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of molecular-dynamics-simulated materials

Witold Brostow
Departments of Materials Science and Physics, University of North Texas, Denton, Texas 76206-5310

Mieczyslaw Chybicki, Robert Laskowski, and Jaroslaw Rybicki
Department of Solid State Physics, Technical University of Gdansk, Narutowicza 11/12, 80-952 Gdansk, Poland
(Received 9 May 1997; revised manuscript received 7 October)1997

Voronoi and Delaunay tessellations are applied to pattern recognition of atomic environments and to inves-
tigation of the nonlocal order in molecular-dynami84D )-simulated materials. The method is applicable also
to materials generated using other computer techniques such as Monte Carlo. The pattern recognition is based
on an analysis of the shapes of the Voronoi polyhedkd®). A procedure for contraction of short edges and
small faces of the polyhedron is presented. It involves contraction to vertices of all edges shorter than a certain
fraction x of the average edge length, with concomitant contraction of the associated faces. Thus, effects of
fluctuations are eliminated, providing “true” values of the geometric coordination nunfhdysth local and
averaged over the material. Nonlocal order analysis involves geometric relations between Delaunay simplexes.
The methods proposed are used to analyze the structure of MD-simulated solfd.|&gdbicki, W. Alda, S.
Feliziani, and W. Sandowski, iRroceedings of the Conference on Intermolecular Interactions in Matter
edited by K. Sangwal, E. Jartych, and J. M. Olchowilechnical University of Lublin, Lublin, 1995 p. 57;
J. Rybicki, R. Laskowski, and S. Feliziani, Comput. Phys. Comr8i@n185(1997] and germianium dioxide
[T. Nanba, T. Miyaji, T. Takada, A. Osaka, Y. Minura, and I. Yosui, J. Non-Cryst. Sdliths 131 (1994].
For Pb the contraction results are independer.dfor the open structure of Ge@here is arx dependence
of the contracted structure, so that using several valuesisfpreferable. In addition to removing effects of
thermal perturbation, in open structures the procedure also cleans the resulting VP from faces contributed by
the second neighbors. The analysis can be combined with that in terms of the radial distg§®jomaking
possible comparison of geometric coordination numbers with structural[¥heBrostow, Chem. Phys. Lett.
49, 285(1977)]. [S0163-182608)05721-X]

I. INTRODUCTION nation numberz for the kth coordination sphere around a

iven particleP; :4
Contemporary computers allow the performance of mo-g P !

lecular dynamicgMD) simulations for systems composed of
hundreds of thousands of particles, which makes possible Revin
simulations of multicomponent and multiphase materials in eh . . .
realistic way. The same statement applies to the materialgS€P IS the number density equal to the number of particles

per unit volume. Thekth peak ofg(R) is located between
generated on a computer by the Monte Cgdo yet some two minima of the functiorR;(K) and Ryin(k+1). The in-

othej procedure. Analysis of structures of perspicUOUSyey i nertains to the particl®; and is dropped when we are
computer-simulated materials is helpful in the understandingiealing withz, values for the material as a whole, such as
of structure-property relationships in complex real materialsthose obtained by Fourier transforming experimental diffrac-
such as those including polymer liquid crystal@r in  tometric data. The structural coordination numpeaximum
polymer-based(for instance, fiber-reinforcgdcomposites. z,=12 for the hexagonal-closed-packdédcp and face-
Therefore, improving our structure analysis capabilitiescentered-cubicfcc) latticed is usuallylower than the aver-
would be useful for all classes of materials. age geometric coordination numbérfor a given material
One approach is based on the use of the radial distributiodiscussed below.

function g(R), whereR is the distance between particles z; values are often sufficient for the characterization of
(here atoms, molecules, polymer chain segments, o},iass regular lattices, even those containing fairly high concentra-
defined, for instance, in Ref. 2. For nonisotropic systems onéons of defects. For noncrystalline materials the knowledge
also uses the angular distribution function, with both func-of g(R) diagrams plus a series pf values withk=1 can be
tions averaged over the whole sample volume. An analyticalised. Typically for liquids and glasses one obtains fractional
formula for g(R) was developed already in 197Ref. 3  z, values? There are, however, at least two alternative ap-
and has been shown to provide accurate results for materiafgoaches. One is the $8) invariants analysis® for charac-

so disparate as argofiHe, neon, and sodium, including also terization of local structurelocal-order or bond-order pa-
sodium generated by Monte Car(MC) simulation (both  rameters Comparison between sets of @D invariants
MC and MD methods are described, for instance, in Refs. hllows for distinguishing between predefined reference pat-
and 2. Giveng(R) one can calculate thetructural coordi-  terns. The sets of invariants suitable for the identification of

