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ABSTRACT We use the Matheson-Flory theory,ll with the orientational contribution represented by the 
Flory-Irvine term12 in the partition function. Polymer liquid crystal (PLC) molecules have a fraction 8 of 
thermotropic sequences, with the remainder 1 - 8 fully flexible. The excess Gibbs function of mixing for 
the ternary system is formulated, and chemical potentials of the components in the anisotropic phase are 
derived; a set of five equations defines the anisotropic-isotropic phase equilibrium. Calculated miscibility 
gaps have the usual base on the PLC + flexible polymer side, but unusual shapes (cusps) are predicted for 
values of the characteristic temperature of the mixture !P in certain intervals; such shapes appear for fully 
rigid rods as well as for 8 < 1. Moving from the Gibbs triangle base toward the top (solvent), we find the 
LC order parameter s quite high, except in the immediate vicinity of pure solvent. As an example, s = 0.97 
for the volume fraction of PLC in the anisotropic phase as low as 0.170. Thus, solvent molecules must be 
channeled by the thermotropic sequences, with perhaps unwilling flexible PLC sequences participating in 
the channeling. Available experimental data for one ternary systeml9 are compared with predictions from 
the theory. 

1. Introduction and Scope 
Thermodynamic properties and phase diagrams of 

systems containing rigid-rod molecules can be predicted 
for a number of cases and correlated using a lattice model 
Flory: the first version was proposed in 19.56'~~ and 
expanded considerably later by Flory and  collaborator^.^-'^ 
Numerous properties of polymer liquid crystals (PLCs) 
and their blends are advantageous in comparison to flexible 
 polymer^.'^-^^ For this reason, in the preceding paper18 
we adapted the Flory formalism to investigate the effects 
of varying the concentration 8 of liquid-crystalline se- 
quences in PLC copolymers on their properties. We shall 
now consider ternary systems of the type PLC + flexible 
polymer (FP) + solvent. Each PLC chain consists of both 
rigid (mesogenic, liquid-crystalline) and flexible sequences. 
A solvent molecule is assumed to be isodiametric with a 
polymer segment, be it rigid or flexible-a standard 
assumption in lattice models. 

One of the motivations of the present work was the 
existence of experimental data for systems of the type just 
defied,  namely, LC copolymers of poly(ethy1ene tereph- 
thalate) withp-hydroxybenzoic acid, PET/zPHB (z is the 
mole fraction of PHB, the LC constituent) + poly- 
(bisphenol-A carbonate) (PC) + CHCl3. An attempt to 
use a version of the Flory theory assuming that the PLC 
chains are fully rigid did not produce satisfactory re~ul ts ; '~  
hence careful inclusion of the feature of partial flexibility 
of PLC chains was indicated. 

2. Derivation of Principal Equations 
The ternary system contains n, solvent molecules and 

np polymer chains. We have np = n2 + n3, where the index 
2 pertains to PLC and 3 to flexible chains. Each PLC 
chain is characterized by the fraction of LC sequences 8 
= rh / ( rh  + rc) ,  where rh denotes the total number of L c  
(hard) segments in the chain and r, the respective number 
of flexible sequences. 

We shall take advantage of the work of Matheson and 
Flory," who considered a mixture of n, copolymers of 
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various length r (r represents the degree of polymerization) 
in a solvent of n, quasi-spherical molecules. Our system 
may be recovered from theirs, by restricting the copolymers 
to only two classes: one with 8 # 0 and the other with 
8 = 0. Beyond this simplification of the Matheson-Flory 
approach, however, we introduce additional terms dealing 
in a more rigorous way with anisotropic interactions 
between segments belonging to rigid sequences. 

