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ABSTRACT

Methods of dealing with crystal structures are described in detail in every textbook of Materials
Science and Engineering. Structures of non-crystalline materials (amorphous solids, liquids, dense
gases) are no less important, but usually treated in textbooks briefly - if at all. Voronoi polyhedra
have been employed for describing non-crystalline structures in a way at least complementary with
other descriptions, and often more meaningful. The structure is divided into a set of polyhedra in a
unique way, with a polyhedron assigned to each center (atom, ion, polymer chain segment). The
Voronoi diagram (the set of polyhedra for a given set of centers) constitutes the basis of an
informational theory of amorphous solids and liquids; the theory includes also the structure
representation in terms of the radial distribution function. The Voronoi diagram and its
mathematical dual, the Delaunay diagram, also make possible the distinction between a solid and a
liquid, thus capturing the essence of the difference between these two states of matter. Pattern
recognition can be performed by analyzing shapes of the Voronoi polyhedra. A procedure for
contraction of short edges and small faces of the polyhedra is available; it provides slightly
simplified structures, but with a large gain in the perspicuity. The pattern recognition method is also
applicable to crystals, thus making possible comparisons of crystalline and non-crystalline structures
in a simple way. The relation of the Voronoi polyhedra to the radial distribution function, a well-
known tool used in diffractive imaging of materials to elucidate their spatial structure, is analyzed as
well. Finally, alternative methods for characterizing the structures of materials are discussed.

Keywords: Voronoi polyhedra; Wigner-Seitz cells; radial distribution function; amorphous solids structures;
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INTRODUCTION modern science. From the technological point

of view this is also important, since amorphous
The problem of unequivocally characterizing solids include a number of valuable materials,
spatial structures of non-crystalline materials, such as polymeric ones and polymer-based
which necessarily include amorphous solids, composites. Even a cursory observation of the
liquids and dense gases, is an open question in contemporary technology shows how gradually
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but steadily metal parts in airplanes, cars, and
also in electronic and other industries are being
replaced by polymers. Since thus the relative
role of crystallography is decreasing, the
instruction in materials science and engineering
(MSE) has to cover structures of non-crystalline
materials in a meaningful way, at both
undergraduate and graduate levels.

Voronoi polyhedra, described in what follows,
represent along with other mathematical
concepts — including the so-called radial
distribution function g(R) — another important
tool for describing the structures of non-
crystalline materials, including complex ones.

The polyhedra owe their name to the Ukrainian
mathematician Heorhiy (Georgiy) Voronoi.
Born in the village of Zhuravka near Kyiv in
1868, he created his seminal papers in the first
decade of the 20" century while working in
Warsaw. He did not have to cross state
borders; at that time a large part of Ukraine
including Kyiv and a part of Poland including
Warsaw were both under Russian occupation.
Voronoi wrote his papers in French (writing his
first name in French as Georges) and published
them in a German journal 2 Science was
apparently truly international already then — or
at least Mathematics was.

Non-crystalline materials, apart from
amorphous solids, liquids, and dense gases
include dilute gases as well. However in this
last category, low material densities prevents us
from obtaining reliable experimental data with
which the concepts could be confronted. The
theory is available; we have to wait until the
experiments will be more accurate.

DEFINITIONS

We shall start with the formal definition of the
Voronoi polyhedron'?.  Consider a set of
centers P,, P,, .., P, in the L-dimensional
Euclidean space E. The Voronoi polyhedron V;
around a given center P; is the set of points in E
closer to P; than to any P;. One can write
(NOTE: The following symbols will be used in

our discussion of the Voronoi concepts €
signifies "belongs to"; M is the "intersection of™;
c is the "proper subset of"; & is "an empty
set").

Vi={x € E : d(x, P) <d(x, Py,
j=1,2,..,i-1,itl, .., n} )]

where d represents distance. The polyhedra are,
therefore, intersections of half-spaces; they are
convex but not necessarily bounded. The space
E is partitioned by the polyhedra in an unique
way. We can define the Voronoi diagram as
the set of Voronoi polyhedra corresponding to a
given configuration of centers.

On dealing with real materials structures, we
focus on the three dimensional case, L = 3.
Given a point P; and its neighbor Pj, the line P,
P; is cut perpendicularly at its midpoint y; by
the plane h; . We call Hj the half-space
generated by h;; that consists of the subset of E
on the same side of h;; as P; . Therefore

Vi=nHy )

A Voronoi polyhedron V; is bounded by faces
so that each face f;; belongs to a distinct plane
h;. We can characterize each face by listing its
vertices and edges in cyclic order. For
example, by using a scheme of proceeding in a
clockwise fashion when the face is viewed from
the internal point central to the polyhedron.

