important to fine-tune threaded applications. Intel VTune offers timing

and CPU utilization information on application’s threads. These data give

programmers insights into how well their multithreaded designs are run-

ning. The information provided gives timing information for individual

threads, time spent waiting for locks, and scheduling information. The
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more advanced analysis techniques are enabled with hardware event sam-

pling. Intel VTune can use the host architecture performance counters to

record statistics. For example, using hardware counters, a user can sample

the processor’s cache behavior, usually last-level caches, and relate poor

cache performance back to the source code statements. We must stress that

to take advantage of these reports, a programmer must be knowledgeable of

host hardware capabilities and have a good understanding of compiler and

hardware interactions. As the name implies, Intel VTune is specifically

designed for the Intel processors and the tool is tuned for Intel-specific

compilers and libraries.

2.3.3 AMD CodeAnalyst
AMDCodeAnalyst is very similar to Intel VTune except that it targets AMD

processors. Like other tools in this group, AMD CodeAnalyst requires

underlying hardware counters to collect information about an application’s

behavior. The basic analysis is the timing-based approach where applica-

tion’s functions are broken down by the amount of time spent in individual

functions. Users can drill down to individual code segments to find potential

bottlenecks in the code and tune code to improve performance. For mul-

tithreaded programs, users can profile individual threads, including core uti-

lization and affinity. Identifying poor memory localities is a useful feature for

nonuniform memory access (NUMA) platforms. The analyses are not

restricted to homogeneous systems (e.g., general-purpose processors only).

With the increasing use of graphics processing units (GPUs) for scientific

computing, it is becoming increasingly important to analyze the behavior

of GPUs. AMD CodeAnalyst can display utilization of heterogeneous sys-

tems and relate the information back to the application. Performance bot-

tlenecks in most applications are memory-related; thus, recent updates to

analysis tools address data-centric visualization. For example, newer tools

report on a CPU’s cache line utilizations in an effort to measure the effi-

ciency of data transfers from main memory to cache. AMD CodeAnalyst

can be used to collect many useful data including instructions per cycle

(IPC), memory access behavior, instruction and data cache utilization, trans-

lation lookaside buffer (TLB) misses, and control transfers. Most, and per-

haps all, of these metrics are achieved through hardware performance

counters. Interestingly for Linux-based systems, CodeAnalyst is integrated

into OProfile (a system-wide event-based profiler for Linux described

earlier).
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2.3.4 HPCToolkit
HPCToolkit [45] is a set of performance measuring tools aimed at parallel

programs. HPCToolkit relies on hardware counters to gather performance

data and relates the collected data back to the calling context of the appli-

cation’s source code. HPCToolkit consists of several components that work

together to stitch and analyze the collected data:

• hpcrun: hpcrun is the primary sampling profiler that executes an optimized

binary. Hpcrun uses statistical sampling to collect performance metrics.

• hpcstruct: hpcstruct operates on the application’s binary to recover any

debug-relevant information later to be stitched with the collected

metrics.

• hpcprof: hpcprof is the final analysis tool that correlates the information

from hpcrun and hpcprof.

• hpcviewer: hpcviewer is the toolkit’s GUI that helps visualize

hpcprof’s data.

HPCToolkit is a good example of a purely sampling-based tool. It uses sam-

pling to be as minimally intrusive as possible and minimal execution over-

head for profiling applications.

2.4. Performance Libraries
Performance libraries rely on hardware performance counters to collect per-

formance data. Due to their scope, we have listed performance libraries as

application profilers rather than hardware profilers. As we will explain at

the end of this subsection, performance libraries have been used by several

performance measuring tools to access hardware counters.

Despite their claims of nonintrusiveness, it was reported in Ref. [66] that

performance counters still introduce some data perturbations since the

counters may still count events that are caused by the instrumentation code.

And the perturbation is proportional to the sampling rate. Users interested in

using performance libraries should ensure that the measured application (i.e.,

the original code plus inserted measurement routines) resembles the native

application (i.e., unmodified application code) as closely as possible.

The benefit of using performance counters is that these tools are the least

intrusive and arguably the fastest for AP. Code manipulative tools, such as

instrumenting tools, tend to skew the native application’s memory image by

cloning or interleaving the application’s address space or adding and remov-

ing a substantial amount of instructions as part of their instrumentation

framework.
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Generally, libraries and tools that use hardware counters to measure perfor-

mance require the use of kernel interfaces. Therefore, most tools are tied to spe-

cificOS kernels and available interfaces. The approach is to use a kernel interface

to access hardware performance counters and use system libraries to facilitate

the calling convention to those units. And third-party tools are used to visualize

the collected information. Among commonly used open-source interfaces

are perfmon and perfctr. Tools such as PAPI [36] utilize the perfctr kernel inter-

face to access hardware units. Other tools such as TAU [47], HPCToolkit [45],

and Open SpeedShop [50] all utilize the PAPI performance libraries.

• PAPI: PAPI [36] is a portable API, often referred to as an interface to

performance counters. Since its development, PAPI has gained wide-

spread acceptance and is maintained by an active community of open-

source developers.

PAPI’s portable design offers high-level and low-level interfaces

designed for machine independence and portability. The perfctr kernel

module handles the Linux kernel hardware interface. The high- and

low-level PAPI interfaces are tailored for both novice users and applica-

tion engineers that require a quick turnaround time for sampling and

benchmarking.

PAPI offers several abstractions. Event sets are PAPI abstractions to

count, add, or subtract sets of hardware counters without incurring addi-

tional system overhead. PAPI event sets offer users the ability to correlate

different hardware sets back to the application source. This is useful to

understand application-specific performance metrics.

Overflow events are PAPI features aimed at tool writers. Threshold

overflow allows the user to trigger specific signals an event when a spe-

cific counter exceeded a predefined amount. This allows the user to hash

instructions that overflowed a specific event and relate it back to appli-

cation symbol information.

The number of hardware counters is limited and the data collection

must wait until the application completes execution. PAPI offers mul-

tiplexing to alleviate that problem by subdividing counter usage over

time. This could have adverse affects on the accuracy of reported

performance data.

2.5. Debugging Tools
While most of the focus of this chapter is on profiling tools and performance

libraries, it is important to keep in mind another category of tools that help
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with program correctness. Virtually, everyone in the programming commu-

nity is familiar with debugging tools. Programmers are usually confronted

with either a compiler error or a logical error. Compiler errors tend to be

syntactical in nature, that is, the programmer used a compiler unfriendly syn-

tax. Logical errors are harder to find and they occur when a correctly com-

piled program errs during runtime. Debugging tools are used to identify

logical errors in programs. Users can examine each code statement and log-

ically traverse the program flow. There are a number of debuggers in use,

and most integrated development environments (IDE) come with their

own versions of program debuggers. For the common Unix/Linux user,

gdb [48] will suffice.

