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A simulation of the mechanical behavior of a carnon nanotubes-reinforced polymeric composite,
based on Flory’s statistical segment approach, is presented. The material is modeled at the micro
and nano levels. Interactions between molecules are Morse-like potentials, as well as Van der Walls
forces. Traditional simulations involve Molecular Dynamics by solving Newton’s equations of motion,
Instead, we apply here a finite element approach, involving nonlinear elements to take into account
the potential interactions. Amorphous polymer chains are represented by statistical segments, in
which several repeating units of a chain are treated as single and independent components. This
model allows the simulation at a large scale as compared to those using the unit-atom model or

those performed at the atomistic level.
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1. BACKGROUND

Ajayan et al.! reported the first polymer nanocompos-
ites using carbon Nanotubes (CNTs) as fillers; since then,
CNTs have been used as reinforcements in many high per-
formance polymer composites.” The nanocomposites prop-
erties depend on the aspect ratio, diameter, and chirality of
the nanotubes, as well as on the concentration and disper-
sion in the matrix. The properties of polymer composites
that may improve due to the inclusion of CNTs include
tensile strength, tensile modulus, toughness, and electrical
and thermal conductivity.>*

The CNTs usually form stable bundles, due to Van der
Waals interactions, becoming extremely difficult to dis-
perse and align within a polymer matrix. Despite the con-
siderable advances in the field of CNTs over the past two
decades, very little is understood regarding the behavior
of polymer nanocomposites, particularly in terms of how
exactly the reinforcement effect is achieved, the mecha-
nisms that allow improved dispersion and distribution of
the CNTs in the matrix, and how to tailor the properties
of the nanocomposites for specific applications.

By using traditional Molecular Dynamics with Newton’s
equations of motion describing the motion of atoms, the

*Author to whom correspondence should be addressed.
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mechanical and thermodynamic properties of the CNTs
and the resulting nanocomposites can be studied,™® both
at the nano-scale. However, a serious problem that arises,
due to the disparities between simulation methods working
at different scales, is how to couple them since, between
the atomic (discrete) and the continuum scales, there is a
bridging zone.”® Another treatment used, the HAC model
(Hybrid Atom-continuum), was presented by Wang® to
calculate the energy of the representative unit cell of
hexagonal phases and shape for carbon-carbon bonds. The
intratube energy is the bending energy of the wall, while
the intertube van der Waals interaction is modeled through
a Lennard-Jones potential.

Other solution implies the use of mechanical struc-
tural models, at nano and micro-scales. The first case
was reported, among others, by Belitchko,!” Rossi'! and
Horta,"? to find elasticity module of carbon Nanotubes,
including their chirality. Nevertheless, scarce works are
dedicated to analyze the mechanical behavior of a polymer
matrix with nanotubes. One of the situations to solve here
is how to define the potentials for all components (pri-
mary and secondary bonds). Accordingly, the present work
proposes a novel solution of such composites, including a
non-lineal model of potential bonds, focusing the study on
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the free volume behavior, as well as on the Poisson ratio
of the composite, as the nanotubes content is varying.

2. THEORETICAL BACKGROUND

Particles (or segments) tend to move during each load
cycle and get to a new position. After this movement, the
particles could have new neighbors. Based on Newton’s
Law, the governing equations generalized for all three
coordinates are:'?

Xi(t+Ar) = XI(1) + A(r) [ XI(1) — X!(1 — Ar)]
+ Fjx(t) = (Ar) (1)

here, Xi(1) (as well as Y;(r), Zi(t)) are thee coordinates
of the jth segment in the ith chain, A(¢) is a kinetic coef-
ficient, and F/x(r) (and also F/'y(t), F/z(t)) are the forces
acting on the segment along each axis. The General force
F(¢) involves both internal and external forces on each
particle. The corresponding Force equation involves the
derivative of the potential U,(r). External forces in this
tension case are associated only on boundary particles.

F(t) = (=0U (1) /0X ;) + F 2)

The analysis is focused on the evaluation of Poisson ratio
and Free Volume on the elastic behavior before yielding
of the composite. The mechanical model governing this
behavior involves the energy deformation as well as nodal
load vector, as:'*

p/ dv{u}-i—/

where {u}: Nodal displacements vector, {ii}: Nodal accel-
eration vector, [N]: Matrix of shape functions, [ B]: Matrix
of derivatives of shape functions, [D]: Matrix of elas-
tic parameters, (F,(7), F,(t), F.(¢))": Nodal load vector,
p: density. '

The interaction between particles and nanotubes is well
described by finite elements having the same stiffness
properties of a real bond. As described before, the bond
stiffness has been obtained from the derivatives of poten-
tials. These forces have a strong nonlinear behavior. The
bond stiffnesses are very different on tension and compres-
sion. Thus, to solve this case, it is necessary to involve a
nonlinear analysis: the stiffness matrix K and the restoring
Force F"" will vary with the applied load. The procedure
used to solve such a problem in general requires multiple
iterations.