So, specializing an expression of Matheson and Flory 
(eq 12 in ref 11) to our system, we have for the excess 
Gibbs function of mixing 

GM - _ -  
RT 

n, In n, + n2 In n2 + n3 In n3 - (n, + n2 + n,) In no + 
?nP( 1 - :) - n,[(l - Q) In (1 - Q) + Q] - 

npns 
[r2n, (1 - 8) + r3n,l In 2, + x? - 

where 2, is the internal partition function of a flexible 
segment; no = n, + r2n2 + r3n3 = n, + pnp, where r2 and 
r3 are lengths of copolymers and flexible chains, respec- 
tively; n, is the total number of rigid sequences, each of 
average length q; nVy is the number of such rigid sequences 
characterized by an average disorientation parameter y; 
and cVy is the mean orientation-dependent interaction 
energy for a rodlike segment (belonging to such LC 
sequences) in the field of its neighbors; the quantity Q is 
given by 

4 h  and 42 denote respectively volume fractions of rigid 
sequences and PLC copolymer chains. In the preceding 
paper'* we have used symbols 4 and 9; since now only the 
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average values are of interest, in the present paper the 
bars have been dropped. 

The last two terms in (1) replace the last term in the 
Matheson-Flory eq 12, because we have made use of the 
Flory-Irvine version12 for the orientational contribution 
to the mixture partition function. 

We take partial derivatives of GMIRT with respect to 
ns, n2, and n3, using the fact that the distribution n,ln, 
is assumed to have its equilibrium value, so that 

~(GMIRT)Ia(n,,,1n,,) = 0 (3) 
Thus, we obtain expressions for the various chemical 
potentials in the anisotropic phase, with properties of that 
phase indicated by superscript prime 
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(4) 

r2 8 1 -- - 1 In (1 - Q) + r2(1- 8) ln2,-  [ (  ? 1 

The volume fractions are related by 4’, = 1 - qYp; 4’2 and 
4’3 are the respective volume fractions of polymer con- 
stituents in the anisotropic phase, so that $’p = 4’2 + 4’3. 
y,, is the number of rigid sequences in a copolymer, hence 

The corresponding chemical potentials in the isotropic 
phase (which we denote by unprimed symbols) can be 
readily written down by observing that Q = 0 and s = 0 
for this phase. By using the equilibrium conditions 

(7) 
for each component in the mixture, we arrive at the 
equations for equilibrium between an isotropic and 
anisotropic phase. After applying the Flory-Ronca314 
explicit forms for the distribution nnYln,,, and the inter- 
action energy cny, to rewrite the last two terms in (5), these 
assume the following forms: 

7, = er21q. 

(0) 
CL’i - p’i(o) = Pi - Pi 

ln (2)  + WP - 4p)( 1 - f) + x(4’,2 - 4;) = 
r2 

[ 1 - e( 1 - 2 )] In (1 - Q) + 

where 

(11) 
4 y = - -q In (1 - Q) 
x 

f 3  2 
K = P - 

f j  0’ = 1, 2, 3) and Q are given by 

(13) 
1 3 fj = s,”” sin’ 9 exp -y sin 9 - -04’+p1 sin2 9 d q  ( 2 

(14) 

T1 = q ( T * / T )  (15) 
s is the usual order parameter for LC systems; T* is a 
characteristic temperature which here serves as a measure 
of the interactions between rigid segments. In general, 
P, as introduced by Flory and collaborators,20p21 is related 
to interaction energies, numbers of interacting sites per 
segment, and numbers of external degrees of freedom; a 
detailed discussion is provided in ref 22. 

The set of five equations (8-12) defines the biphasic 
equilibrium (anisotropic-isotropic) for our ternary mixture 
of semirigid and flexible chains in a solvent of quasi- 
sphericalmolecules. In the next section, we shall examine 
numerical solutions of this system of equations. As 
discussed in ref 18 and implied also by Matheson,14 
‘anisotropic” is not limited to nematic phases. 