3. HARDWARE PROFILING

3.1. Introduction
Simulation of hardware (or processor architecture) is a commonway of eval-

uating new designs. This in turn accelerates hardware development because

software models can be built from scratch within months rather than years

that it takes to build physical hardware. Simulations allow the designers to

explore a large number of variables and trade-offs. The main drawback of

simulators is the level of detail that is examined. To obtain accurate results,

simulators will have to be very detailed, and such simulators will be very

complex in terms of both their design and the amount of time needed to

complete a simulation. As modern systems are getting more complex with

large number of processing cores, network-on-chip (NoC), large multilevel

caches, faithfully simulating such systems is becoming prohibitive. Many

researchers limit their studies to a subsystem, such as cache memories. In

such cases, one needs only to simulate the interested subsystem in detail

while abstracting other components.

Many architectural simulators are available for academic and commercial

purposes. As stated previously, the accuracy of the data generated by the sim-

ulators depends on the level of detail simulated, the complexity of the sim-

ulation process, and the nature of benchmarks that can be simulated.

Simulators may simulate single components, multiple components, or entire

computer system capable of running FS including OSs. A paper describing

architectural simulators for academic and classroom purposes is described in

Ref. [67].

In this section, we expose the reader to a variety of simulation and

modeling tools, but we will constrain our review to architectural simulator
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based on their complexity and scope. We will introduce several simulators

capable of simulating single component or FS. We will also treat simulation

tools for modeling networks as well as modeling power consumption sep-

arately from architectural simulators. Figure 3.3 is a diagram that shows the

various relationships between current and past tools. It also shows how var-

ious power modeling tools are used as interfaces with architectural

simulators:

• Single-component simulators: Any simulator that simulates a single sub-

system, regardless of accuracy or code complexity, is least complex

among hardware simulators. In this category, we can find trace-driven

tools such as the DineroIV cache simulator [4] or DRAMSim [2].

• Multiple-component simulators: Simulator tools that have the capability

to simulate more than one subsystem are more complex than single-

component simulators. An example of a simulator that can simulate

Figure 3.3 Hardware tools and their relationships and extensions.
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multiple components is the widely used SimpleScalar [8] tool set that

simulates a single CPU and several levels of memory systems.

• FS simulators: These are the most complex among architectural simula-

tor as they simulate all subsystems, including multiple processing cores,

interconnection buses, and multiple levels of memory hierarchy, and

they permit simulation of realistic workloads under realistic execution

environments. Note that the definition of an FS changes with time, since

computing systems complexities in terms of the number of cores, com-

plexity of each core, programming models for homogeneous and het-

erogeneous cores, memory subsystem, and interconnection subsystem

are changing with time. Thus, today’s FS simulators may not be able

to simulate next-generation systems fully. In general, however, FS sim-

ulators simulate both hardware and software systems (including OSs and

runtime systems).

• Network simulators: At the core of virtually every network router lies a

network processor. They are designed to exploit packet-level parallelism

by utilizing multiple fast execution cores. To study and research network

processor complexity, power dissipation, and architectural alternatives,

researchers rely on network simulators. Network simulators share many

of the same features of other FS architectures, but their scope and design

goals are specifically target network subsystem.

• Power estimation and modeling tools: Designing energy-efficient pro-

cessors is a critical design pursued by current processor architects. With

the increasing density of transistors integrated on a chip, the need to

reduce power consumed by each component of the system becomes

even more critical. To estimate the trade-offs between architectural

alternatives in the power versus performance design space, researchers

rely on power modeling and power estimation tools. They are similar

to other simulators that focus on performance estimation, but power

tools focus on estimating power consumed by each device when execut-

ing an application.

3.2. Single-Component Simulators
Although we categorize simulators that simulate a single component of a sys-

tem as low-complexity simulators, they may require simulation of all the

complexities of the component. Generally, these simulators are trace-

driven: They receive input in a single file (e.g., a trace of instructions)

and they simulate the component behavior for the provided input (e.g., if
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a givenmemory address causes a cache hit or miss or if an instruction requires

a specific functional unit). The most common example of such simulators is

memory system simulators including those that simulate main memory sys-

tems (e.g., Ref. [2] used to study RAM (random access memory) behavior)

or caches (e.g., DineroIV [4]). Other simple simulators are used for educa-

tional purposes such as the EasyCPU [6].

3.2.1 DineroIV
DineroIV is a trace-based uniprocessor cache simulator [4]. The availability

of the source code makes it easy to modify and customize the simulator to

model different cache configurations, albeit for a uniprocessor environment.

DineroIV accepts address traces representing the addresses of instructions

and data accessed when a program is executed and models if the referenced

addresses can be found in (multilevel) cache or cause a miss. DineroIV per-

mits experimentation with different cache organizations including different

block size, associativity, and replacement policy. Trace-driven simulation is

an attractive method to test architectural subcomponents because experi-

ments for different configurations of the component can be evaluated with-

out having to reexecute the application through an FS simulator. Variations

to DineroIV are available that extend the simulator to model multicore sys-

tems; however, many of these variations are either unmaintained or difficult

to use.

3.3. Multiple-Component Simulators
Medium-complexity simulators model multiple components and the inter-

actions among the components, including a complete CPUwith in-order or

out-of-order execution pipelines, branch prediction and speculation, and

memory subsystem. A prime example of such a system is the widely

used SimpleScalar tool set [8]. It is aimed at architecture research although

some academics deem SimpleScalar to be invaluable for teaching computer

architecture courses. An extension known as ML-RSIM [10] is an

execution-driven computer system simulating several subcomponents

including an OS kernel. Other extension includes M-Sim [12], which

extends SimpleScalar to model multithreaded architectures based on simul-

taneous multithreading (SMT).

3.3.1 SimpleScalar
SimpleScalar is a set of tools for computer architecture research and education.

Developed in 1995 as part of the Wisconsin Multiscalar project, it has since
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sparked many extensions and variants of the original tool. It runs precompiled

binaries for the SimpleScalar architecture. This also implies that SimpleScalar is

not an FS simulator but rather user-space single application simulator.

SimpleScalar is capableof emulatingAlpha,portable instruction set architecture

(PISA) (MIPS like instructions), ARM, and x85 instruction sets. The simulator

interface consists of the SimpleScalar ISA and POSIX system call emulations.

The available tools that come with SimpleScalar include sim-fast, sim-

safe, sim-profile, sim-cache, sim-bpred, and sim-outorder:

• sim-fast is a fast functional simulator that ignores any microarchitectural

pipelines.

• sim-safe is an instruction interpreter that checks for memory alignments;

this is a good way to check for application bugs.

• sim-profile is an instruction interpreter and profiler. It can be used to

measure application dynamic instruction counts and profiles of code

and data segments.

• sim-cache is a memory simulator. This tool can simulate multiple levels

of cache hierarchies.

• sim-bpred is a branch predictor simulator. It is intended to simulate dif-

ferent branch prediction schemes and measures miss prediction rates.

• sim-outorder is a detailed architectural simulator. It models a superscalar

pipelined architecture with out-of-order execution of instructions,

branch prediction, and speculative execution of instructions.

3.3.2 M-Sim
M-Sim is a multithreaded extension to SimpleScalar that models detailed

individual key pipeline stages. M-Sim runs precompiled Alpha binaries

and works on most systems that also run SimpleScalar. It extends

SimpleScalar by providing a cycle-accurate model for thread context pipe-

line stages (reorder buffer, separate issue queue, and separate arithmetic and

floating-point registers). M-Sim models a single SMT capable core (and not

multicore systems), which means that some processor structures are shared

while others remain private to each thread; details can be found in Ref. [12].