Amorphous polymer chains are represented by statisti-
cal segments, as proposed originally by Flory," in which
several repeating units of a chain are treated as single sta-
tistical segment. This model is often called a Coarse Grain
Model and allows for simulation at a large scale.

FX(Z)
E,(1)
E.(1)

[Bldv{u}=
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Fig. 1. Potential Energy. Bonding interaction between adjacent seg-
ments along a chain.

In this case particles are repeated units of a chain.
Specific potentials correspond to different type of bonds,
namely:

e Primary (intra-chain) bonds between rigid LC segments.
e Primary (intra-chain) bonds flexible LC segments.

e Secondary bond between particles on neighboring
chains.

e Interactions between unlike segments will be treated as
rigid, according to Ref. [16].

Primary (intra-chain) bonds between rigid LC segments
are described by a steep Morse-like potential limiting the
bond extension and their mobility.

U,(R) =[1 - =0 (4)

Primary (intra-chain) bonds flexible LC segments are
described by spliced double-well potentials:

[1—ev(=P72
R<1
8U,[(1—R)/AP
1 <R<1+4+0.25A
U, (R) = Uy{1 - 8[(1+0.5A — R)/A]?)
14+0.25A <R <1+0.75A
8U[(1+A — R)/AJ
14+40.75A<R<1+A

[1 _ ey/»(H—A—R)]Z

Q)

R>1+A

Here, vy, = 10; Yy = 2; U, =0.05; A =0.732 Units
parameters are: (length)~!; (Iength)~!; energy and length
respectively (see Fig. 1).

3. INTRACHAIN FORCES

The total force on a given particle is the sum of
the forces resulting from pairwise interactions and any
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Fig. 2. Force behavior on bonds (F vs. R) for rigid (dashed line) and
flexible (full line) cases.

forces applied'’
F;(t) = (=dU (1)/dR;) + F" (6)

Here, F; is the force acting on ith segment of the jth
chain at time ¢. U, is the total configurational energy of
the system (sum of pairwise interactions). R;; is the current
location of the segment in question, and F:*' is the external

force imposed. So, for a one chain exclusively:
Fi(1) = (=0U,(1)/0R) + K )

And for a only one segment of this chain without external
forces: F(t) = —0dU,(t)/IR.

So, internal forces on a segment are expressed as deriva-
tives of potentials (Fig. 2).

Secondary bonds occur in rigid and flexible statistical
segments (attraction or repulsion forces on particles not
belonging to the same chain). Repulsive interaction is gen-
erally related to the problem of excluded volume effect
and, because of this interaction, there is a resistance to
the relative motion of particles between two neighboring
chains. These forces are known as van der Walls forces
and are different of those related to the bonds between
molecules.

Potentials depend on the relative displacements r
between neighboring chains.

0 r<-96

2.5U, (r/8)[0.5 (r/8)+ 1]+ A
—6<r<-0.26

Up[1-5(r/8)

veln) = 0[—0.25( 5/ r)s] 0.28 ®

2.5U, (r/8)[0.5 (r/8) — 1]+ A
026 <r<$é

0 r>9o

Here, 6 =0.5; U, = 0.05 for flexible case, and 1.0 for
rigid case. Here A is an adjustable parameter proposed by
the present authors. A = 1.25 for flexible case, and 0.0625
for rigid case. Units of the parameters are length and
energy, respectively. Figure 3, shows the potential Energy
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Fig. 3. Energy U, versus relative displacement r. Repulsive interaction
between neighboring particles on different chains

for both cases. The corresponding interchain forces are
shown in Figure 4.

Figure 5 contains a schematic description of each type
of bond, according to the elements inside the polymer
composite.

Particles (or segments) tend to move during each load
cycle and get to a new position. After this movement
particles could have new neighbors. According to the
literature'¢ and based on Newton’s Second Law, the gov-
erning equations are as follows:

Xi(1+Ar) = Xi(1) + A1) *[X(1) — Xi(t — Ar)]

+Fx(1) (A1)’

Yi(1+4 A1) = Y (1) + A1)+ [Y] (1) = Y[ (1 — An)]
+F/y(1) % (Ar)*

Zi(t+Ar) = Zi(1) + A(1) % [Zi(1) — Zi(t — Ar)]
+Fjz(1)+ (A1)’ ©)

where, X((1), Yj(t), Zi(r) are thee coordinates of the
jth segment in the ith chain, A(¢z) is a kinetic coeffi-
cient described below, and fo(t), Fjiy(t), Fjiz(t) are the
forces acting on the segment along each axis. Parameter
A(t) =1 in case no thermal forces are considered.