3. Results for x f 0 

A question of effects of inclusion of the usual (spherical 
force field) attractions represented by the Flory-Huggins- 
Staverman ~ a r a m e t e r ~ ~ - ~ 6  x arises. Calculations for x # 
0 are presented in this and for x = 0 in the following section. 
We recall that x represents a superposition of polymer + 
polymer, polymer + solvent, and solvent + solvent 
interactions. The higher a positive value of x ,  the poorer 
the solvent; x I 0 corresponds to good solvents. 

In view of this, we have performed calculations for values 
of -10 I x I 10. Each time the set of eqs 8-12 was solved 
in the following way. Assuming values of 8, r2, r3, T, P, 
and x ,  we calculated q = 8r2 and t = (r2 + r3)/2. For a 
given value of 4’2, the set of five equations consists of two 
independent subsets: one of three equations (8-10) and 
the other of two equations (11 and 12). First, the set of 
two equations was solved using the Newton-Raphson 
method. Thus, values of y and s were found. To solve the 
equations, the procedure MNEWT from ref 27 was used. 
Integration in eq 13 was done by the routine QROMB 
based on the Romberg adaptive method.27 Both codes 
have been slightly modified to assure correct results. In 
the second step, the same procedures were used to solve 
the set of three equations. Values of volume fractions 4’3, 
42,  and 43 were found in this way. Initial values of these 
variables needed for using the Newton-Raphson method 
were found from contour plots of eqs 8-10 vs 42 and 43, 
assuming a value of 4’3. 

The shape of the top part of the miscibility gap is 
interesting, but it will be discussed in the following section 
in which similar results are assembled. In general, the 
results obtained show that the presence-or otherwise-of 
the energy x term hardly makes a difference. For instance, 
phase diagrams calculated by the method described above 
are presented in Figure 1 for ternary systems with 8 = 
0.35, r2 = 600, r3 = 1200, and T* = 300 K, at the temperature 
T = 295 K, and for x = -10, -1, 0, 1, and 10. We see that 
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Figure 1. Phase diagntms for the ternary systems consisting of 
a solvent (l), a PLC (Z), and a flexible polymer (3). Parameters 
of the systems: 9 = 0.35, rz = 600, t g  = 1200, !P = 300 K, and 
T = 295 K. The diagrams were calculated for x = -10, -1, 0, 1, 
and 10. 

there is little difference between binodals obtained for 
various values of x .  The most distinctive curve is that for 
x = 1. Only slopes of the tie lines are slightly different. 
In other words, variations of the solvent quality affect the 
equilibrium compositions very little: with x values positive 
as well as negative, phase behavior of this ternary system 
is almost unchanged. As Flory argued in 1966,’ intramo- 
lecular forces in chains have profound effeds on properties 
if inflexibility is present. 

Our systems should be contrasted with flexible chains 
systems, including solutions, in which much larger numbers 
of conformational states are allowed. We know that in 
solutions which do not contain rigid rods or PLCs, the 
polymer + solvent interactions are quite important. The 
hydrodynamic volume per chain determines the chain 
overlapB and equilibrium properties, as well as transport 
properties and flow behavior, including drag reduction 
and mechanical degradation in solution In our 
case, in view of the above results, in subsequent compu- 
tations we have confined ourselves to x = 0, with virtually 
negligible effects upon the generality of the conclusions. 

4. Results for x = 0 

We have studied first the effects of varying the char- 
acteristic temperature P. In Figure 2A we show the 
miscibility gap and the connodes (tie lines) for 8 = 1, T 
= 300 K, P = 50 K and r2 = r3 = f = 20. Since 0 = 1 
corresponds to fully rigid rods in a ternary system 
containing a solvent + flexible polymer and treated before 
by Flory: we can compare diagram A with his results. His 
Figure 2 has been computed for the axial ratios x2 = r3 = 
20, which is exactly r2 = r3 = 20 in our notation. Our 
results are quite similar to those of Flory. 