The look and feel of M-Sim is similar to SimpleScalar. The user runs the

simulator as a stand-alone simulation that takes precompiled binaries com-

patible with M-Sim, which currently supports only Alpha APX ISA.

3.3.3 ML-RSIM
This is an execution-driven computer system simulator that combines

detailed models of modern computer hardware, including I/O subsystems,
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with a fully functional OS kernel. ML-RSIM’s environment is based on

RSIM, an execution-driven simulator for instruction-level parallelism

(ILP) in shared memory multiprocessors and uniprocessor systems. It

extends RSIM with additional features including I/O subsystem support

and an OS. The goal behind ML-RSIM is to provide detailed hardware

timing models so that users are able to explore OS and application interac-

tions. ML-RSIM is capable of simulating OS code and memory-mapped

access to I/O devices; thus, it is a suitable simulator for I/O-intensive

interactions.

ML-RSIM implements the SPARCV8 instruction set. It includes cache

and TLB models, and exception handling capabilities. The cache hierarchy

is modeled as a two-level structure with support for cache coherency pro-

tocols. Load and store instructions to I/O subsystem are handled through an

uncached buffer with support for store instruction combining. The memory

controller supports MESI (modify, exclusive, shared, invalidate) snooping

protocol with accurate modeling of queuing delays, bank contention, and

dynamic random access memory (DRAM) timing. The I/O subsystem

consists of a peripheral component interconnect (PCI) bridge, a real-time

clock, and a number of small computer system interface (SCSI) adapters

with hard disks. Unlike other FS simulators, ML-RSIM includes a de-

tailed timing-accurate representation of various hardware components.

ML-RSIM does not model any particular system or device, rather it

implements detailed general device prototypes that can be used to assemble

a range of real machines.

ML-RSIM uses a detailed representation of an OS kernel, Lamix kernel.

The kernel is Unix-compatible, specifically designed to run on ML-RSIM

and implements core kernel functionalities, primarily derived from Net-

BSD. Application linked for Lamix can (in most cases) run on Solaris. With

a few exceptions, Lamix supports most of the major kernel functionalities

such as signal handling, dynamic process termination, and virtual memory

management.

3.3.4 ABSS
An augmentation-based SPARC simulator, or ABSS for short, is a multipro-

cessor simulator based on AugMINT, an augmentedMips interpreter. ABSS

simulator can be either trace-driven or program-driven. We have described

examples of trace-driven simulators, including the DineroIV, where only

some abstracted features of an application (i.e., instruction or data address

traces) are simulation. Program-driven simulators, on the other hand,

simulate the execution of an actual application (e.g., a benchmark).
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Program-driven simulations can be either interpretive simulations or

execution-driven simulations. In interpretive simulations, the instructions

are interpreted by the simulator one at a time, while in execution-driven

simulations, the instructions are actually run on real hardware. ABSS is an

execution-driven simulator that executes SPARC ISA.

ABSS consists of several components: a thread module, an augmenter,

cycle-accurate libraries, memory system simulators, and the benchmark.

Upon execution, the augmenter instruments the application and the

cycle-accurate libraries. The thread module, libraries, the memory system

simulator, and the benchmark are linked into a single executable. The aug-

menter then models each processor as a separate thread and in the event of a

break (context switch) that the memory system must handle, the execution

pauses, and the thread module handles the request, usually saving registers

and reloading new ones. The goal behind ABSS is to allow the user to sim-

ulate timing-accurate SPARC multiprocessors.

3.3.5 HASE
HASE, hierarchical architecture design and simulation environment, and

SimJava are educational tools used to design, test, and explore computer

architecture components. Through abstraction, they facilitate the study of

hardware and software designs on multiple levels. HASE offers a GUI for

students trying to understand complex system interactions. The motivation

for developing HASEwas to develop a tool for rapid and flexible developing

of new architectural ideas.

HASE is based in SIMþþ, a discrete-event simulation language.

SIMþþ describes the basic components and the user can link the compo-

nents. HASE will then produce the initial code ready that forms the bases of

the desired simulator. Since HASE is hierarchical, new components can be

built as interconnected modules to core entities.

HASE offers a variety of simulations models intended for use for teaching

and educational laboratory experiments. Each model must be used with

HASE, a Java-based simulation environment. The simulator then produces

a trace file that is later used as input into the graphic environment to repre-

sent interior workings of an architectural component. The following are few

of the models available through HASE:

• Simple pipelined processor based on MIPS

• Processor with scoreboards (used for instruction scheduling)

• Processor with prediction

• Single instruction, multiple data (SIMD) array processors
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• A two-level cache model

• Cache coherency protocols (snooping and directory)

3.4. FS Simulators
While lower-complexity systems described thus far are good at exploring

and studying single components and component behavior under a smaller

application load, for large-scale studies, we must employ FS simulators. In

order to build large-scale system, a simulator must observe the scope and

level of abstraction. The scope defines what the simulator is modeling,

and the level defines the level of detail that is modeled.We can further refine

the abstraction level by functionality and timing behavior. If we are trying to

model a realistic workload, we must enlarge the scope to include an FS,

including hardware and software systems. Each layer must be simulated in

sufficient detail to run commercial systems and allow the researcher to tweak

the hardware. Obviously, such systems are very complex and yet it is desir-

able that such systems complete simulations of realistic workloads in reason-

able amount of time. For this reason, some FS simulators do not provide

cycle-accurate simulations of the processor architecture. Some simulators

permit the user to select between very detailed simulations of lower-level

architectural components and abstractions of the architecture. The modular

nature of some FS simulators allows users to include different ISAs, different

microarchitectural designs, different memory system, or different OS ker-

nels. Examples of FS simulator are the Simics simulator [19], Gem5 simu-

lator [26], and SimOS [28].

3.4.1 Simics
’Simics is a widely used FS simulator. It simulates processors at the instruction

level, and it is detailed enough to allow the booting of a variety of real OSs.

Despite all of its complexity, it still offers performance levels to run realistic

workloads. Simics supports a varietyof processor architectures includingUltra-

SPARC,Alpha, x86, x86-64,PowerPC, IPF Itanium,MIPS, andARM. It can

support Linux runningonx86,PowerPC, andAlpha; Solaris onUltraSPARC;

Tru64 on Alpha; and Windows 2000 on x86. Simics can be configured using

command-level input. Since Simics simulates an FS, it includes device models

capable of running real firmware and device drivers. For instance, Simics

modeling the x86 architecturewill correctly install andbootWindowsXPOS.

Simics is unique in that it can connect several instances (viewed as nodes)

and run distributed systems. A single Simics instance can simulate several

nodes of a given instruction set architecture (ISA); but using multiple
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instances of Simics, communicating through Simics Central, can simulate

heterogeneous systems.

At the core of each Simics’ simulation is Simics Central, which syn-

chronizes the virtual time between different Simics’ simulators and nodes.