Ruin(k+1) ,
Zik=PJ 47R°g(R). @
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the fcc, hep, and icosahedral structures are well knbbut,  algorithm consists of two stages. At first, in order to elimi-
the extension of the method to other geometries is rathemate the effects of small deviations from the equilibrium
difficult; due to a limited number of invariants the conclu- atom positions(due to the thermal motiojswe remove
sions about the local structure are not necessarily unambigdrom the VP network small faces and short edges. In the
ous. second stage we compare the polyhedra so constructed to

The third approach—taken in the present paper—is basecertain predefined polyhedra; the number and the shapes of
on the tessellation investigated in detail for sets of points bythe latter can be arbitrary.
Vorono™® and subsequently applied to physical To demonstrate the procedure used, let us consider the
systems11~1" One uses the Voronoi polyhedrd’P) and influence of perturbations of atomic positions in an arbitrary
Delaunay simplex(DS). A VP is defined as the minimal crystalline lattice on their VP networks. A characteristic fea-
polyhedron whose planar faces bisect at right angles the lingsire of certain crystallinéfcc, hcp, etg. VP networks is the
joining a particle (these are again, atom, molecule, chainexistence of degenerate vertices and edges. Degenerate
segment, or ionto its neighbors; a pedantic definition in neighbors corresponding to such vertices or edges have been
terms of sets is given by one of us in Ref. 15. The number oflefined in Ref. 15. A degenerate vertex is common to more
faces f; for the ith particle is itsgeometric coordination than four edges, while a degenerate edge is common to more
number Like the structural coordination numbezs f; val-  than three faces. As discussed also in Ref. 15, there also exist
ues also can be averaged to provider the whole material. indirect neighbors: there is a common face, but the midpoint
Values of f=20 or even more are known to be possilile. of the line connecting the atoms does not belong to that face.
The VP diagram, also called the VP netwdekset of VP’s  If the midpoint belongs to the common face, we have the
constructed for all atoms in the sampleplits in a unique simplest case of direct neighbdrsHere direct and indirect
manner the total sample volume into the zones owned byeighbors do not have to be distinguished; thus they are both
each particle. DS’s are geometrically dual to VP’s; that is, acalled geometric neighbors. If the degeneracy is present, it is
vertex of a VP is the central site of the corresponding DSobvious that an arbitrary small displacement of atoms in the
and each particlécenter of a VP is a vertex of the corre- crystalline structure removes it. The degenerate neighbors
sponding DS. One can assign each vertex of the former lawill become the geometric ones or will cease to be the neigh-
tice to the elementary units of the latter. The faces of DS’dors altogether. In the former case, in the place of a degen-
intersect the edges of VP’s, and the faces of VP's interseatrate VP vertex a small face or a short edge will appear;
the edges of DS’s. VP and DS networks contain a formidablelegenerate edges will become small elongated faces. Thus,
amount of information about the structure of the sample. by eliminating short edges and small faces from the VP net-

The difference between VP and DS descriptions is in thevork by contracting them to vertices or edge®, remove the
access to the information. The shape of a VP reflects theffects of the fluctuationsThe same objective could be
arrangement of all the neighbors of the given atom. DS'sachieved by suitable displacements of the atoms. However,
represent the structure of clusters composed of four adjacestnce we have no information about the individual fluctua-
atoms. In the amorphous structures, DS'’s are disordered tefions of the atoms in the sample, such a procedure cannot be
rahedrons, whereas VP’s are more complex polyhedronsealized in practice. In a structure in which the degenerate
The VP technique was applied to the analysis of the structureertices are abseribody-centered-cubi¢bco) lattice is an
of the close-packéd "2 and continuous network exampld, small perturbations of the position do not change
material€®~?7 in a relatively simple way; some statistics of the topology of the network. Thus, the analysis of such struc-
the geometric properties of the polyhedrons were providedtures can be performed going directly to the second stage of
We propose below a more systematic and direct approach the procedure.
the usage of the stochastic geometry methods in the structure
analysis. A. Small-face and short-edge elimination

The paper is organized as follows. In Sec. Il we describe To assure reproducibility,

a procedﬁre of thg patternl recogﬂltlonh of ator;uc;‘ ENVINhe procedures of elimination of small faces and short edges.
mein;ls.dT e prct))ce ure ﬁma yzes tbe S "’I‘_p%s 0 ht %Vorqn%e former is realized by exclusion of the geometric neigh-
polyhedra one by one; thus it can be applied to the detectiof, s associated with them, followed by a repeated construc-
of differently structured zones in multiphase materials. o of 3 new VP Figure 1 presents a distribution of face