In Figure 2B we show results for P = 100 K, while the 
remaining parameters are the same as before. This time 
we see that the present somewhat more complex version 
of the theory shows a distinct kind of behavior. When we 
start from the PLC + flexible polymer pair, their usual 
immiscibility manifests itself. Consider a composition with 
a large excess of PLC, containing small amounts of FP. 
We replace gradually FP by the solvent; that is, we move 
upward along the 1-2 side, slightly inside the triangle. 
Several things happen. First, numerical values show that 
the order parameter s decreases with increasing solvent 

concentration, slowly at first and then at  a gradually 
increasing rate; the same is also true for d x values for 
the results shown in Figure 1. Second, the PLC + solvent 
miscibility is lower than that of the FP + solvent pair. 
This has been already predicted by Flory and collaborators, 
found e~perimentally,’~ and is also visible in our Figures 
1 and 2A. The tie lines, which close to the 2-3 side of the 
triangle were not far from horizontal, have an increasingly 
upward slope when moving from the anisotropic phase to 
the isotropic one. Moreover, the tie lines become shorter 
and the difference 4’2 - 92 becomes smaller. We have a 
region where the miscibility gap departed from the 1-2 
side while a slow increase in solvent concentration is 
accompanied by a much faster decrease of 42. In turn, 
since so much less PLC is needed for the solvent-rich 
isotropic phase, more PLC becomes available for the 
anisotropic one. The line representing compositions of 
the anisotropic phase moves to the left, back toward the 
pure 1-2 side. The liquid-liquid critical point at which 
9‘2 - 92 becomes zero is located in this area. These 
phenomena and the resulting shape of the miscibility gap 
are only weakly related to the values of x ;  see again Figure 
1, where positive and negative x values affect the slopes 
of the connodes, but hardly affect the shape of the two- 
phase region. 

In Figure 2C we see the results of computations for a 
related set of parameters; now P = 200 K, while the other 
parameters are the same. The unusual shape of the 
miscibility gap disappeared; the gap looks “normal”. In 
reality, there is a continuity going from A to C and 
increasing P: the miscibility in the PLC + solvent pair 
increases, and the liquid-liquid critical point moves 
accordingly. In Figure 2C that point is much closer to the 
1-3 side than before. An equation for P in ternary systems 
(without, however, taking explicitly into account orien- 
tational effects caused by rigidity) has been derived;22 T* 
for the system is a function of Ti* values of all the individual 
components. Given that T* thus represents an interplay 
of the characteristics of components, qualitative and 
quantitative changes in the miscibility gap caused by 
varying P are understandable. 

Given the interesting behavior shown in Figure 2B, the 
question arises as to whether this is another consequence 
of full rigidity, 8 = 1, assumed for our PLC. We have 
made also calculations for 0 < 1, as shown in Figure 2D. 
Here 0 = 0.7, while we have taken r2 = rg = 20, T = 300 
K, and T* = 100 K, that is, the same parameters as for 
Figure 2B; consequently, 7 = 14. As expected, a decrease 
in PLC rigidity has increased the area of the homogeneous 
region-not only from the solvent side but also creating 
a partial miscibility with FP. This constitutes one more 
proof of the validity of the model, since parameter 
variations result in system behavior predictable from the 
physical significance assigned to the parameters. At the 
same time, we recover the qualitative behavior seen in 
Figure 2B. With other parameters the same, it is the 
characteristic temperature T* representing the strength 
of the interactions that determines the type of behavior 
of the system. The extent of PLC rigidity 8 influences 
the area of the miscibility gap but not ita shape. 

So far, our calculations were of the model type, to study 
effects of various parameters on the phase behavior. 
However, we mentioned in the beginning the existence of 
pertinent experimental datalg We have now focused on 
comparing the phase diagrams determined in ref 19 with 
predictions of the theory. These diagrams were obtained 
as cloud point curves from the absorbance E at 800 nm 
determined on a UV-visible light spectrometer. A solution 
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Figure 2. Phase diagrams for the ternary systems with rz = r3 = 20, at the temperature T = 300 K: (A) 8 = 1, P = 50 K; (B) e 
= 1, T* = 100 K (C) 6 = 1, T* = 200 K (D) 6 = 0.7, T* = 100 K. 
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Figure 3. Comparison of experimental and calculated phase 
diagrams. Points (circles) are from the cloud point measurements 
described in the text. Lines were calculated for the system with 
0 = 0.27, r2 = 600, r3 = 1200, and P = 600 K, at the temperature 
T = 295 K. 

was defined turbid when E reached a predetermined (low, 
rather arbitrarily defined) value. 