Simics is configured through an object-oriented paradigm where each

object instance is an instance of a processor or device. Any new object

is derived using Simics API, which is defined in the configuration. It also

supports a runtime Python interpreter for executing Python scripts, which

can then be triggered at interesting breakpoints. Devices are a key compo-

nent of any Simics’ simulation; therefore, Simics supports devices that

enable OS and firmware to boot and run, respectively. A few of the devices

supported by Simics are timers, floppy controllers, keyboard/mouse con-

trollers, direct memory access (DMA) controllers, interrupt controllers,

RAM controller, and various other crucial devices needed for FS

simulation.

A crucial feature of Simics is its ability to interface with other simulators.

Because Simics does not natively support cycle-accurate simulations, it

allows interfaces to clock cycle-accurate models written in hardware

description languages (such as Verilog).

Another notable feature of Simics is its hindsight feature. A system sim-

ulation can progress in two ways, and this opens a new range of testing capa-

bilities. Simics is capable of taking simulation snapshots, and any future

simulations can be fast-forwarded to the snapshot and continue execution

beyond the snapshot. This is practical for running large simulations at inter-

esting sections multiple times from the saved snapshot.

Applications of Simics are manifold since it is useful for a variety of tasks

such as microprocessor design, memory studies, device development, OS

emulation and development, and more. Originally, Simics was used pri-

marily for processor designs. Previous trace-based simulators have some

known limitations, which Simics tries to resolve. The notable limitations

are the inability to simulate multiprocessor systems and its interaction with

other devices such as memory and OS memory management and

scheduling.

Due to its complexity, Simics requires time to learn all of its features.

Moreover, the acquisition of Virtutech by Wind River System and aca-

demic licenses do not provide source code, and in many cases, only older

OS and processor models are provided to the academic institutions. Yet,

Simics is a valuable simulator for conducting research on computer systems

architecture.
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3.4.2 SimFlex
SimFlex is a simulation framework to support the simulation of uni-

processors, chip multiprocessors, and distributed shared memory systems;

the project targets fast and flexible simulations of large-scale systems [21].

The core components of SimFlex are Flexus and SMARTS:

• Flexus: Flexus is the simulator framework, which relies on a set of well-

defined components.

• SMARTS: SMARTS is a sampling method whose goal is to reduce the

overall simulation time.

SimFlex is built around Simics and thus capable to running FS simulations.

Unlike other modular component approaches to system design, SimFlex

takes a compile-time component interconnect approach. This means that

component interconnects can be optimized at compile time, reducing some

runtime overheads. To further reduce simulation times, SimFlex applies

SMARTS sampling methodology [25] instead of simulating every cycle.

The timing model around SimFlex is better than that provided natively

in Simics. SimFlex operates on a stream of fetched instructions from Simics,

allowing more accurate timing models for each instruction. Timing models

for x86 and SPARC architectures, for both uniprocessor and multiprocessor

configurations, are available with SimFlex.

SimFlex unique features are the notion of abstracting components through a

layered approach while improving runtime performance. This is achieved

throughCþþ template tricks aroundwhich the components are built, allowing

compiler tooptimize theoverall system.Normally, simulation timesof complex

systems are reducedeitherby limiting thenumberof instructions simulatedorby

simulating a regularly sampled set of instructions. SimFlex takes the

SMARTS [25] approach. SMARTS is a methodology to apply statistical sam-

pling (similar toAP through hardware performance counters). SMARTSuses a

coefficient of variation measure to obtain an instruction stream sample while

maintaining accuracy of performance estimates. The system uses sampling to

warm up components that are prone to have unpredictable state—this usually

happenswhen simulationmodes switch fromhighly accurate to simplemodels.

SimFlex is a good tool for modeling hardware where timing accuracy is

critical.

3.4.3 Gem5 Simulator System
Gem5 simulator system is a combined effort of the previous work of GEMS

(general execution-driven multiprocessor simulator) and M5 (a discrete
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event-driven simulator). It is written primarily in Cþþ and to a lesser extent

Python. It is open source licensed under a BSD-style license.

Gem5 is primarily built for research environments and provides an abun-

dance of components that work out of box (or without modifications). The

Gem5 is modular enough to permit the study of new architectures. Gem5 is

designed using object-oriented methodology. Nearly all major components

(CPUs, buses, caches, etc.) are designed as objects, internally known as

SimObjects. They share similar configurations, initialization, statistics col-

lection, and checkpointing behavior. Internally, the nature of Cþþ pro-

vides for a complex but flexible system description of CPU interconnects,

cache hierarchies, multiprocessor networks, and other subsystem. The

Gem5 environment relies on domain-specific languages (DSLs) for special-

ized tasks. For defining ISA’s, it inherited an ISA DSL from M5, and for

specifying cache coherency, it inherited a cache coherency DSL from

GEMS. These languages allow users to represent design issues compactly.

The ISA DSL allows users to design new ISAs through a series of class

templates covering a broad range of instructions and arithmetic operations.

Cache coherency DSL represents protocols through a set of states, events,

and transitions. These features allow Gem5 to implement different coher-

ency protocols through the same underlying state transitions, thus reducing

the programmer effort. Gem5 operates on several interchangeable CPU

models; a simple CPU model supports a basic 4-stage pipeline, a functional

model, an in-order CPU model, while a more advanced out-of-order CPU

model with SMT support is also available. It features a flexible event-driven

memory system to model complex multilevel cache hierarchies.

Gem5 supports two modes of simulation (or modes of execution): an FS

mode that simulates a complete system with devices and an OS and a user-

space mode where user programs are serviced with system call emulation

(SE). The two modes vary in their support for Alpha, ARM, MIPS, Pow-

erPC, SPARC, and x86-64 targets.

3.4.4 SimOS (Parallel SimOS)
Developed in the late 1990s at Stanford University, SimOS is an FS simu-

lator with features to simulate the OS at different abstraction levels. The

development goals were to design a simulator to study FS workloads. Initial

version of SimOS was capable of booting and running IRIX (an SGI SVR4

Unix implementation). Later versions permitted modeling of DEC Alpha

machines with enough detail to boot DEC Unix systems. Other version

of SimOS allowed x86 extensions. SimOS interfaces allow one to include
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different number of components. SimOS introduced the concept of dynam-

ically adjustable simulation speed [28]. The simulation speed adjustment bal-

ances speed of execution with simulation detail. SimOS implements this

through three different execution modes, defining different levels of detail.

The three modes are the positioning mode (fastest mode) that offers enough

functionality of boot operations and executes the basic OS operations; the

rough characterization mode that offers a middle ground with more details

but slightly slower than its predecessor; and the accurate mode that is the

slowest but most detailed simulation mode. There are two different CPU

models provided by SimOS: a basic single-issue pipeline model that provides

the basic functionality and a more advanced superscalar dynamically sched-

uled processor model that supports privileged instructions, memory man-

agement unit executions, and exception handling.

The drawbacks of SimOS were addressed by its successor, Parallel

SimOS. Parallel SimOS addresses SimOS’ scalability issues. Thus, in many

ways, Parallel SimOS is similar to the original SimOS, and it takes uses of

multithreaded and shared memory capabilities of modern host processors

to speedup simulations.

3.4.5 PTLsim
PTLsim is an x86-64 out-of-order superscalarmicroprocessor simulator [32].

One can think of PTLsim as a simulator and VM in one. It is capable of

modeling a processor core at RTL (register transfer level) detail. It models

the complete cache hierarchy and memory subsystems including any sup-

portive devices with full-cycle accuracy. The instructions supported are

x86- and x86-64-compatible including any modern streaming SIMD exten-

sion (SSE) instructions. PTLsim must run on the same host and target plat-

form. Similar to SimOS, PTLsim supports multiple simulating modes.