Sec. ”.I we presen_t a m.ethpd of the nonlocal arrangemergreas in a distorted hcp lattice; fcc lattice leads to similar
analysis based on investigation of mutual geometric relationg,q 15 positions of points in the ideal structure are shifted

between the elements of the Delaunay network. An applicag, 5 certain distancperturbation displacemerin a random

tion of these methods to the analysis of the MD-simulate irection. The displacements are scaled to the nearest-
g_Ias_sy and partially <_:rysta||ized Iez_id is (_Jles_cribed Sec. I_Vneighbor distance. It is seen that the faces of polyhedra can
similar to the analysis for germanium dioxide reported inpe gruped together into two sets that contain only small and
Sec. V. Section VI includes some conclusions. only large faces. We assume that small faces are of the per-
turbative origin. Therefore, we need to contract all faces hav-

Il. NEIGHBOR-ARRANGEMENT RECOGNITION ing an area smaller than, say, 0.2 on the average. '

To contract short edges we have to use a more compli-
The method of a local-particle arrangement spectroscopgated method; there are at least two reasons for that. First,
is based on the analysis of VP shapes. VP’s are constructeéte edges can be removed only one by one, not all at the

and analyzed recursively for all atoms in the samples, so thatame time; this is in contradistinction to the face elimination.
the individual neighborhoods are treated independently. Th8econd, edge lengths are very sensitive to the particle dis-

we need to describe in detail
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.. 0.20 T T . T : TABLE I. The F, V, andE sets for some polyhedra.
=
% o Polyhedron F v E
5:_‘:) 0.157 1 Cube 0,6 8,0 12,0
% 1 | fcc 0,12 8,6,0 0, 24
= hcp 0,12 8,6,0 3,18,3
- 21 o\ \ 1 Icosahedron 0,0, 12 20, 0 30, 0
S | bcc 0,6,0,8 24,0 36,0
=] 7
Eg 0.05 - 22 |
:Df | | Detailed tests of the algorithm efficiency allowed the es-
o s (7\\ tablishment of the optimal values_ of the paramgbeem_dy
A 0.00 . M AL . . as 0.4 and 0.6, respectively. Takirg: 0.4 results in switch-
0.0 05 1.0 1.5 2.0 ing of the shape recognition procedure sooner; if the shape of
FACE AREA a given polyhedron is undefined, there are no consequences

FIG. 1. The distribution function of the face areas, averaged forexcept for sllowmg down the computations. Taklmgo.G
all VP’s, plotted for a perturbed hcp lattice. The points in the struc-!cor an undefined shape causes spbsequent contractions, lead-
ture are shifted by the perturbation displacement in a random dired"9 eventually to a polyhedron with Onl_y a few edges_ and a
tion. The displacements are scaled to the nearest-neighbor distane@all number of faces. Onceandy are fixed at the optimal
and face areas are expressed in units of the average face area. Values, the elimination of small faces can be omitted in prin-
ciple. These faces contain also some short edges, and the

: o edge contraction removes them automatically. However, the
placements. Figure 2 presents a distribution of edge 1engthgjsa| elimination of the small faces makes the computa-
for a distorted hcp lattice after the face elimination. It is seeNional time considerably shorter

that the edges are also divided into two subsets and the short
ones are of perturbative origin. The figure shows that one has
to eliminate all edges shorter than about 0.5 of the average
length. Because of such a high value of the rejection coeffi- The shape of an arbitrary polyhedron can be described by
cient a special algorithm has to be applied in order to distinthree sets of integers:

guish relatively long perturbative edges from the regular

B. Polyhedron shape identification

edges(inherent to the ideal netwoylof similar length so as F=(f3,f4.f5,...), (29
not to eliminate too many edges. The algorithm for the short-

edge contraction can be summarized as follofischoose a V=(v3,04,0s,...), (2b)
VP, contract all edges shorter than a certain frackiaf the

average edge length2) find the shortest edgd?3) if the E=(e4,6s5,65,...). (20

edge is shorter then a fractign(y>x) of the average edge,
then check the shape of the polyhedron; if the shape belonqﬁ
to the set of predefined patterns, then take the next polyh

is the number of thé-edged faces in a polyhedron; is
e number of the vertices of a polyhedron from which ex-

d q 1) otherwi he ed g ctly i edges originate. In the case of a nondegenerate VP,
ron and go to stegl); otherwise contract the edge under only vs do not vanish, hence- 3 determines the degenera-

