
Tire-Road Friction Estimation Utilizing Smartphones

Michael Jaynes, Ram Dantu

Department of Computer Science & Engineering

University of North Texas

Denton, Texas

michael.jaynes@my.unt.edu, rdantu@unt.edu

Abstract—Tire-road friction is an important parameter for a
number of different safety features present in modern-day
vehicles, and the knowledge of this friction may also prove useful
to the driver of a vehicle while it is in motion. In particular, this
information may help inform a driver of dangerous low-traction
situations that he or she may need to be aware of. Furthermore,
since a growing number of drivers have access to Bluetooth-
enabled smartphones, it is worth exploring how these devices
may be leveraged in concert with vehicular CAN-bus networks to
provide valuable safety information.

Keywords—vehicular safety; CAN-bus; friction; mobile
computing; traction

I. INTRODUCTION

Vehicular safety is an ever-present concern in the
automobile industry, as vehicle manufacturers are always
trying to find ways to ensure that their cars can withstand
damage and keep all passengers safe, as well as pedestrians and
other drivers. More and more recently, they have turned to
technology to help assist in this effort, introducing features
such as rear-collision cameras and parking assists, collision
avoidance systems, and many other safety features. In addition,
modern automobiles have incorporated advanced computer
networks connected to many different sensors which produce a
large quantity of valuable safety data for use in these
applications, as well as in potential safety applications on the
mobile platform.

More specifically, an estimation of the tire-road friction
coefficient for each individual wheel can help provide for
greater stability and traction control, whether in driver-operated
or automated systems. There has been fair amount of research
done in this area focused on either the incorporation of
additional vehicular sensors and on-board computer systems or
off-line data analysis, but there has been comparatively little
work done in the area of mobile computing solutions to
questions of vehicle dynamics. This paper aims to encourage
more exploration of this research path by demonstrating the
feasibility of such an approach for one particular model of
consumer automobile using an Android application and a very
inexpensive piece of hardware.

It should be noted that there have been other Android
applications developed specifically for the purpose of vehicular
maintenance that can connect to an intra-vehicular network
through that vehicle’s Onboard Diagnostics (OBD-II) port. The
important distinction between this work and many other
applications is that most applications communicate with a

vehicle through the set of standardized, mandatory OBD-II
PIDs, which largely provide data needed for state emissions
testing. This application, on the other hand, aims to access and
utilize several more vehicle dynamics parameters, discussed in
Section III, which are more relevant to vehicular safety.

II. BACKGROUND AND RELATED WORK

A. The Automotive CAN-bus
Since 2008, all consumer vehicles sold in the United States

implement some form of a Controller Area Network (CAN)
bus for the purpose of vehicle diagnostics. The CAN-bus
protocol does not utilize traditional network addressing; rather,
the CAN packets are broadcast with either 11-bit or 29-bit
CAN IDs to all of the nodes (mostly Electronic Control Units
or ECUs) of the network, and these nodes decide whether or
not the packets will contain data relevant to that node. Some
vehicles also contain a high-speed and a low-speed CAN-bus,
which allows the vehicle to delegate safety and driving-
essential functioning to the high-speed bus and entertainment
or other nonessential functions to the low-speed CAN. Many of
these CAN-bus networks contain a significant amount of
vehicle dynamics data that is constantly being broadcast while
the vehicle is running. Such data can potentially be utilized in
novel and vital ways by researchers if it can be collected and
correctly scaled. However, since most vehicle manufacturers
consider the addressing schemes of their vehicular networks a
trade secret, this data is difficult to access and parse for the
purpose of developing safe-driving applications, and there
haven’t been major developments studying mobile computing
solutions for data collection or safety applications.

There have been several pieces of literature published
recently that delve into the characteristics of the CAN-bus
network, along with the security flaws inherent within the
protocol. Several of these are more abstract in nature, but there
are several that focus on practical experiments that demonstrate
in no uncertain terms some of the vulnerabilities of these
vehicle networks [1][2]. Two examples of these serious
security weaknesses are the system’s vulnerability to Denial of
Service (DoS) attacks and the lack of any authentication
methods for CAN messages. The first of these is due to the
priority-based arbitration of CAN messages; the 11-bit or 29-
bit CAN IDs also serve as arbitration IDs, meaning that the
value of this ID determines the priority that packet is given by
the bus. Therefore, if an attacker is able to send a flood of
packets at a high priority, the vehicle will have extreme
difficulty processing other, lower-priority packets that are

855
IEEE IRI 2014, August 13-15, 2014, San Francisco, California, USA

978-1-4799-5880-1/14/$31.00 ©2014 IEEE

necessary for ordinary functioning of the vehicle. Furthermore,
as has been discussed in the literature, the CAN packet
protocol does not include authentication fields or even source
identification, which means that vehicle components that do
not implement any form of security layer on top of the CAN-
bus cannot determine if a message being broadcast is genuine
or not. These are important concerns for this project, due to the
fact that a smartphone application communicating over
Bluetooth with a vehicle’s CAN-bus while it is in motion
creates new security challenges that must be careful addressed
in future works.

