
Sensitivity Analysis of an Attack
Containment Model

Ram Dantu1, João W. Cangussu2, and Janos Turi3

1 Department of Computer Science, University of North Texas
rdantu@unt.edu

2 Department of Computer Science, University of Texas at Dallas
3 Department of Mathematical Sciences, University of Texas at Dallas

{cangussu, turi}@utdallas.edu

Abstract. A feedback control model has been previously proposed to
regulate the number of connections at different levels of a network. This
regulation is applied in the presence of a worm attack resulting in a slow
down of the spreading worm allowing time to human reaction to properly
eliminate the worm in the infected hosts. The feedback model constitutes
of two queues, one for safe connections and another for suspected con-
nections. The behavior of the proposed model is based on three input
parameters to the model. These parameters are: (i) the portion of new
connection requests to be sent to the suspect queue, (ii) the number of
requests to be transferred from the suspect to the safe queue, and (iii) the
time out value of the requests waiting in the suspect queue. The more we
understand the effects of these parameters on the model, the better we
can calibrate the model. Based on this necessity, a sensitivity analysis of
the model is presented here. The analysis allows for the computation of
the effects of changing parameters in the output of the model. In addi-
tion, the use of a sensitivity matrix permits the computations of not only
changes in one parameter but also combined changes of these parame-
ters. From the sensitivity analysis we have verified our assumption that
the changes in the input parameters have no effect on the overall sys-
tem stability. However, there will be a short period of instability before
reaching a stable state.

1 Introduction

In the past active worms have taken hours if not days to spread effectively. This
gives sufficient time for humans to recognize the threat and limit the potential
damage. This is not the case anymore. Modern viruses spread very quickly.
Damage caused by modern computer viruses (example - Code red, sapphire
and Nimda) [1, 2] is greatly enhanced by the rate at which they spread. Most
of these viruses have an exponential spreading pattern [2]. Future worms will
exploit vulnerabilities in software systems that are not known prior to the attack.
Neither the worm nor the vulnerabilities they exploit will be known before the
attack and thus we cannot prevent the spread of these viruses by software patches

P. Kantor et al. (Eds.): ISI 2005, LNCS 3495, pp. 127–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 R. Dantu, J.W. Cangussu, and J. Turi

or antiviral signatures [3]. A feedback control model has been proposed to slow
down the spreading rate of a worm in order to allow proper human reaction.
Experiments have shown that the proposed model is an effective alternative to
achieve such goals.

The feedback model constitutes of two queues, one for safe requests and
one for suspected requests. A set of parameters determines the behavior of the
model based on: (i) the portion of new requests to be sent to the suspect queue
(also called delay queue), (ii) the number of requests to be transferred from the
suspect to the safe queue, and (iii) the time out value of the requests waiting
in the suspect queue. The accuracy and behavior of the model depends on the
selection of these parameters. In order to use the model effectively, it is important
to determine how a small change in one parameter impacts the overall results.
For a given network topology, a set of hosts, firewall rules, and IDS signatures,
we need to configure a set of input parameters. However, the selection of these
parameters is critical for optimum operation of the state model. For example,
the selection decides on how fast we can converge to a given set point. Sensitivity
analysis aims to ascertain how a given model depends on its input parameters [4].
This analysis will help us in determining how confident are we in our results and
how much will the results change if our selected values are slightly wrong. We
will give a completely different outcome or change the outcome only slightly.
Also, parameters can be changed at any point in time and the study conducted
here allows the determination of the side effects of these changes at different
stages of a system. That is, what are the consequences if changes are performed
before the infection, at early stages of the infection, or later once almost all
the nodes have already been affected? In summary, the goal of this paper is
to improve the understanding of the behavior of the model to allow a better
selection of parameter values to consequently improve its performance under
distinct circumstances.

This paper is organized as follow. The state model used for the feedback
control of an attack is described in Section 2. The technique used to compute
the sensitivity matrix to analyze the model as well as a detailed description of
the results on the sensitivity analysis are presented in Section 3. Conclusions
and remarks are drawn in Section 4.

2 Feedback Model

The architecture of the proposed approach [5] is composed of (centralized or
distributed) controllers that are responsible for collection and monitoring of
all the events in the network. These controller are knowledgeable about the
network topology, firewall configurations, security policies, intrusion detections
and individual events in the network elements. They are logical functions and
can be deployed anywhere in the network. The controllers are represented by
state models and are described next.