In Figure 3 we display experimental (circles) and 
calculated (a continuous contour plus tie lines) results for 
6 = 0.27 (the PHB concentration) and T = 295 K. Other 
parameters used in the computations are !P = 600 K, r2 
= 600, and r3 = 1200; hence F = 900 and 9 = 162. Only 
the pertinent top part of the triangle is shown. A listing 
of numerical data shows on inspection features similar to 
those in the data sets corresponding to Figure 2B and D. 
In particular, the decrease of the order parameter with 
decreasing PLC concentration is also here slow at  first, 
and much more rapid afterward. Values of 4’2 = 0.190, 
0.180, and 0.170 correspond to s = 0.972,0.969, and 0.966, 
respectively, that is, a nearly constant decrement As/A4‘2 

0 1 

A /a\ 

= 0.3. However, for 4’2 = 0.052 and 0.042, that is, A4‘2 the 
same, we have, respectively, s = 0.761 and 0.541, resulting 
in AsIAq5’2 = 24.7. We see that the computed miscibility 
gap shows moat of the essential features of the experimental 
cloud point curve. With increasing solvent concentration, 
the anisotropic branch is first close to the pure 1-2 side 
and then ventures ‘inland”. The isotropic branch does a 
similar thing, but at higher solvent concentration, which 
is consistent with the presence of the cusp (Zipfel in 
German). While the cloud points do not exhibit the cusp, 
they do not contradict ita presence either; the experimental 
technique is not sensitive enough to give an unequivocal 
answer. 

Figure 4 shows a similar comparison of experimental 
and computed miscibility gaps for 0 = 0.35 and T = 295 
K. Consequently, r )  = 210 while rz, r3, and !P are the same 
as for Figure 3. The conclusions are basically the same. 



88 Blonski et ai. 

In Figure 3 as well as in Figure 4 we see a much better 
agreement of computation and experiment than when fully 
rigid rods (Figure 1 in ref 19) were assumed. The presence 
of a cusp at  the top of the miscibility gap, appearing 
repetitively in our modeling, deserves a careful experi- 
mental study if such is possible. 

5. Some Concluding Remarks 
Essentially, we have explored further the Matheson- 

Flory theory1' with the Flory-Irvine orientational con- 
tribution12 included. We have recovered phase diagrams 
of the kind predicted before and found some new features. 
The x interaction parameter has only a limited effect on 
the ternary diagrams we consider. The extent of rigidity 
6 and the strength of the intermolecular and interseg- 
mental interactions as represented collectively by T* 
appear to dominate the situation. The order parameter 
s remains a useful measure of the structure of the 
anisotropic phase. Apparently, when solvent is added, 
the LC sequences cause channeling of the solvent mol- 
ecules for a long time (s = 0.97 for 9'2 as low as 0.170). 
Given that each PLC chain contains liquid-crystalline as 
well as flexible sequences, orientation of the former is to 
some extent imparted to the latter. Thus, flexible 
sequences appear to participate in channeling solvent 
molecules. Only when the concentration of solvent 
molecules becomes really high does 'capitulation" of PLC 
orientation accompanied by a fast decrease of s ensue. We 
recall that the problem of formation of an orientationally 
ordered phase was already dealt with by Flory in 1956,' 
while much later Matheson14 has generalized the Flory 
results dealing with the chain geometry in such a way that 
the average width of the rigid sequences is also taken into 
account. 
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