PTLsim comes as a bare hardware simulator that runs in user space and a

more advance version PTLsim/X, which integrates with the Xen hypervisor

for full x86-64 simulations. PTLsim/X comes with full multithreading sup-

port, checkpointing, cycle-accurate virtual device timing models, and deter-

ministic time dilation without the inherent simulation speed sacrifice. It is

capable of booting various Linux distributions and industry standard heavy

workloads.

Cþþ templated classes and libraries give PTLsim the flexibility to tweak

and tune significant portions of the simulator for research purposes. It is

licensed under a GNU free software license and thus is readily available

for public use.
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PTLsimemploys a techniqueknownas cosimulation,whichmeans that the

simulator runs directly on a host machine that supports the simulated instruc-

tions. Thismeans that context switched between full-speed (native) simulation

and simulatedmode is transparent. Likewise, this provides an easyway for code

verification. The drawback is that this limits the simulation to x86-based ISAs.

Cosimulation makes PTLsim extremely fast compared to other similar

simulators, but other techniques to improve speed are also employed, par-

ticularly instruction vectorization. It comes with features to turn on or off

various statistics to improve the simulation speed. Since PTLsim is a fast sim-

ulator, skipping streams of instructions used in sampling techniques is not

necessary. The speed advantage that PTLsim makes is a very good candidate

for HP under complex workloads, but because it requires the target plat-

forms be compatible with simulated processors, PTLsim is not as flexible

as other FS simulators described here.

Most simulators that were developed in the mid-2000s were designed to

support the emergence of multicore architectures and SMT. MPTLsim [33]

is an extension of PTLsim to permit SMT like threads.

3.4.6 FeS2
FeS2 is described as a timing-first, multiprocessor, x86 simulator built

around Simics though many of its key features were also borrowed from

other simulators (e.g., GEMS and PTLsim). It comes with all the standard

features available with Simics, but it expands Simics’ functionality with more

accurate execution-driven timing model. The model includes cache hierar-

chy, branch predictors, and a superscalar out-of-order core. While the func-

tionality is provided by Simics, the timing model is provided through Ruby,

which was developed as part of the GEMS (now a part of Gem5) simulator.

The core is based on a microoperation (mop) model that decodes x86

instructions into a stream of RISC like mops.
FeS2 can be thought of as a separate simulator (technically a library) that

wraps around Simics’ functionality. The timing component is not

FS-capable since it does not implement all the necessary devices required

for FS simulation, such as SCSI controllers and disks, PCI and parallel bus

interfaces, interrupt and DMA controllers, and temperature sensors (all of

which are implemented by Simics).

3.4.7 TurboSMARTS
TurboSMARTS is a microarchitectural simulator that utilizes checkpointing

to speed up overall simulation times [35]. In order to speedup simulation time,
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simulators often use sampling methods. Sampling involves collecting a large

number of brief simulation windows to represent an accurate image of the

application’s runtime behavior. The problem arises when the collection of

snapshots drifts from the native execution. This normally occurs because

of instruction data-flow dependencies; normally a branch depends on

precomputed values. However, if the values are not present during a sampled

event, then the branch might execute a different path than it would if the cor-

rect datawere present. Therefore, it becomes important towarm the system so

that branches execute as if the program flow never halted.

TurboSMARTS provides accurate warmed up states that are stored as

checkpoints in order to speedup simulation. It is based on observations that

only a small amount of microarchitectural states is accessed during sampling

and that checkpointing is a fast and more accurate method than other statis-

tical sampling alternatives.

TurboSMARTS is derived from SimpleScalar’s sim-outorder simulator

(a superscalar out-of-order detailed simulator). Because of sampling, the

simulations times are only a fraction of those using full out-of-order (OoO)

simulators, yet the error rates (in terms of CPI) are in the range of �3%.

3.5. Network Simulators
3.5.1 NePSim
NePSim is a network processor simulator with a power evaluation frame-

work [3]. Network processors are a special type of processors specifically

used as network routers. A network processor consists of a few simple cores

that exploit the inherent data-level parallelism associated with networking

codes. With the increasing clock frequency of these chips, power dissipation

becomes an issue that must be considered. NePSim offers a simulation envi-

ronment to explore the design space of speed and power.

NepSim includes cycle-accurate simulations, a formal verification

engine, and a power estimator for network processor clusters that may con-

sist of several components (memory controllers, I/O ports, packet buffers,

and buses). It implements the Intel IXP1200 system consisting of a

StrongARM processor, six microengines (MEs), standards memory inter-

faces, and high-speed buses.

The input to NepSim is a stream of network packets generated through a

traffic generator module. The core processor is not crucial in controlling

critical data paths; thus, it is not simulated. The core simulation is the

ME core. NepSim simulates the instruction lookup, instruction decoding

and source register address formation, reading operands from the source
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register, arithmetic logic unit (ALU) operations, and writing results to des-

tination registers. Memory timing information tries to resemble that of the

Intel IXP1200s.

3.5.2 Orion
Orion is a power-performance simulator based on the LSE, a modularized

microarchitectural simulator [29]. Guided by hierarchical modeling meth-

odology described in Ref. [5], Orion abstracts a network model with build-

ing blocks (modules), which describe an interconnection between various

parts of a network on chip system. Orion consists of two basic component

classes: message transporting class and message processing class. Message-

transporting classes consist of message sources and message sinks. Message

processing classes consist of router buffers, crossbars, arbiters, and links.

Every module can be parameterized to represent various configurations

at the design stage. The goal of Orion is to allow for an extensive range of

architectural choices with relatively few reusable modules.

Power modeling in Orion is analytical based on components, which

occupy the largest area (about 90%) such as first-in-first-out (FIFO) buffers,

crossbars, and arbiters. The power model is based on a set of equations

derived from a combination of cache access and cycle timing model tool

(CACTI) [16] andWATTCH [18]. The goal is to provide reasonable power

estimates through parameterized architectural-level power models. An

updated version Orion 2.0 comes with some new features and an updated

transistor technology database.

The hierarchical and modular composition of Orion allows us to explore

different architectural compositions and workloads.

3.5.3 Garnet
Garnet is described as a cycle-accurate on-chip network model for an FS

simulator [7]. The model utilizes the FS capabilities of the GEMS frame-

work [68] modeling a five-stage pipelined router with a virtual channel

(VC) flow control. Garnet enables researchers to evaluate system-level opti-

mizations, new network processors simulated on an FS workload.

Garnet models a configurable classic five-stage VC router. The major

components are the input buffers, route computation logic, virtual channel

allocation (VCA), switch allocator, and a crossbar switch. Router’s micro-

architectural components consist of single-ported buffers and a single shared

port into the crossbar from each input. Garnet’s interaction between various

memory systems (e.g., cache controllers) is handled by an interconnection
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network interface. This means that CPU cache misses are broken into lower-

level units and passed onto the interconnect interface. To model a variety of

coherency protocols, Garnet implements a system-level point-to-point order-

ing mechanism, meaning that a message sent from two nodes to a single des-

tination is received in the same order as they were sent. Network power

model is implemented fromOrion [5]. Garnet records per component events

and records them using power counters; these are then used to compute the

final energy usage of various router components. There are several input

parameters that can be adjusted to fit any desired interconnect such as network

type, model detail, simulation type (network only vs. FS), number of router

pipeline stages, VC buffer size, and number of bytes per flit (flit is the smallest

measurable unit). The models are validated against results in previously pub-

lished papers.