Sensitivity Analysis of an Attack Containment Model 129

2.1 State Model

It is assumed that, as the number of requests increases, a portion of them will
be sent to a delay queue to be served later. The remaining ones are sent to a safe
queue to be served immediately. The overall structure of this queuing system is
depicted in Figure 1. Parameters related to the size of the delay queue and the
number of dropped (time-out) connections are used to control the total number
of connections resulting in a slow down of a spreading worm. Sapphire worm
spreading is taken as an example to show the applicability of our approach.
The number of requests generated by the worm increase according to an s-shape
format [2]. The goal of the example is to slow down the spreading velocity of
a worm by controlling the total number of connections (C(t)) detected by a
firewall. A model capturing the behavior of the system, i.e., how the number
of total connections is changing is needed to achieve this goal. We assume here
that as the number of request increases, a portion of them will be sent to a delay
queue to be served later. Parameters related to the size of the delayed queue
and the number of dropped connections are used to control the total number
of connections resulting in a slow down of a spreading worm [5]. The rate of

change of the number of requests (
∂C

∂t
) is proportional to the number of served

requests (−C(t)), plus the number of connections transferred from the delayed
queue (β ×D(t), where β is the transfer rate and D(t) is the number of delayed
requests on the queue) and a portion of the new requests sent directly to the
safe queue (α × u(t), where α is the percentage of not delayed requests). This
results in Eq. 1 below.

Ċ(t) = −C(t) + βD(t) + αu(t) (1)

Connections
Requests

1− α

Server

dropped
connections

Safe Queueα

Delay Queue

β

θ

Fig. 1. Queue system which the state model is constructed upon

The rate of change in the size of the delayed queue (
∂D

∂t
) is proportional to

a fraction of the new incoming requests sent to the queue ((1−α)×u(t)) minus
the requests transferred to the safe queue (−β × D(t), where β is the transfer
rate), minus the time-out requests(−θ×D(t), where θ is the time-out rate). This
leads to Eq. 2.

Ḋ(t) = −βD(t) − θD(t) + (1 − α)u(t) (2)

130 R. Dantu, J.W. Cangussu, and J. Turi

It is assumed here that all requests in the safe queue, at one point in time, are
served. Therefore, at each time a server is allocated to handle the requests at the
safe queue, it serves all the new incoming requests plus all the ones transferred
from the delayed queue at the previous time period. Combining Eqs. 1 and 2 in
a state variable format leads to system in Eq. 3.[

Ċ(t)

Ḋ(t)

]
=

[
−1 β

0 −(β + θ)

] [
C(t)

D(t)

]
+

[
α

1 − α

]
u(t) (3)

The output part (Y (t)) of the system from Eq. 3 can be designed as needed,
as long it is a function of the state vector X(t) = [C(t) D(t)]T . Let us assume
we are interested in the size of both queues C(t) and D(t) in addition to the
rate of change in the safe queue (Ċ(t)). The size of the queues are the values of
the state vector. The first derivative of C(t) is represented by Eq. 1. The three
desired outputs specified above and the respective equations lead to the output
part (Y (t)) of a state model as presented by Eq. 4.⎡

⎢⎣
C(t)

Ċ(t)

D(t)

⎤
⎥⎦ =

⎡
⎢⎣

1 0

− 1 β

0 1

⎤
⎥⎦

[
C(t)

D(t)

]
+

⎡
⎢⎣

0

α

0

⎤
⎥⎦u(t) (4)

Since Eqs. 3 and 4 represent our model, we refer to them, hereafter as the
FBAC Model (Feedback Attack Containment). Now let us assume an input u(t)
as in Eq. 5 presenting an S-shape behavior.

u̇(t) = Ku(t)(1 − u(t)
s

) (5)

where s represents the saturation point of the S-curve and K is the growth
parameter. Eq. 6 represents the solution of Eq. 5 where u(0) represents the initial
condition. It has an S-shape format mimicking the behavior of a spreading worm.

u(t) =
s

1 +
(

s
u(0) − 1

)
e−Kt

(6)