consideration, and go to ste@); (4) if the edge is longer tion degree. Finallyg; is the number of edges for whidgh

then a fractiony of the average edge, then take the nextequalsj '+ k+4, wherej andk are the degrees of degenera-
polyhedron and go to stefd). tion of both vertices associated to the edge. Two polyhedrons
are said to have the same topological structure if they have
0.20 : : the samd~, V, andE sets. Table | presents exampleskof
o V, andE sets for some polyhedrons.
We have tested the method on some perturbed crystalline
8 lattices. As previously, the lattice points were shifted by a
certain distance in a random direction. All the polyhedrons in
the structures tested were correctly recognized for the dis-
1 placement range lower then 0.13 of the nearest-neighbor dis-
tance. Figure 3 presents the results of the pattern recognition
applied to fluctuated hcp structures. No hcp polyhedra have
been detected in the structures perturbed within a displace-
ment greater than 0.25.

0.15

PERTURBATION DISPLACEMENT

0.00 T T T
0.0 0.5 1.0 1.5 2.0 25 . A METHOD FOR NONLOCAL ORDER DESCRIPTION

EDGE LENGTH

As mentioned in the Introduction, the Delaunay network
FIG. 2. The distribution of the edge lengths, averaged for alliS geometrically dual to the Voronoi network. Each VP ver-
VP's plotted for a perturbed hcp lattice after the elimination of tex can be assigned to a certain DS. Since in degenerate
small faces. The edge length is scaled to the average edge lengtistructures several kinds of VP vertices appear, the Delaunay
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FIG. 3. The dependence of the fractidl, of the recognized
polyhedra on the perturbation displacement.

FIG. 4. The dependence of the tetrahedricltyparameter of

network necessarily contains several types of topologicall implexes(defined in the tejton the distortion degree of the ideal
different DS's. For example, in the fcc and hcp structure cp lattice. All simplexes off smaller than 0.5 are of tetrahedral

one has exactly two types of VP vertices: nondegenerat8"9"™

ones that are associated with regular tetrahedral DS’s angbwever, in contradistinction to the usual Delaunay sim-
degenerate ones associated with octahedral DS’s. One calexes only one DDC is assigned to one degenerate vertex.
assign more than one DS to each degenerate VP verteknportant for applications is the fact that the appearance of
Therefore, it is helpful to introduce the definition of ax- DDC's is a manifestation ofrystallization In particular, the
tended Delaunay simplexhat is, a Delaunay polyhedron existence of six-atom DDC'’s suggests that fcc or hcp regions
containing more than four atoms. Such simplexes will alscare present in the analyzed sample. A subsequent, somewhat
be referred to as degenerate Delaunay clug@xC’s). The  closer examination of the geometric relations between the
geometric interpretation of DDC'’s is similar to that of DS’s: DDC's reveals unequivocally the exact type of the crystal-
they can be associated to vertices of the Voronoi networkline structure.

TABLE Il. The influence of the perturbation displacementn the parameters of the 3-, 2-, and 1-type
clusters in perfect hcp sampld(i) is the number of-element clusters\ is the number of all cluster® is
the size of the largest cluster. The hcp lattice contains 576 points.

3-type 2-type 1-type
& N(1) N(2) B N B N B N
(a) 6-atom DDC's
0.01 0 0 6 96 576 1 576 1
0.07 0 0 6 96 576 1 576 1
0.08 0 0 6 96 566 1 566 1
0.09 2 0 6 98 554 1 554 1
0.1 6 2 6 103 534 1 534 1
0.11 15 3 6 111 498 1 498 1
0.12 21 12 15 117 461 1 461 1
0.13 34 23 17 128 425 1 425 1
0.14 42 29 14 133 389 1 389 1
0.15 42 34 12 133 360 1 360 1
(b) Regular tetrahedral DS’s

0.01 0 576 2 576 1152 1 1152 1
0.07 0 576 2 576 1152 1 1152 1
0.08 4 572 2 576 1148 1 1148 1
0.09 27 546 2 573 1119 1 1119 1
0.1 83 483 3 567 1052 1 1052 1
0.11 128 401 5 531 937 2 938 1
0.12 181 315 4 498 806 12 818 1
0.13 215 231 4 451 662 28 693 1
0.14 232 174 4 410 544 37 594 1
0.15 239 120 4 362 195 63 490 1
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FIG. 5. The distribution of the tetrahedricity plotted for samples
described in the texfT 5 is the cutoff value for tetrahedral sim-
plexes.