3.5.4 Topaz
Topaz is an open-source interconnection network simulator for chip mul-

tiprocessors and supercomputers [9]. To accommodate the growing need to

efficiently simulate large chip interconnects, Topaz offers an open-source

multithreaded cycle-accurate network simulator. The ability to interface

with GEMS [68] and Gem5 [26] FS simulation frameworks allows Topaz

to simulate network interconnects within an FS environment. Topaz was

designed for use for studying supercomputers (off-chip network) systems,

system-on-chip, to chip-multiprocessor systems.

Topaz is based on a previous simulator (SICOSYS [69]), but for reusabil-

ity and modularity, the tool is designed using object-oriented methodology

and is implemented in Cþþ. The simulation phase consists of several phases.

In the build phase, the system will hierarchically outline the network topol-

ogy according to a set of parameters. During the execution phase, every

component is visited and simulated every cycle. Lastly, the print phase will

output the collected records of the simulation. The results can be configured

to measure various network parameters.

The general simulator breakdown can be described in terms of object

constructors, components and flows, traffic patterns, and simulator. Object

constructs interpret the input parameters and are responsible for building

the required objects for simulation. Components and flows represent hard-

ware to be simulated (functional network units). Traffic patterns are respon-

sible for injecting packets into the network for stand-alone simulation use.

The simulator is the main driver and it is responsible for initialization and

configuration interpretation.
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To build a simulation environment, the user can specify the following

parameters:

• Simulation parameters: the general simulation definition that defines

traffic pattern and distribution, applied load, message length, etc.

• Network interconnect: this defines the network type through network

topology, dimensions, and interconnection delays.

• Router microarchitecture: this describes the router elements such as

memories, switches, and multiplexers. Topaz also comes with a few

out-of-the-box models that the user can choose and build. To improve

its scalability and optimize its performance, Topaz is designed as multi-

threaded application. Synchronization between individual threads is

done using barriers. For GEMS and Gem5 integration, Topaz provides

an API allowing the user to integrate new designs effortlessly.

3.5.5 MSNS: A Top-Down MPI-Style Hierarchical Simulation Framework
for Network on Chip

MSNS is anMPI-style network simulator, which aims at accurately simulating

packet delays for NoC systems. Based on SystemC, MSNS implements sim-

ulation at various granularities from high-level abstraction to low RTL [11].

MSNS uses top-down approach of all network layers and utilizes wait( ) func-

tions to guarantee cycle accuracy of individual layers. This leads to the follow-

ing benefits ofMSNS: It can simulate traffic of practical systemsmore precisely

by ensuring an accurate abstraction of application’s data transmission rates, it

can accurately estimate dynamic power consumption, and it can provide

methods to evaluate performances of parallel algorithms and high-

performance applications on network infrastructure.

MSNS employs several interface levels. RTL modeling is performed at

the link layer and network layer. The interface layer is composed of the MPI

library, RTL description, and high-level abstraction descriptions. The sim-

ulator consists of two components: MSNS generator and MSNS simulator.

By utilizing user supplied input files, theMSNS generator generates the net-

work and application properties and stores them as a configuration file. To

ensure highest possible accuracy, MSNS generator calculates wire latencies

and bit-error probabilities through its built-in wire models. These delays are

enforced by a wait function. When the libraries (SystemC, MPI, and design

modules) are loaded into the MSNS simulator, they are combined with the

previously generated configuration files and the simulation initiates. To cal-

culate power at each individual layer MSNS provides a power estimation for

the whole network infrastructure at the architectural level.
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3.5.6 Hornet
Hornet is a parallel, highly configurable, cycle-level multicore simulator [13]

intended to simulate many-core NoC systems.

Hornet supports a variety of memory hierarchies interconnected

through routing and VC allocation algorithms. It also has the ability to

model a system’s power and thermal aspect.

Hornet is capable of running in two modes: a network-only mode and a

full-multicore mode running a built-in MIPS core simulator. The goal of

Hornet is the capability to simulate 1000 core systems.

Hornet’s basic router is modeled using ingress and egress buffers. Packets

arrive in flits and compete for the crossbar. When a port has been assigned,

they pass and exit using the egress buffer. Interconnect geometry can be con-

figured with pairwise connections to form rings, multilayer meshes, and tori.

Hornet supports oblivious, static, and adaptive routing. Oblivious and adap-

tive routing are configurable using routing tables. Similarly VCA is handled

using tables. Hornet also allows for internode bidirectional linking. Links

can be changed at every cycle depending on dynamic traffic needs.

To accurately represent power dissipation and thermal properties, Hor-

net uses dynamic power models based on Orion [5], combined with a leak-

age power model, and a thermal model using HotSpot [70].

To speedup simulation, Hornet implements a multithreaded strategy to

offload simulation work to other cores. This is achieved by tiling each sim-

ulated processor core to a single thread. Cycle accuracy is globally visible for

simulation correctness.

Hornet simulates tiles where each tile is an NoC router connected to

other tiles via point-to-point links.

The traffic generators are either trace-driven injectors or cycle-level

MIPS simulators.

A simple trace injector reads a trace file that contains traces annotated

with timestamps, packet sizes, and other packet information describing each

packet. The MIPS simulator can accept cross compiled MIPS binaries. The

MIPS core can be configured with varying memory levels backed by a

coherency protocol.

3.6. Power and Power Management Tools
Computer architecture research revolves around estimating trade-offs

between alternative architectural modifications. The trade-offs typically

involve performance, hardware complexity, and power budgets. In order
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to estimate the power requirements of various design choices, researchers

rely on power modeling and power management tools that offer validated

models for power estimation.

3.6.1 CACTI
Perhaps the most widely used tool in this realm is the CACTI [16]. CACTI

is an analytical model for a variety of cache components that contribute to

the overall CPU memory subsystem. The earlier versions of CACTI

modeled access and cycle times of on-chip caches. It supports both direct

mapped and associative caches. CACTI is an extension to previous models

that includes a tag array model, nonstep stage input slopes, rectangular stac-

king of memory subarrays, a transistor-level decoder model, column-

multiplexed bitlines, cycle times and access times, and others. The analytical

model in CACTI is validated through the HSPICE [71]. CACTI’s access

and cycle times are derived by estimating the delays in the following param-

eters: decoder, wordlines, bitlines, sense amplifiers, comparators, multi-

plexor drivers, and output drivers (data and valid signal output). Each

delay is estimated separately, and the results are combined to estimate the

final access and cycle times. Typically, the user describes cache parameters

such as cache size, block size, and associativity, as well as process parameters.

Describing the models of individual components is beyond the scope of this

chapter; thus, the interested reader is referred to Ref. [16].