The general Force F(t) involves Internal and external
forces on each particle. The corresponding Force equa-
tion involves the derivative of Potential U,(z). External
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Fig. 4. Interchain Force versus relative displacement r. Interaction
between neighboring particles on different chains.
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Fig. 5. General Scheme of applied bonds.

Forces in this tension case is associated only to boundary
particles.

Fy(1) = (—9U (1) /0X ) + Fg*

Since our analysis is focused on the evaluation of Poisson
ratio and Free Volume on elastic behavior before yielding
of the composite material, the mechanical model governing
this behavior must involve the energy deformation as well
as nodal load vector.'® Matrix discrete model is as follows:

F (1)
p | INVINIdvli)+ [ [BIIDI[Bldv{u) = § F(1)
E(1)

(10)

where: {u}: Nodal displacements vector, {ii}: Nodal accel-
eration vector, [N]: Matrix of shape functions, [ B]: Matrix
of derivatives of shape functions, [D]: Matrix of elas-
tic parameters, (F,(7), F,(t), F.(¢))": Nodal load vector,
p: density. '

Interaction between particles and Nanotubes is well
described by finite elements having the same stiffness
properties of a real bond. As described before, the bond
stiffness has been calculated from the derivatives of
potentials. These forces have a strong nonlinear behav-
ior. The bond stiffness are very different on tension and
compression.

Therefore, to solve this case, it is necessary to involve a
nonlinear analysis, the stiffness matrix K and the restoring
Force F"" will vary with the applied load. The procedure
used to solve such a problem in general requires multiple
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Fig. 6. Non-linear procedure applied for solving dynamic model.

iterations, where each iteration passes through the equation
solver.

The Finite Element employed in our calculations is a
non lineal element named combin39 in ANSYS nomencla-
ture (see Fig. 6). This element is a unidirectional element
with nonlinear generalized force-deflection capability.
According to," multiwalled carbon nanotubes (MWCN)
composed by 8-30 graphene layers have different diame-
ters, between 26 to 76 nanometers, meanwhile, for a single
walled carbon nanotube (SWCN) its diameter is of the
order 1-4 nm. The length of nanotubes is also variable.
By considering an aspect ratio of 13, the corresponding
lengths oscillate between 200—1000 nm for MWCN, and
10-50 for SWCN.

Dimensions for Nanotubes adopted in our analysis refers
to a multiwall type with 70 nm diameter (0.07 wm), and
a length of 500-1500 nm (0.5-1.5 wm) depending of the
analyzed case. According to statistical segments dimen-
sions, each segment involves a number of polymer chains,
from this point of view proposed by Flori, it is appro-
priated to take a few segments or a lot segments, it is
clear that some behavior of segments will be more clear
to follow taking many segments for instance in case of
segments entanglements. The diameter of particles we will
take analogous to Nanotubes diameter, 0.07 wm.

On a polymer chain, every molecule links with her
neighbor through covalent bond and the gap between them
is minimum also; segments link one to another through an
intrachain bond. In our case, the distance between particles
centers is 0.08 um, with a gap between particles equal to
0.01 pum.

The analysis we will carried out on a sample of dimen-
sions 1.6 um x 1.6 um. Gap-z direction we take as a half
of the bond length. Thickness of the sample depends on
the number of layers required. The analysis uses 5 lay-
ers, so, thickness of the sample will be equal to 0.16 pum.
Number of grid points, to place particles and nanotubes
inside the sample, would be approximately (((1.6/0.08) +
1)"2) x4 = 1600.

The thickness adopted here is one tenth of the sample
length. This thickness is thicker than polymer plate sam-
ples used on experimental procedures for determining the
stress-strain behavior. On the other hand, the number of
statistical segments inside of these 1600 points grid seems
a good representation of a real composite material. The
Elastic module E for a MWCN is about 1.28 TPa. (six
time higher than steel). Meanwhile, for a single nanotube

J. Comput. Theor. Nanosci. 12, 3363-3369, 2015
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Fig. 7. Different types of Nanotubes inside grid points domain.

module E reach a value of 0.8 TPa. These values show
some variation depending of carbon nanotube type (arm-
chair, chiral, etc.) as well as number of walled in case
MWCN.

4. RESULTS AND DISCUSSION

Chains construction run smoothly in the computer but, as
the process continue, it becomes more and more difficult to
built complete chains. The last chains generally are short,
even composed by only one or two segments. Thus the
procedure adopted for constructing the nanotubes consists
on the use of these little chains and adapting them as nano-
tubes. This procedure has the goal to reduce the amount
of little chains used for segments and also for introduc-
ing some geometric characteristics on nanotubes as can be
the irregular shapes. Figure 7 shows some particularities
of this procedure. Parameter D3 = (.08.