Now consider a system with the following parameter values: α = 0.3 (only
30% of the requests are served immediately while the remaining 70% go to the
delay queue), β = 0.15 (15% of the requests in the delay queue are transferred to
the safe queue) and θ = 0.2 (20% of the requests on the delay queue are timed-
out at each time stamp). Also, consider the input u(t) as specified in Eq. 6
with parameters K = 0.08 and s = 30. The output of the model for the three
specified values are shown in Figure 2. As can be seen in the figure, the size of
both queues follow the S-shaped behavior of the input function. However, the
safe queue saturates with eighteen requests while the delayed queue saturates
with sixty requests per time unit. The velocity Ċ(t) (rate of change of requests)
increases initially until a inflection point is reached and it starts to decrease until
the saturation level in the size of the save queue is achieved and the velocity goes
to zero. The effects of the values of the parameters and consequences of changes
in these values are analyzed next in Section 3.

Sensitivity Analysis of an Attack Containment Model 131

0 100 200
0

2

4

6

8

10

12

14

16

18

time

num
ber

 of
req

ues
ts −

 C(t
)

0 100 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time
velo

city
 − d

C(t)
0 100 200

0

10

20

30

40

50

60

time

num
ber

 of
del

aye
d re

que
sts

Fig. 2. Output behavior of the FBAC Model for α = 0.3, β = 0.15, and θ = 0.2

3 Sensitivity Analysis

The understanding of how the state variables change according to changes in
the input parameters of the model can provide information to help on the de-
termination of the values of these parameters. In other words, we are interested
in analyzing how sensitive is the model to changes in its parameters. Three pa-
rameters are of interest in the state model from Eqn. 3: β, θ, and α. Consider

now a parameter vector G = [β θ α]T . The goal is to compute
∂X(t)
∂G

, where

X = [C D]T is the state vector of interest. A sensitivity matrix can be computed
to achieve this goal [4].

3.1 Computation of the Sensitivity matrix

One alternative for the computation of the sensitivity matrix would be the use of
the Kronecker product [6] that allows the differentiation of vectors with respect
to a matrix. However, the fact that the model in Eq. 3 presents a nice upper
triangular format combined to the fact that we have a vector and not a parameter
matrix allows an easier way to achieve the same goals. The differential equations
for the elements of the state vector X are defined by Eqs. 7 and 8 below.

Ċ(t) = −C(t) + βD(t) + αu(t) (7)

Ḋ(t) = −(β + θ)D(t) + (1 − α)u(t) (8)

Solving Eqs. 7 and 8 result in Eqs. 9 and 10 below.

C(t) = e−tc0 +
∫ τ

0

e−t+τ (β D(τ) + α u(τ)) dτ (9)

D(t) = et(−β−θ)d0 +
∫ τ

0

e(−β−θ)(t−τ) (1 − α) u(τ) dτ (10)

A Jacobian matrix [7] for the functions C(t) and D(t) with respect to the pa-
rameters β, θ, and α can be compute as in Eqn. 11. This matrix represents the
sensitivity matrix SM(t) for the model in Eqn. 3.

132 R. Dantu, J.W. Cangussu, and J. Turi

SM(t) =

[
∂C(t)

∂β
∂C(t)

∂θ
∂C(t)

∂α

∂D(t)
∂β

∂D(t)
∂θ

∂D(t)
∂α

]
(11)

where the elements of the matrix above are computed according to Eqs. 12,..., 17.

∂D(t)
∂β

= −tet(−β−θ)d0 −
∫ τ

0

(t − τ) e(−β−θ)(t−τ) (1 − α) u dτ (12)

∂D(t)
∂θ

= −tet(−β−θ)d0 −
∫ τ

0

(t − τ) e(−β−θ)(t−τ) (1 − α) u dτ (13)

∂D(t)
∂α

= −
∫ τ

0

e(−β−θ)(t−τ)u dτ (14)

∂C(t)
∂θ

=
∫ τ

0

e−t+τβ
(
−τ eτ (−β−θ)d0−

∫ z

0

(τ − z) e(−β−θ)(τ−z) (1 − α) u dz

)
dτ (15)

∂C(t)
∂β

=
∫ τ

0

e−t+τ

(
eτ (−β−θ)d0 +

∫ z

0

e(−β−θ)(τ−z) (1 − α) u dz + β ×
(
−τeτ(−β−θ)d0 −

∫ z

0

(τ − z) e(−β−θ)(τ−z) (1 − α) u dz

))
dτ (16)