If MSE students, particularly undergraduates,
find the above formal definitions “too dry”,
then there is an alternative definition with high
perspicuity.  The points from which the
Voronoi diagram is constructed are for us
entities such as atoms, ions, or polymer chain
segments. To get away from pure mathematics,
let us call our entities particles. As already
noted, partitioning of the space (including the
3-dimensional space) by the polyhedra is
unique. In other words, each particle becomes
an “owner” of a fraction of the material
surrounding it. The mathematics defined above
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provides the rules so that the “owners” would
not “dispute” what fraction of space belongs to
whom. This situation becomes even more clear
when looking at an example of a fraction of a
Voronoi diagram; see Figure 1. That figure

Figure 1. A fragment of a 2-dimensional
Voronoi diagram,

corresponds to a 2-dimensional material with
the dots being the locus of the points, Pi, Pj,
etc., and the lines being the projection of the
bounding planes, h; between adjacent points.
One can easily imagine how in 3 dimensions
the points become lines, e.g., for a polymer
chain, the lines become faces and the polygons
become polyhedra.

Incidentally, other names for the Voronoi
polyhedra are also in use in the literature; for
instance, the term Wigner-Seitz cells is used on
occasions for crystalline solids.

The above ideas are contained in the work of
Voronoi. While we are concerned mostly with
non-crystalline materials, it would be good to
have a general approach usable for all
materials. However, when one applies the
Voronoi tessalation (partition) to a crystal, one
obtains certain faces which consist of lines
only. Therefore, dealing with the Voronoi
diagrams for MSE purposes, one of us has

found that new definitions are necessary ® to
distinguish between various possible types of
neighbors of P,. Thus, the following definitions
have been introduced ° :

a) direct neighbor: if'y; (the midpoint of the
line connecting P; P;) belongs to V; , then
P, is a direct neighbor of P,. Meijering *
has recognized such neighbors in 1953 and
called them full neighbors,

b) indirect neighbors: if a subset of h; is a
face of V; but y; does not belong to V, ,
then P; is an indirect neighbor; or P; is an
indirect neighbor if f; N y; = &;

c) degenerate neighbors: if the intersection of
h;j and V; is just a vertex or an edge, then P,
is a degenerate neighbor;

d) quasi-direct neighbors: if P; is a direct
neighbor or if P; would be a direct neighbor
in the absence of all indirect neighbors,
then P; is a quasi-direct neighbor of P; .

Thus, all direct neighbors are also quasi-direct.
Examples of all classes of neighbors defined in
3 and above are shown in F igure 2, again for the
case of two dimensions. Extension to three
dimensions is obvious here also. We can define
a direct polyhedron D generated by the quasi-
direct neighbors in the same way that direct and
indirect neighbors generate V. 1t is clear that
for each i we have

VicD; 3)

We define the geometric coordination number
fi as the number of nondegenerate direct or
indirect neighbors of P;. The average value of f
for random 3-D structures is ~ 15 °, for random
2-D structures it is close to 6. Voronoi
polyhedra with f = 20 have been constructed ,
and in principle arbitrarily high values of f are
possible. As noted in ' and °, f, have to be
distinguished from the structural coordination
numbers z. The latter are well know from MSE
textbooks and also will be discussed in the next
Section.

Journal of Materials Education Vol 21(5&6)




300 Brostow and Castaro

Figure 2. A Voronoi polygon with various
classes of neighbors; after °.

— an edge (polygon side) resulting from a
direct neighbor; _ _ _ _ an edge resulting from
a quasi-direct neighbor; __ . _ an edge
resulting from an indirect neighbor; Aa direct
neighbor; M  an indirect neighbor; ¥ a
degenerate  neighbor. The  polygon
corresponding to one of the centers is
represented by the shaded area.

The significance of the definitions quoted
above can be shown by considering a simple
regular lattice as an example, such as the planar
square lattice. Each Voronoi polygon here is a
square, with all squares identical. The

structural coordination number of that lattice
known from crystallography is z = 4. These
numbers are analyzed in detail in every MSE
textbook, usually without mentioning that the
geometric coordination numbers exist also,
although exceptions to that rule can be found®,
In our square lattice, each center has also
neighbors along diagonals to the lattice that do
not contribute to the structural coordination
number - in spite of the fact that there is
nothing between a given center and these
second range neighbors. To imagine this one
can look at the bottom-left center in Figure 2.
That center is a degenerate neighbor of the
center of the Voronoi polygon shown. In a
square lattice there will 4 such degenerate
neighbors (along the four diagonals) of any
given center - in addition to the 4 direct
neighbors. A study of non-crystalline structures
often involves comparison to crystals. Clearly
our definitions help to characterize not only
regular structures but even better irregular - that
is non-crystalline - structures.