Now, using the notions introduced above, we present an
efficient method for the medium- and long-range order
analysis in multiphase materials. The structure recognition
method is based on investigation of DS shapes, and geomet-
ric relations between DS'’s in structurally distinct phases. We
consider the structures containing degenerate Voronoi net-
works. Our discussion focuses only on two examples fre-
guently occurring in MD-simulated monatomic materials, fcc
and hcp phases. Analysis of other degenerate structures can
be performed in a similar way. Moreover, the investigation
of any nondegenerate structysich as bcc or random close
packed is merely a particular, and more simple case, be-
cause the DDC detection is not necessary. The method con-
sists of two steps: elimination of lattice distortion and mutual
geometric relation analysis.

(b)

FIG. 6. The tetrahedral DS'&) and six-atom DDC’'gb) in a
slowly quenched sample. The circles are centered at the centers of
the simplexes(the vertices of VP’s The segments connect the
neighbors in terms of the 3 relation.

As in Sec. Il, one assumes that the actual atom configu-
ration in the system under analysis is a slightly perturbed
unknown, but well-defined lattice. If the lattice is degenerate,
small perturbations change the shapes of DS’s, and the

DDC'’s can be decomposed into the usual DS'’s. The procgyherel; is the length of théth Delaunay simplex edgé;is
dure of perturbation elimination is based on the contractione average edge length of the simplex. As an example, we
of short VP network edges. The distance between the VRpo the dependence of tifeparameter on the perturbation
vertices is said to be small, if it is shorter than 0.4 of thej, the hep lattice in Fig. 4. An analogous plot for the fcc

average edge lengtfsee again Fig. 2 This contraction is |aiice is identical. It turns out that all DS’s foF smaller
equivalent to the amalgamation of the simplexes associatgg 5, 0.5originate from regular tetrahedra

to vertices that are the ends of the contracted edge. If the
vertices are the ends of one edge, the corresponding sim-
plexes have a common fager alternatively three common
atomg. Thus, amalgamating two four-atom Delaunay poly- At this stage we analyze geometric relations between
hedra we construct one five-atom DDC, amalgamating fourDS’s and between DDC's inherent to certain reference pat-
atom and five-atom DDC'’s we obtain one six-at¢oetahe- terns, and those detected in the MD-simulated sample under
dral) DDC, etc. To reveal the influence of the perturbation onconsideration. In the case of fcc and hcp lattices we have,
the DS’s, we use the tetrahedricity paramékeadefined first  respectively, regular tetrahedral DS’s and octahedral DDC's.
by Medvedev and Naberuktthand used subsequently for In the former, the vertices of the VP network assigned to
various purpose€?3 In particular, a basic difference be- DS'’s are never the ends of an edge. A similar situation is
tween the liquid and amorphous solid states has been definddund in the case of DDC'’s. Thus, each edge ends with ver-
in terms of this parametéf.We have tices belonging to different types of the Delaunay clusters

A. Lattice distortion elimination

T=2 (Ii—1)2/?, (3)
1]

B. Geometric relations between Delaunay polyhedrons
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FIG. 8. The tetrahedral simplexes in a quickly quenched sample.
Circles and edges as in Fig. 6.

common edge. The octahedral DDC’s are connected by the
faces and compose infinite linear clusters, parallel to the axes
of double tetrahedral clusters.

Let us introduce a notation that will be helpful in the
description of geometric relations in the sets of DS’s and
DDC'’s. When two simplexes share three atoms, we say that
they remain in a “3-relation”; if they share at least two
atoms, there is a “2-relation.” Finally, if the Delaunay poly-
hedra share at least one atom, we say that they are in a
“l-relation.” The 3-relation implies the 1- and the 2-
relations, and the 2-relation implies the 1-relation, but not the
3-relation.

Given this terminology, we see that we can construct 3-
type, 2-type, and 1-type clusters of DS’s or DDC's. A DS

FIG. 7. The(a) fcc- and(b) hep-coordinated atoms in a slowly (DDC) belongs to an-type cluster if it isi related to any
cooled sample. The circles are centered at the Pb atoms that haeéement of this cluster. So a 1-type cluster contains 2- and
fcc (a) or hep (b) neighborhoods. The lines connect geometric 3-type clusters, etc. Mutual geometric relations between
neighbors. DS’s (or DDC'’s) in any sample under analysis can be de-

scribed in a very concise form. In the case of the fcc struc-

(DS’s and DDC's are both Delaunay cluster$he regular ture, tetrahedral simplexes and octahedra are isolated in re-
tetrahedral DS is connected by two atofa® edge¢to an-  spect to the 3-relation, whereas in respect to the 2- and 1-
other DS, and a similar statement applies to DDC’s. Thusrelations they compose infinite clusters, containing all atoms
tetrahedral simplexes and octahedral DDC’s compose infief the sample. In the hcp phase, tetrahedral simplexes are
nite three-dimensional clusters. In the hcp structure, the tetarranged in double 3-type clusters, and infinite 2- and 1-type
rahedral simplexes share a common face, producing twcelusters, whereas octahedra form an infinite linear 3-type
element clusters. The double clusters naturally have oneluster.