B. Friction Estimation Algorithms
There has been significant research directed at various

approaches to estimating the friction coefficient between the
road and the tires of a vehicle in motion. Several of these
[3][4][5][6] are based at least partially on wheel slip ratio or
slip-slope, and some of these also incorporate torque [4], GPS
measurements [4], or longitudinal acceleration [4][5][6]. Based
on the parameters that are easily accessible through the test
vehicle’s CAN-bus, this research focused on the algebraic,
longitudinal acceleration-based approach for average friction
coefficient found in [5].

The longitudinal friction coefficient between the road and a

tire, �x, is given by:

� �x���
Fx

�FZ
�� ����

where Fx is the longitudinal force and FZ is the vertical force
acting upon the tire. Newton’s second law of motion can be
used to determine the longitudinal effort for both the front and
rear wheelbases of the vehicle:

� FXf = Meq-f �x, Meq-f =
FZf

 g ; FXr = Meq-r �x, Meq-r =
FZr

 g � �

where Meq is the equivalent mass for either the front or the rear
of the vehicle, and �x is the longitudinal acceleration. These
equations can be combined with (1) to demonstrate that the
front and rear longitudinal friction coefficients are equal and
determined by longitudinal acceleration:

� �xf����xr���
Fx f

�FZf
���

Fx r

�FZr
���

�x

g � �	��

However, it is important to note that this will provide
something that resembles an average front and rear friction
coefficient in driving situations where the friction is not
equivalent between the front and rear of the vehicle. Future
work on this project will strive to calculate individual wheel
friction coefficients.

III. EXPERIMENTAL SETUP

This research was performed on a recent model of a
popular consumer automobile. Naturally, due to the closed
nature of vehicle network structures, the application cannot yet
be made universal, even with regards to all vehicles made by
the same manufacturer. One hope for the overall big picture of
this type of research is that vehicle manufacturers will be more
willing to work closely with researchers in the future,
particularly as the industry works towards autonomous
vehicles.

A. CAN Sniffing
Since modern automobiles implement some form of CAN-

bus architecture, the foundation for this work involved the use
of a CAN traffic sniffing tool. This tool allowed reverse
engineering of various useful CAN arbitration IDs utilized by
the vehicle’s CAN-bus on both the high-speed and medium-
speed CAN networks (this vehicle contained both). While
watching the traffic on the CAN network, it is possible to see
which bytes are changing in the various packets being
broadcast. When certain actions are performed, such as
opening doors, turning the steering wheel, or unbuckling and
buckling seatbelts, it is possible to isolate the specific bytes
that are changing in response. Furthermore, using the
manufacturer’s proprietary, module-based diagnostic software,
several 29-bit CAN IDs were discovered that correspond to
data request packets that are broadcast to the appropriate
Electronic Control Units (ECUs) when the diagnostic software
is run on the vehicle. The values in the responses to these
packets can then be interpreted and scaled based on the
interpretations of the raw bytes that the diagnostic software
provides. Through this method, the researchers were able to
determine the correct CAN packet to send in order to request
and parse such data parameters as steering wheel angle,
longitudinal acceleration, vehicle velocity, acceleration and
velocity of each wheel, and brake pressure, among others.

B. Android Application
There is a considerable variety of options for devices that

are compatible with the OBD-II diagnostic port, but the one
that was chosen for this project was chosen for its affordability
and Bluetooth capabilities. The device chosen was a Bluetooth-
enabled Elm327 device. This device plugs into the vehicle’s
OBD-II port, which is located underneath the steering column
on most vehicles, and sends its output to the Bluetooth
connection. While this particular model is relatively devoid of
extra features, the Elm327 integrated circuit which powers it
still provides a command set (known as AT commands) that
allows for powerful CAN-bus communications. It is these
commands that are utilized by the Android application.