The next question is: when we have a set of
particles, how do we practically construct the
Voronoi diagram ? An efficient and exact
algorithm for the construction of the diagram
exists >. It relies on embedding P; in a cube C,
such that the face of C; closest to P; is relatively
far away from the furthest quasi-direct neighbor
of P.. In spite of the size of C,, its existence
saves a large amount of computation for P
centers which do not contribute to Vi. This
computer code produces the exact V.. Some
later algorithms are either approximate or
slower than that described °.

REPRESENTATIONS OF STRUCTURES
OF AMORPHOUS SOLIDS AND LIQUIDS

A representation of such structures alternative
to the Voronoi diagram, commonly employed
in many areas of MSE, particularly by X-ray
diffractionists, consists in the use of the so-
called radial distribution function g(R). The
probability of finding a second center at a
distance R from the first center is defined as

Journal of Materials Education Vol. 21(5&6)




Yoronoi Polyhedra as a Tool for Dealing with Spatial Structures of Amorphous Solids, Liquids and Dense Gases 301

p (R)= [N/VI’gR) (4)

Where, g(R) is the conditional probability of
finding a second center P; at a distance R from
P, and, N/V is the number of centers, or
particles, contained in a volume, V. When the
distance R becomes very large, any correlation
between the positions of the particles
disappears. The particles become independent,
and the probability of finding each of them in a
small volume element is N/V; the probability of
having them both simultaneously in the
respective volume elements is (N/V)*. This is
fact the reason for Equation (4), which serves as
the definition of g(R). The function g(R)
represents the correlation between the particle
positions and is so normalized that lim _,., g(R)
= 1. The structural coordination number can
then be defined’ as :

min (k + 1)
zx=p f4nR2g<R> dR )
R min (k)
p is the number density equal to the number of
centers per unit volume. The index i pertains to
the center P;; the index k represents the k-th
coordination sphere around P;; the respective
peak of g(R) is located between two minima of
the function, namely R min (k) and R min (k +
1). Experimental values obtained by Fourier-
transforming diffractometric data produce g(R)
curves for the material as a whole. As we know
from MSE textbooks, for crystals the values of
zj are well established, such as z, = 6 for the
simple cubic and z; = 12 for closed packed
lattices. It is, however, for non-crystalline
materials that we need the Voronoi polyhedra
and/or the g(r) curves and z values resulting
therefrom, since no direct information can be
extracted from diffraction data of non-
crystalline materials.  Equation (5) can be
integrated easily since an accurate analytical
formula for g(R) exists’. The formula has been
tested for a variety of materials, for
experimental as well as for computer-simulated
g(R) diagrams.  In general, the average
geometric coordination number f, for a given
material is  higher than the structural

coordination number z ; this applies to any k
value, that is to any shell.

We should mention here also the efforts of Alan
Mackay in the development of what he called
Sfexi-crystallography for materials other than
crystals ' ', including currently fashionable
fuilerenes, first predicted by Buckminster
Fuller, and nanotubes. Mackay noted the
importance of the Voronoi polyhedra in this
endeavor, but his considerations were largely
qualitative.  Alternative approaches will be
described in Sections 4 and 6.

INFORMATION THEORY OF NON-
CRYSTALLINE STRUCTURES

The Voronoi diagram serves also as a basis for
the development of a theory of non-crystalline
structures using the tools provided by the theory
of information ® ' - According to this
theory, one considers coding the information
about a structure for transmission via a
communications channel. Thus one needs here
the minimum amount of information necessary
to assure the task. In other words, the coding
has to be performed in such a way that
redundant information is not transmitted. Such
a coding procedure has been devised by Collins
2 in terms of distances between neighboring
centers. The links form impenetrable barriers
to other centers (again molecules, atoms,
polymer segments, etc.) so that a Delaunay
diagram is constructed. That diagram
constitutes an assembly of irregular Delaunay
polyhedra (simplices), with centers as vertices
of each polyhedron''®, Thus, the Delaunay
diagram is a mathematical dual of the Voronoi
diagram; see Figure 3.

The non-redundant information can be
transmitted over a channel in terms of
interparticle distances (links, or edges in the
Delaunay diagram), angles between the links,
or in a combined way involving both, distances
and angles. One can define a distribution of
probabilities of link lengths, and obtain there
from a formula for the entropy S of the
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Figure 3. An example of simultaneous Voronoi
and Delaunay tesselations for a system of
centers. Thick lines show the Voronoi
polygons, thin lines delineate the Delaunay

polygons.

material. S contains three types of
contributions: kinetic resulting  from
momentum, configurational and topological.
Consistently with coding in terms of center
pairs, the configurational (also called potential)
energy US is obtained as a sum of pair
interactions. That is, given the pair interaction
potential u(R) and g(R) from diffractometry, we
can calculate U %, The knowledge of du(R)/dR
and again of g(R) makes possible also
calculation of the volume V of the system °.
With the Helmholtz function A =U - TS, given
pressure P, we can also compute the Gibbs
function G = A + PV and other thermodynamic
potentials. We shall discuss the connections
between g(R) and thermodynamic functions
more in a later article.