TABLE lll. The results of the Delaunay network analysis performed for slowly and quickly quenched Pb.
The columns are described in the caption of Table II.

3-type 2-type 1-type
N(1) N(2) B N B N B N
(a) Clusters of 6-atom DDC's
Fast 50 17 9 89 168 2 169 1
Slow 60 79 7 197 422 1 422 1
(b) Clusters of the tetrahedral simplexes
Fast 45 3 998 62 1135 1 1135 1

Slow 363 210 24 619 958 1 958 1
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TABLE IV. Number of faces in Voronoi polyhedra of Ge at- ui(ry=ay(by/r)2exd(r—c,) 1], r<cy,
oms. The faces can be associated to neighboring oxygen or germa-
nium. The polyhedra are not contracted. u;(r)=0, r=cy,
— -1
?‘)/‘:)mber of polyhedra e o Up(r)=ag(by/r—cy)expd (r—by) 7], r<by,
17.8 0 7 Up(r)=0, r=b,,
ﬁ:i g g ug(r)=agr ~3cog 2Kgr). (4)
9.4 0 9 The following values of the parameters were useq:
6.6 1 8 =102.5 meV,b;=0.3284 nm,c;=0.572 nm,a,=90 meV,
6.0 1 9 b,=0.483 nm, ¢,=0.5, a;=0.4183meV nM, and Kg
4.8 1 7 =15.417 nm<. The samples were prepared initially as well-
4.4 1 10 equilibrated hot liquids of various densitiésr alternatively
4.4 0 10 under various pressunesand quenched at constant volume,
28 1 6 and at various cooling rates down to 1 K. The results re-
26 0 5 ported below pertain to samples with high density equal to
26 1 11 150%x 107 kg/m®. We recall that the experimental value of
29 0 11 the density of Pb at the melting point is 108.90* kg/n.
20 1 12 The samples were either quenchedLtK directly from 5000
16 2 10 K (fast cooling, or else passed through equilibrium states at
12 5 8 2500 K, 1250 K, 600 K, 300 K, and 150 klow cooling.

Each sample contained 500 Pb atoms.
The distribution of the tetrahedricity of the DS’s is shown

The comparison of the shapes and sizes of the 3-, 2- an@ Fig. 5. It is seen that the slowly cooled sample contains
1-type clusters in the sample with the clusters determined foPhly regular tetrahedrall~0) and octahedralT>1) sim-
the predefined reference structures allows one to draw sonfd€xes, which suggests the existence of fcc or hcp zones. The
conclusions concerning the nonlocal arrangement. For excutoff value for tetrahedral simplexes is equal to 0.5. Param-
ample, if in any region of the sample one finds about twoeters of the 3-, 2-, and 1-type clusters are presented in Table
times more tetrahedral simplexes than octahedral DDC'slll- The large number of the tetrahedral simplexes that are
and they are rather isolated as far as 3-relations are cofsolated or appear in double clusters confirms the existence
cerned, we infer that the region has the fcc structure. If ther®f fcc and hcp phases. The tetrahedra isolated in terms of the
is a large 3-type cluster of tetrahedral simplexes in the3-relation are characteristic for the fcc structure, whereas the
sample, we are dealing with a random-close-packeg)  double clusters for the hcp configuration. Figure 6 presents
glass. Table Il presents the influence of perturbations of théhe arrangement of the regular tetrahedral DS's and six-atom
ideal hcp structures on properties of 3-, 2-, and 1-type clusPDC'’s in the simulation box. A laminar arrangement of
ters. It is seen that for fluctuations greater than 8%, the clus?S’s and DDC's is evident. The fcc and hcp neighborhoods
ters of tetrahedral DS’s and octahedral DDC’s become difthat have been found are shown in Figitife parameters,
ferent from the ones expected in an unperturbed structure.Y of the edge contraction were equal to 0.4 and 0.6, respec-

A similar analysis can be performed for other kinds oftively, and all the faces with areas smaller than 0.2 of the
phases. For example, the bce phase has only DSTsezfual ~ average value have been contragteddb4 atoms of fcc-like
to 0.203; thus they compose one infinite three-dimensiondirst neighborhood, and 199 atoms of hcp-like neighborhood
cluster in terms of the 3-relation. Detection of bce simplexesvere detected. The laminar arrangement of the fcc and hep
consists in the rejection of simplexes that have very low aPhases is clearly seen. We infer that the bcc or other envi-

well as very high values of the tetrahedricity parameter defonments, if present, would be detected as well.
fined by Eq.(3). The quickly cooled sample has a quite different structure.