The tool evolved significantly over the past decade with enhancements

to include an integrated approach: modeling access times, cycle times, area,

aspect ratio, and power. As the fabrication technologies have changed over

time, so have the models present within CACTI. CACTI’s models have

changed to reflect changes in feature sizes and technologies. CACTI now

supports memories built using either SRAM or DRAM and even 3D pack-

aging of DRAMs.

The latest CACTI tool focuses on the interconnect delays between cache

subcomponents. The major extensions include the ability to model non-

uniform cache access and the ability to model different types of wires. There

is also a web-based GUI to facilitate a broader audience.

3.6.2 WATTCH
WATTCH is a framework for architectural-level power analysis and opti-

mization [18]. The framework aims at facilitating power analysis and opti-

mization early in the architectural design phase. Other tools offer highly
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accurate power estimates only after the initial layout or floor planning. In

contrast, WATTCH offers power estimates early in the design phase.

The power models in WATTCH are interfaced with SimpleScalar.

WATTCHuses amodifiedversionof sim-outorder (a superscalar out-of-order

processor simulator) to collect their results. SimpleScalar provides simulation

environment that keeps track of units that are involved in each cycle.

WATTCHrecords the total energyconsumedbyeachunit oneach instruction

and accumulates the total energy consumed by an application. WATTCH

power model includes four subcategories:

• Array structures: Data and instruction caches, cache tag arrays, register

files, alias tables, branch predictors, and portions of instruction window

and load/store queues

• Fully associative content-addressable memories: Instruction window/

reorder buffer wake-up logic, load/store order checks, and TLBs

• Combinational logic and wires: Functional units, instruction window

selection logic, dependency check logic, and result buses

• Clocking: Clock buffers, clock wires, and capacitive loads

The models are similar to the early versions of CACTI tool with two key

differences: WATTCH disregards the overall critical path but uses an

expected critical path to determine a delay within a unit, and it only mea-

sures the capacitance of an entire unit to model power consumption rather

than individual stages of a unit. WATTCH also offers models to measure

varying conditional clocking styles. This means that WATTCH tracks

the number of used ports and depending on the enabled option tracks full,

low, or dynamic power consumptions.

Additional power estimation means adding additional overhead to sim-

outorder; therefore, WATTCH performs at a 30% overhead well within a

tolerable amount.

3.6.3 DSSWattch
DSSWattch [20] is a modification of WATTCH [18] framework.

DSSWattch stands for Dynamic SimpleScalar; thus, DSSWattch is a tool

for power estimation in dynamic SimpleScalar. The tool is simulates the

PowerPC architecture. The tool operates on a new version of

SimpleScalar that supports dynamic features for programs such as Jikes

RVM Java VM. The additional features support actions such as dynamic

compilation and dynamic memory mapping or programs that require

dynamic linking.
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The new features in DSSWattch are extended functionality of

WATTCH through better register file modeling, floating-point capabilities,

and support for the 32-bit mixed data-width PowerPC architecture.

Major differences between WATTCH and DSSWattch are the

following:

• Operand harvesting to better serve the PowerPC architecture operand

harvesting has been updated with new structures to accommodate the

PowerPC instruction’s ability to update special purpose registers as well

as required additional operands.

• Handling of floating-point operands and population counting original

WATTCH was unable to differentiate between floating point and inte-

ger registers. In order to estimate dynamic bus power usage, DSSWattch

extends this functionality through the new operand harvesting data.

• Register file modeling: The originalWATTCH tool only handled single

integer register file of uniform word length. The PPC ISA requires both

32-bit integer and 64-bit floating-point register files. Therefore,

DSSWattch extends this functionality by includingmultiple register files.

Power consumed by these register files is computed separately and accu-

mulated for overall power consumption.

• Differentiation of integer, floating-point, and address data widths: Along

with the use of different register files, DSSWattch models different data

widths for floating point and integer operations.

Since DSSWattch is an extension of the original WATTCH tool, the power

models are based on WATTCH. The rename logic, instruction window,

and the unified RUU (register update unit) reflect the microarchitectural

state of the simulated out-of-order simulator.

3.6.4 SimplePower
SimplePower is a framework that utilizes several outstanding component-

based simulators and combines them with power estimation models. It is

an execution-driven, cycle-accurate, RTL-level power estimation tool.

SimplePower is based on a five-stage pipelined simulator with an integer

ISA similar to SimpleScalar. The components of SimplePower are Simple-

Power core, RTL power estimation interface, technology-dependent

switch capacitance tables, cache/bus simulator, and loader. At each cycle,

the core simulates the instructions and calls corresponding power units.

The power estimation modules are C routines for each unit.With new tech-

nologies, only the technology-dependent capacitance tables need be chan-

ged, while the core remains intact. The cache simulation is interfaced with
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DineroIII [4] cache simulator and integrated with a memory energy model.

The bus simulator snoops appropriate lines and utilizes an interconnect

power model to compute switch capacitance of the on-chip buses. The

capacitance tables are based on the design of the functional units. The units

can be bit-dependent or bit-independent. Bit-independent functional units

are units where operations of one bit do not depend on the value of other

bits. Examples of bit-independent units are pipeline registers, logic unit in

the ALU, latches, and buses. Bit-dependent functional units are units where

the value of one bit depends on the value of other bits in the vector. The

transitional matrix to compute capacitance values for bit-dependent func-

tional units becomes very large to efficiently estimate the consumed power.

SimplePower uses a combination of an analytical model and functional unit

partitioning to estimate the power for such units. For example, the memory

module is modeled analytically, while adders, subtracters, multipliers, regis-

ter files, decoders, and multiplexers are broken into subcomponents whose

power is computed as the sum of the individual subcomponents using

lookup tables.

3.6.5 AccuPower
Similar to WATTCH and SimplePower, AccuPower [24] is a tool to esti-

mate power consumption for a superscalar microprocessor. AccuPower

describes itself as a true hardware-level and cycle-level microarchitectural

simulator with the ability to estimate power dissipation of actual comple-

mentary metal-oxide semiconductor (CMOS) layouts of critical data path.

The ability to obtain transition counts from higher-level blocks such as

caches, issue queues, reorder buffers, and functional units at RTL allows

AccuPower to accurately estimate switching activity.

Thebenefit ofAccuPowerover its predecessors is thatAccuPower does not

rely on theoriginal SimpleScalar simulator,whichcombines several critical data

paths into a single unit.Theproblemwithother tools is that inmanycases, these

critical components contribute to more than half of overall power dissipation.

Several AccuPower features include the following:

• It uses a cycle-level simulation of all major data path and interconnection

components (issue queue, register files, reorder buffers, load–store

queue, and forward mechanisms).

• It provides detailed and accurate on-chip cache hierarchy simulations.

• AccuPower models CPU-internal interconnections in great detail, for

example, explicit data transfers and forwarding and clock distribution

network.
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• It supports three major built-in models of widely used superscalar

data paths.

• It includes facilities to collect power and performance estimates at both

individual subcomponent level per bit and byte and the entire processor.

• AccuPower uses subcomponent power coefficient estimates

using SPICE.

The major components of AccuPower are a microarchitectural simulator,

the very large-scale integration (VLSI) layouts for major data paths and

caches, and power estimation modules that use energy coefficients obtained

from SPICE.