It is also possible to limit the consideration of
g(R) to the region inside of the first
coordination shell (in other words, to the
Delaunay figures which involve a given center).
Thus, a connection between the Voronoi and
the g(R) approaches has been derived"’.

THE DIFFERENCE BETWEEN
AMORPHOUS SOLIDS AND LIQUIDS

In the previous Section we have mentioned the
Delaunay simplices as the duals of the Voronoi
polyhedra. There is one Delaunay figure of
particular interest in the field under discussion,
namely the regular tetrahedron. Medvedev and
Naberukhin, two contemporary Russian
physicists, have defined a measure they called
T for tetrahedricity " = " ;' so as to avoid
confusion with the thermodynamic temperature,
we are going to use the symbol F for that
measure:

F=% (-)/15<1>? (6)
1>])

where [; is the length of the i-th simplex edge
and <I> is the average edge length value for the
simplex. Since for the regular tetrahedron F =
0, low F values correspond to small distortions
from the regular shape.

We have investigated the mutual arrangement
of the Delaunay 4-center simplices *° for the
models of liquid and quenched solid rubidium
created by the method of molecular dynamics
(MD) by Tanaka »'. The MD computer
simulation procedure is described in % and 2.
With rubidium atoms as the Voronoi centers
and the Delaunay vertices, the distribution of
the circumradii of the Delaunay simplices, and
also the tetrahedricities F of the simplices were
established. Clearly this can be done for other
materials as well,

Analysis of the results reported in % shows that
low density (high tetrahedricity) atomic
configurations in the liquid phase form a
percolative cluster. Such a cluster does nor
exist in the solid phase. By contrast, there is a
percolative cluster in solid rubidium, but it is
created by high density configurations with low
tetrahedricity values.  Thus, although the
structural difference between the amorphous
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solid and liquid materials had been elusive for
quite a long time, that difference has now been
captured 20" on the basis of concepts derived
from the work of Voronoi.

QUASI-CRYSTALLOGRAPHY AND
PATTERN RECOGNITION

The efforts of Mackay in the development of
what he called flexi-crystallography or quasi-
crystallography have been noted at the end of
Section 3. He has developed methods for
representing and handling structures other than
crystalline - in such a way that comparisons

with crystalline structures should be possiblew'
1]

One can apply the Voronoi and Delaunay
tessellations to pattern recognition of atomic
environments and to investigation of the non-
local order in materials, including those
simulated by molecular dynamics. The pattern
recognition is based on an analysis of the
shapes of the Voronoi polyhedra. For that
reason the procedure is applicable outside of
MSE as well, for instance in astronomy to study
the fragmentation of celestial bodies such as
meteorites on collision. A procedure for
contraction of short edges and small faces of
the polyhedra has been developed 2 This
provides slightly simplified structures, but
implies a large gain in the perspicuity. Removal
of effects of fluctuations is thus achieved.

To see this better, consider an example of a
hexagonal closed packed (z) = 12) lattice which
we have subjected to a small distortion. As a
consequence of that distortion, smail faces have
appeared, such that their surface areas are
smaller than 0.2 of the average surface area.
One can eliminate such faces®. Figure 4 shows
the distribution of the edge lengths afterwards.
We see that all the edges are divided into two
subsets. The subset of the short edges is
originates from perturbations results from the
distortions introduced deliberately.
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Figure 4. A distribution of face areas, averaged
for all Voronoi polyhedra, plotted for a
distortion perturbed hexagonal closed packed
lattice after the elimination of small faces (see
text). The points in the structure have been
shifted by the perturbation displacement in a
random direction. The displacements are scaled
to the nearest-neighbor distance and face areas
are expressed in units of the average face area;
after 24. The numbers from 1 to 10 increase
along with the decreasing probability of
occurrence of a given face area.

Non-local order analysis involves geometric
relations between Delaunay simplices. The
contraction method has been applied to the
analysis of the structures of MD-simulated lead
and germanium in solid phasesz“. Given the
large differences between the structures of these
metal and the amorphous materials, and
considering the successful handling of both
elements by the contraction procedure, the
method appears fairly general.

CONCLUDING REMARKS

Given the limited length of this article, we
could only point out some of the resuits
obtained in the study of materials structures
with the use of the Voronoi concepts. Further
details can be found in the literature, including
for instance representing heterogeneous
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polymers by the Voronoi polyhedra 2.

However, even this brief survey should provide
an idea of how important are the concepts that

Voronoi pursued a century ago are for
contemporary Materials Science and
Engineering.
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