The tetrahedricities of the DS’s change in a wide raigem

0 to more than 1.5, Fig.)3but small peaks at abo(it=0

and 1.3 are still present. The large number of tetrahedral
As an example, we apply our method to the analysis okimplexes(Table Ill) and a large size of the 3-type clusters

the local arrangement and the nonlocal ordering in twosuggest that the sample has a glassy structap. Figure 8

samples of MD-simulated leg8?° The simulations have shows the arrangement of the tetrahedral simplexes. No at-

been performed in the microcanonical ensemble using aoms with the fcc or hcp local arrangement have been de-

experimental pair-interaction potential of Dzugutov, Larssontected, and only two atoms have a full icosahedral neighbor-

and Ebbsjd® obtained by a careful fitting of the MD results hood.

to the static structure fact@(k) at 623 K(23 K above the

melting temperatude The interaction potential(r) contains v, APPLICATION OF THE CONTRACTION TECHNIQUE

hard-core and soft-core repulsion terms, and also an oscilla- TO OPEN STRUCTURES

tory long-range Friedel component:

IV. ANALYSIS OF MD-SIMULATED SOLID Ph

The example of lead, while quite instructive, does not tell
u(r)=uq(r)+uy(r)+us(r), us how the new procedure would work for open structures.
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FIG. 9. Statistics of polyhedra face areas for various values g= 0.6, except ina). Face areas are expressed in units of the average
face area of a given polyhedron.

Therefore, we have applied the contraction method also tsimulation femtosecond time steps at 300 K.

the analysis of germanium dioxide, namely, to local neigh- We have constructed the Voronoi polyhedra for Ge atoms
borhoods of Ge atoms in a MD-simulated Ges2ample. Our  as the central ones. As seen in Table 1V, Ge-atom polyhedra
simulation box contained 500 Ge atoms and 1000 O atomshare faces mainly with oxygen polyhedra, but there is a
interacting via the Born-Mayer pair potential, with the pa- significant number of polyhedra with facdalways very
rameters defined by Nanke al3! The simulation was per- smal) associated to Ge. Distribution of the face areas pre-
formed in the constant pressure ensemble with a random insented in Fig. @) shows that noncontracted polyhedra con-
tial configuration. The sample was thermalized fox #©0*  sist of a nearly equal number of big and much smaller faces
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FIG. 10. Statistics of polyhedra edge lengths for various values gf=0.6, except in(a). Edge lengths are expressed in units of the
average edge length of a given polyhedron.

(average number of faces per polyhedron equals. 8%  formed several contractions for G&&=<0.6, andy=0.6. In

can see two well-separated peaks. This suggests that mairiiables V and VI one can see that the number of faces of
trigonal pyramids with oxygen atoms in verticesnstitute  polyhedra and their shapes are almwshdependent in the

the local Ge neighborhoods; the smaller faces originate fronnterval 0.6-0.2. There we have mainly two kinds of local
further neighbors. In the case of distribution of edge lengthsieighborhoods: trigonal pyramids and trigonal bipyramids.
presented in Fig. 1@), due to quadratic dependence of face As x increases beyond 0.2, the number of the latter decreases
areas on edge lengths, these peaks are not so well separatgdile the number of the former increases. A similar behavior
but still remain visible. In order to show how the contractionappears in the case of square pyramids and square bipyra-
procedure deals with an open structure of Ge®e per-  mids; their overall number is much smaller, however. Such a
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TABLE V. Number of faces in contracted polyhedra of Ge at- TABLE VI. Dependence of the shapes of the Voronoi polyhedra