The analysis of the composite has been focused on the
3D case (Fig. 8). General dimensions of the composite
sample are arbitrary. The parameter “LAY” corresponds

Fig. 8. Isometric view of the layer of points. 3D case.

J. Comput. Theor. Nanosci. 12, 3363-3369, 2015

Fig. 9. Polymeric particles and segments (violet). Nanotubes (blue).
Percent of Nanotubes in terms of volume of the sample: 5.17%.

to the number of desired layers of the sample, in this
case, 5 layers. Gap between layers is of dimension D3/2.
Gap x of grid points is of dimension D3. Gap y of grid
points is of dimension D3 % SQRT(3). The second win-
dow requires data corresponding to real values of energy,
area, and diameters. We have mentioned that our analysis
is qualitative, for this reason, all these value area equal
to the unity, with the exception for the diameters that are
close to the real value for nanotubes and particles.

Evaluation of the main total stress o, on the sample was
done according to the relationship:

o, =F/A, (11)

where:
F, =Total force on sample =F,*N,
F, = Applied force on each edge node
N, = Total number of edge nodes
A,, = Sectional area of the sample = Lx ¢
t = Thickness of the sample

Fig. 10. Close-up of 3D representation of nanotubes and particles.
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Fig. 11. All Interaction bonds inside model including boundary
conditions.

So, total deformation of the sample &,:

e, =((2A,,)/N)/L (12)

A, , = x displacement of an edge node of the sample.

Figures 9 and 10 show the Nanotubes and polymer
chains set-up.

Figure 11 shows the obtained set-up of all interaction
bonds, together with polymer chains and nanotubes.

Next step was to run the nonlinear analysis. The large
displacements procedure was activated. Substeps proposed
are: 400, 600, 160. The load was taken as ramped with
load increases of 0.005 units. Final applied load was close
to 0.08 units. Figure 12 shows the Engineering Stress—
Strain behavior, while Figure 13 corresponds to the Real
Stress—Strain behavior.

The free volumen V; of the composite was calculated
according to the following relationship:'®

Vf:‘/s_(rx‘/x—i_‘/n) (13)

where V, is the volume of the composite; r is the number
of segments inside the sample; V; is the volume of individ-
ual segment, and V, is the volume of all nanotubes inside
of the sample.

—— NANOTUBES 0 % 0.74% 3.20% 5.17%
® 15
(7]
<t
9D 10
(o]
£
g
s 5 /
(o))
]

0 T T T T T )
0 0.1 0.2 0.3 0.4 0.5 0.6
Strain

Fig. 12. Engineering Stress-Strain behavior.
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Fig. 13. Real Stress—Strain behavior.

To evaluate the volume of composite we connect all
points of layers 1 and 5 (back and front layers) generating
a good number of small volumes: the sum of all these
volumes is the total volume of the composite. This is a
good procedure for the evaluation of deformed volumes
on each stage of the analysis. The initial Free-Volume was
0.424 units.

The evaluation of the deformed volumes has been done
by taking nodes on the discrete model, instead of geo-
metrical points, due to requirement of the displacement
results. First, we proceed to generate a displacement vec-
tor to which add the geometrical points initial values. Each
load step generates a different vector displacement. One
implication of our random procedure to generate the chains
geometrical scheme, is that some keypoints do not have
a corresponding node, and are required to build the new
deformed shape volume. To solve this situation, we gen-
erate the additional nodes to cover all the required points
domain. This procedure has been done and is part of the
computer solution.

The Poisson ratio is obtained by applying the
relationship:

m=¢er/e; (14)

being &, and g, the transversal and longitudinal deforma-
tion, respectively.

The behavior stress-Poisson ratio (Fig. 14) is as
expected: when the percent of nanotube increase, the
sample becomes more rigid and displacements dimin-
ish, including transversal ones. Poisson ratio values range
between 0.26 to 0.40, depending on the nanotubes content.

= NANOTUBES 0 % 3.20% === 5.17%

15

. 7

[/
2

Poisson Ratio

Stress
[6;]

0.4 0.5

Fig. 14. Stress-Poisson ratio behavior.
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Fig. 15. Stress versus increase on free volume as with respect to the
Initial free volume of the sample. Initial volume = 0.424.

The analysis has focused on the elastic behavior prior to
yielding of the sample for determining the Poisson ratio
variation. On yielding, i.e., when the Poisson ratio is close
to 0.5, the material becomes incompressible. Figure 15
corresponds to the change in free volume as a function of
the stress.

5. CONCLUSION

The simulations show that, regardless of the amount of
segments inside the chains a good mechanical behavior,
at least in terms of elasticity, very close to those results
obtained by Simoes'® can be obtained by adding even a
small amount of nanotubes. Our results also show that
material yield and flow only occurs when an important
quantity of secondary bonds fails. Also, the plastic behav-
ior happens when primary bonds are subjected to big
strains.
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