• The microarchitectural simulator is really a greatly enhanced version of

the SimpleScalar simulator.1 The enhancements include implementations

for the issue queue, reorder buffer, rename tables, physical register files,

and architectural register files. The microarchitectural simulator is mod-

ified to fit three widely used versions of superscalar processors. The out-

of-order simulator now supports a true cycle-by-cycle instruction exe-

cution. The CPU cache structure now supports a true cycle aware cache

pipeline. Caches are also bus aware due to the possibility that instruction

and data caches can access L2 at the same time. The ultimate goal is to

design a simulator that closely resembles the real-world cycle-by-cycle-

accurate superscalar processor.

• In order to get accurate energy and power coefficients, the powermodels

rely on models derived from VLSI layouts using SPICE. To obtain accu-

rate energy dissipation, CMOS layouts for on-chip caches, issue queues,

physical register files, architecture register files, and reorder buffers are

used to obtain real power coefficients.

• The tool’s execution is sped up using multithreading. Analysis routines

are handled in a separate thread.

AccuPower can be used to obtain

1. raw data collection pertaining to (a) bit-level data-path activity and (b)

occupancy of individual data-path resources as measured by the number

of valid entries,

2. record accurate data-path component-level power estimation,

3. exploration of power reduction techniques,

4. exploration of alternative circuit-level techniques,

5. exploration of alternative data-path architectures.

1 According to authors, only 10% of the original code is untouched.
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AccuPower remains a great tool to estimate power dissipation for various

superscalar data paths as well as explore new microarchitectural innovations.

4. CONCLUSIONS

The topic of application tuning, optimization, and profiling and hard-

ware simulation is vast, and with over 30 years of research, there is an abun-

dance of literature covering this area. Our aim was to expose relevant

information and popular tools to the reader. In this chapter, we have covered

a variety of popular tools pertaining to hardware and AP.

In the chapter’s introduction, we introduced a tool taxonomy and out-

lined their differences in scope and functionality. Furthermore, we have cat-

egorized the AP tools based on their data gathering methodology and

categorized HP tools based on their scope. In the chapter’s subsections,

we provided diagrams that show various tool interdependencies and their

categories related to our taxonomy. We have discussed several AP methods

for performance tuning such as utilizing hardware performance counters and

binary instrumentation and translation. To introduce and elaborate each

method and category, we collected tools ranging from hardware perfor-

mance libraries to binary instrumentation, translation, and code manipula-

tion frameworks.

In the area of hardware simulation, we have covered widely known tools

used for simulation and architectural research (e.g., SimpleScalar and

Simics). To expose the reader to the chronological picture, we have covered

several historical tools that are still used as the basis of many newer tools (e.g.,

SimpleScalar and SimOS). Because the area of hardware simulation is still

growing, our aim was to correlate hardware profiler components and scope

in a manner that will allow the reader to explore further in each area. For

example, we categorized hardware profilers based on their complexity

related to the number of hardware components simulated. Due to the var-

ious, often distinct, areas of hardware simulation, we also covered tools used

for network interconnection simulations and power consumption. Network

and power consumption research is increasingly important due to the advent

of multicore and multiprocess machines. Accurate network simulators are

becoming a vital part for system simulation and research in high-

performance computing and network research areas. Therefore, we have

covered several tools in that area.

Finally, as the density of transistors per processor die increases and the

CMOS manufacturing technology shrinks, power estimation is becoming
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a critical part of future processor designs. Therefore, we have included some

currently available tools for power estimation and modeling research. All

tools that were picked in this chapter are summarized in Sections 5 and 6.

5. APPLICATION PROFILERS SUMMARY

Tool Description

gprof Compiler-assisted application profiler

Parasight Parallel application profiler-based gprof

Quartz A tool for tuning parallel program performance

ATOM A tool for building static instrumentation analysis tools

Pin A dynamic binary instrumentation tool for building analysis tools

DynInst A dynamic binary instrumentation framework designed for code

patching

Etch A binary rewrite system for Windows32-based x86 executables

EEL Machine- and system-independent executable editing library for

building analysis tools

Valgrind A dynamic binary instrumentation framework for code

manipulation and error detection

DynamoRIO Runtime code manipulation system for optimizations and error

detection

Dynamite A binary translation tool

UQBT Static binary translation tool for RISC-, CISC-, and stack-based

machines

OProfile System-wide profiler for Linux (uses HW counters)

AMD

CodeAnalyst

AMD chip-based performance analyzer

Intel VTune Intel-based performance analysis tool

HPCToolkit A parallel performance suite for measuring HPC applications

TAU A portable profiling and tracing tool for parallel programs

Open

SpeedShop

A open-source community-based multiplatform Linux-based

performance analysis tool

VAMPIR Visualization and Analysis tool for MPI Resources

154 Tomislav Janjusic and Krishna Kavi



PAPI Portable application performance interface for hardware

performance counters

perfmon Kernel interface for hardware performance counters for

performance analysis tools

perfctr Linux-based hardware performance counter interface driver

gdb The GNU debugger

DDT An application debugger for large-scale parallel high-

performance applications

6. HARDWARE PROFILERS SUMMARY

Tool Tool Description

DineroIV Trace-driven single-process cache simulator

DRAMSim Open-source DDR memory system simulator

EasyCPU Educational tool for teaching computer organization

SimpleScalar A superscalar simulator

SimpleScalar–

Alpha

The SimpleScalar simulator ported to Alpha/Linux

SimplePower Execution-driven data-path energy estimation tool based on

SimpleScalar

ML_RSIM Detailed execution-driven simulator running a Unix-

compatible operating system

M-Sim A multithreaded extension to SimpleScalar

ABSS An augmentation-based SPARC simulator

AugMINT An augmented MIPS interpreter

HASE Hierarchical architecture design and simulation environment

Simics An FS simulator

SimFlex A system simulator that targets fast, accurate, and flexible

simulation of large-scale systems

Flexus The SimFlex framework component for FS simulation

Gem5 A collaborative simulation infrastructure targeting FS

simulation
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SimOS A machine simulation environment designed for uni- and

multiprocess machines

PTLsim Open-source, FS, timing simulator. With SMP support, OoO

core and AMD64 architecture

MPTLsim Multithreaded version of PTLsim

FeS2 Timing-first, multiprocessor, x86 simulator, implemented as a

module for Simics, uses PTLsim for decoding of mops

TurboSMARTS

sim

A fast and accurate timing simulator

NepSim A network processor simulator with power evaluation

framework

Orion Power-performance simulator based on LSE for NoC systems

Garnet Network model within an FS simulator

Topaz Open-source network interconnect simulator within an FS

environment

MSNS MPI-style network simulator targeting accurate packet delay

measurement of NoC systems

Hornet A parallel, highly configurable, cycle-level multicore simulator

for many-core simulations

CACTI Cache access and cycle time power estimation

WATTCH A framework for architectural-level power analysis and

optimization

DSSWATCH Dynamic power analysis framework based on WATTCH

SimplePower Execution-driven data-path energy estimation tool based on

SimpleScalar

AccuPower A hardware-level power estimation simulator

CGEN Red Hat’s CPU tools generator

LSE Liberty simulation environment, framework for architectural

component design
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