oms. All faces are associated to oxyggn; 0.6. onx, y=0.6.
Number of Ge atom$%) 0] x=0.0 Trigonal pyramid 44.6%
Trigonal bipyramid 51.2%
x=0.0 52.0 5 . .
Square bipyramid 1.6%
44.6 4 :
18 6 Square pyramid 1.0%
' x=0.1 Trigonal pyramid 42.6%
x=0.1 54.2 5 . ; .
Trigonal bipyramid 53.2%
42.6 4 . .
Square bipyramid 1.6%
1.8 6 .
—0.2 528 5 Square pyramid 1.4%
X=0 a4 .8 4 x=0.2 Trigonal pyramid 44.8%
’ Trigonal bipyramid 51.0%
x=0.3 1.6 6 . .
Square bipyramid 1.4%
45.6 5 .
53.2 4 Square pyramid 2.0%
’ x=0.3 Trigonal pyramid 53.2%
x=0.4 68.8 4 : ; .
Trigonal bipyramid 42.8%
30.2 5 .
_05 814 4 Square pyramid 2.8%
X=0 1 .8 c x=0.4 Trigonal pyramid 68.8%
' Trigonal bipyramid 26.6%
x=0.6 90.4 4 i
8.8 5 Square pyramid 3.6%
) x=0.5 Trigonal pyramid 81.4%
Trigonal bipyramid 14.2%
Square pyramid 3.6%
dependence follows from the fact that Voronoi polyhedra of<=0.6 Trigonal pyramid 90.4%
atoms with neighborhood types such as the trigonal bipyra- Trigonal bipyramid 5.4%
mid and the square bipyramid contain one small triangular Square pyramid 3.4%

face; with increasedc this face disappears during contrac-
tion. Distributions of face areas and edge lengths are pre-
sented in Figs. 9 and 10. It is seen that the peak of small

edges is visible well up ta=0.3. For faces this peak does  gpace tesselations have been studied by the Ukrainian
not disappear. mathematician Voronoi approximately a century &g0;

We find that the results of our contraction procedure maywith time, his work finds more and more usés3*We have
depend orx for open structures. This is so because a lowdemonstrated the applications of the Voronoi and Delaunay
geometric coordination numbdrimplies a relative simplic- tessellations to the analysis of local and nonlocal arrange-
ity of the Voronoi polyhedra topology. During the contrac- ments in MD-simulated materials. The Voronoi polyhedra
tion process a polyhedron is modified, and after each edgallow definition of the neighborhoods of atoms in disordered
contraction we obtain a new shape. If the length of a consamples in a simple way, and the classification of the neigh-
tracted edge is larger than and the polyhedron shape be- bors, including direct and degenerate ones. The contraction
longs to a predefined set, the procedure terminates not neef faces and edges of the polyhedra has a clear geometric

essarily arriving at the optimal shape. With a certain practiceSignificance: it simply changes the category of a neighbor.
Therefore, the procedure of the local-order recognition can

parameterx andy are chosen so as to assure the maximum '™ i ) ;
efficiency of the method. This relies on experience and doeée interpreted as a virtual rearrangement of geometric neigh-

not sound precise, but there are at least two procedures th prs ﬁret?]entrm th de :n'ti'al ?flis?rgte][e:ils;[:iucturdei. Arsd Srh%IWvCitlrr:
can be used. First, one can perform several contractions f(% ec. 11, Ine procedure 1s eticient for fattices disordere

various values ok, thus generating more information about he perturbation displacement up to 13% of the nearest-
' 9 9 ) neighbor distance. For fluctuations lower then 15% no poly-
the structures. Second, one can assume, for instance

' hedra other than the original ones have been detected for the
=0.1 for open andk=0.4 for closed structures and then py, gystem: this proves that for closed structures the method
compare results for different systems for fixed For all  |eads to unambiguous results. For perturbations greater than
structuresy=0.6 can be taken. 25% no polyhedra were recognized in the Pb material. Thus,
The information so obtained can be combined with thethe method has a relatively low efficiency for simulated ma-
knowledge of the radial distribution functi@(R) discussed terials with wide minima of the potentials. The results for
briefly in Sec. I. For open structures the structural coordinasolid Pb show that in closed systems our procedure can be
tion numberz calculated from Eq(1) can then be compared successfully applied to the detection of any phase present
with the geometric coordination numbérfor a fixedx, or  within the MD simulation box. The Delaunay simplexes can
with severalf(x) values obtained from a series of contrac- be applied to investigate the nonlocal order. In particular, the
tions. In contradistinction to open structures, for close-analysis of the properties of the 3-, 2-, and 1-type clusters
packed structures there is no dependence of the contractiatefined in this work allows the description of the nonlocal
results onx. ordering, and also enables direct comparisons of structures of

VI. CONCLUDING REMARKS
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different amorphous samples. In contradistinction to the VRHTECH.LG 960084 and by the State of Texas Advanced
approach, the cluster method works also for extremely smallechnology Program, AustifAward No. 003661-04)7 We

(embryolike crystalline zones in which the atoms dmwt
have a well-defined crystalline neighborhood.
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