With the Elm327 device plugged into the test vehicle’s
diagnostic port (shown in Fig. 1), the smartphone that is
running the application needs to be paired with the device.
After pairing is completed, the application can be run. When
the application starts, a check is performed to ensure that there
is both a Bluetooth adapter and a paired OBDII device. If not,
the application will not run. Once the paired device is found
and instantiated to an Android BluetoothDevice class, the user
is given a choice of whether or not to log the data that is

856

collected. After pressing a button on the application user
interface to begin logging, a BluetoothSocket class is opened,
and the communication between the device and the application
is run on a separate thread from the main user interface thread.
When this thread is initialized, several AT commands must be
sent to the Elm327 device in order to direct it to the correct
CAN-bus network and the appropriate CAN arbitration IDs.
These are sent very quickly, and it generally takes less than a
second for the application to begin parsing, logging, and
displaying the data. A screenshot of this application while it is
running can be seen in Fig. 2. This screenshot shows the
current readings and calculations for several data parameters,
mostly focused on speed and acceleration. There are further
parameters that the application is designed to collect as well,
but those were disabled during the testing that was done for
this paper, in order to improve the frequency of data collection.

In addition to converting the bytes received from the CAN-
bus and scaling them appropriately, the application makes
some calculations. As can be seen in Fig. 2, the wheel slip ratio
for each wheel is calculated by the application. This calculation
is performed using the equations found in [4]:

�
x����
�reff� w���Vx�

�Vx
��during braking� ���

�
x����
�reff� w���Vx�

��reff� w)
��during acceleration.� ����

Since the velocity is provided for each wheel in the same data
payload as the vehicle’s longitudinal velocity and longitudinal
acceleration, the program simply checks to see if the vehicle is
slowing down (negative acceleration) and calculates the wheel
slip values using the appropriate equation.

IV. RESULTS

To collect the data for this paper, the test vehicle was
driven while the application was running and logging data. It
was driven along the same short stretch of straight road five
times. The road condition was normal dry asphalt. At the end
of each period of data collection, a braking action of normal
pressure was applied. Two of the plots of these tests are
displayed in Figs. 3 and 4.

Another series of tests were run on a similar stretch of
asphalt road while the road was wet and it was raining. Similar

to the previous tests, a braking action occurred at the end of the
test, although these tests were slightly longer. Two plots of the
average friction coefficient for those tests are shown in Figs. 6
and 7. There seems to be a sharper increase in friction
coefficient when the braking action occurred during the wet
road trials.

V. CONCLUSIONS AND FUTURE WORK

There are several avenues of future research for this
project. Naturally, increasing the accuracy of the estimations is
a clear goal, and there are a number of additional vehicle
dynamics that can be taken into consideration in order to
achieve this goal. Furthermore, many more repeated trials need
to be performed on a variety of road conditions, including
dirt/rough roads and ice/snow. Also, if the Android application
is able to quickly and accurately estimate individual wheel
friction coefficients, such as described in [4], these friction
coefficients can be used in conjunction with the wheel slips for
each wheel to attempt to predict and alert the user about
dangerous road conditions. Finally, the implementation of
some form of security layer on top of the Bluetooth connection
between the smartphone and the vehicular network, is an
important future step in ensuring that the application attempts

Fig. 1. Elm327 device plugged into OBDII port.

Fig. 2. Screenshot of Android application running.

Fig. 3. Dry asphalt driving test.

857

to handle or mitigate any cybersecurity concerns it might
introduce.

ACKNOWLEDGMENT

This research was sponsored by the National Science
Foundation under grant CNS-1229700. The writers would also
like to acknowledge Joshua Siegel of The Massachusetts
Institute of Technology for his expertise and assistance with
reverse engineering many of the arbitration IDs utilized in this
project.

REFERENCES

[1] K. Koscher, et. al., “Experimental Security Analysis of a Modern
Automobile,” in IEEE Symp. on Security and Privacy, 2010, pp. 1-6.

[2] T. Hoppe, et al., “Security threats to automotive CAN networks –
practical examples and selection short-term countermeasures,” Rel. Eng.
and System Safety, vol. 96, no. 1, pp. 11-25, 2011.

[3] F. Gustaffson, “Slip-based Tire-road Friction Estimation,” Automatica,
vol. 33, no. 6, pp. 1087–1099, 1997.

[4] R. Rajamani, et al., "Algorithms for Real-Time Estimation of Individual
Wheel Tire-Road Friction Coefficients," IEEE Trans. Mechatron.,
vol.17, pp.1183,1195, Dec. 2012.

[5] J. Villagra, et al., “A diagnosis-based approach for tire-road forces and
maximum friction estimation,” Control Eng. Practice, vol. 19, no. 2, pp.
174-184, Feb. 2011.

[6] J. Wang, et al., “Friction Estimation on Highway Vehicles Using
Longitudinal Measurements,” J. of Dynamic Syst., Measurement, and
Control, vol. 126, no. 2, pp. 265–275, Jun. 2004.

Fig. 4. Dry asphalt driving test.

Fig. 5. Wet asphalt driving test.

Fig. 6. Wet asphalt driving test.

858