∂C(t)
∂α

=
∫ τ

0

e−t+τβ

∫ z

0

e−(β+θ)∗(τ−z) ∗ u dz dτ (17)

Matrix SM(t) can now be used to compute variations in the state variables in
response to perturbations in specific parameters or combinations thereof. Eq. 18
is used to compute the variations.[

∆C(t)
∆D(t)

]
= SM(t) × ∆m where ∆m =

⎡
⎣∆β

∆θ
∆α

⎤
⎦ (18)

To obtain the variations for individual or combined changes in the values of
parameters, we set the ∆m matrix. For example, to analyze the effects of a
5% change in β and a -10% change in θ, we set ∆m to [0.05β − 0.1θ 0]T ,
which when substituted in Eq. 18 gives us [∆C(t) ∆D(t)]T . ∆C(t′) < 0 at
time t = t′ implies a decrease in the number of connections in the safe queue.
Logically, ∆C(t′) > 0 implies an increase in the corresponding queue. A positive
slope represents an increase in the queue size while a negative one represents a
decrease. That is, though the overall size of the queue maybe smaller than the
queue with no changes, a positive or negative slope represents how the modified
system is changing according to time. ∆D(t′) presents a similar behavior with
respect to the size of the delayed queue.

Sensitivity Analysis of an Attack Containment Model 133

3.2 Results of the Sensitivity Analysis

We now use the sensitivity matrix to analyze the sensitivity of the state variables
of FBAC Model to variations in its parameters. Unless stated otherwise, we as-
sume that FBAC Model represents a system with parameter values: β = 0.2, θ =
0.21, and α = 0.3. These values are arbitrary and do not affect the results of the
analysis reported here. We also assume here that the input u(t), representing the
number of new requests follows the behavior of Eq. 6 fort K = 0.08 and s = 20.

Assuming the input above and the parameters values specified before, Fig-
ure 3 shows the behavior of the state variables C and D with respect to time for a
10% increase in the value of β (∆m = [0.1×β 0 0]T). As can be seen in the figure,
the increase in the β parameter has opposite effects with respect to the safe and
the delayed queue. β determines how many connections are removed from the
delayed queue and send to the safe queue. Therefore, increasing β will naturally
decrease the size of the last while increasing the size of the former. Also, D(t)
is more sensitive to this change than C(t) as the overall absolute value of ∆D is
larger than ∆C . The fact that α is less than 0.5 means that more requests are be-
ing sent to the suspect queue than to the safe queue. Consequently, the first one
grows faster and larger then the second and more elements are transferred when
β is increased. When no changes for the parameters are observed, the safe queue
saturates around 13 connections per time unit and the delayed queue saturates
at 34 connections per time unit. The size of the queues at saturation point shows
that a 2.7% change in the safe queue is observed when α is increased by 10%.
The delayed queue is more sensitive to the same change presenting a 5% increase.

Changes in α present a similar behavior as described for β as it increases
the size of the safe queue and decreases the size of the delayed queue. However,
the fact that α is larger than β magnifies the sensitivity. Consequently, a com-
bined change of α and β also has a similar behavior. However, the sensitivity
in this case is a result of the sum of the isolated changes for α and β. That is,
∆C∆α=10%∆β=10% = ∆C∆α=10% + ∆C∆β=10% . The behavior of ∆D being similar.

When the value of θ is increased both queues present a decay in their size. As
θ represents the number of time out requests at the delayed queue, an increase
in its value will naturally decrease the size of the queue as more requests are

0 50 100 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

∆ c

time(t)

∆β =10%

0 50 100 150
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

∆ d

∆β =10%

time(t)

Fig. 3. Sensitivity of C(t) and D(t) for a 10% increase in the value of β

134 R. Dantu, J.W. Cangussu, and J. Turi

0 50 100 150
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

∆ c

time(t)

∆θ = 10%

0 50 100 150
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

∆ d

∆θ = 10%

time(t)

Fig. 4. Sensitivity of C(t) and D(t) for a 10% increase in the value of θ

0 50 100 150
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

∆ c

time(t)

∆β =10% ∆θ = 10%

0 50 100 150
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
∆ d

∆β =10% ∆θ = 10%

time(t)

Fig. 5. Sensitivity of C(t) and D(t) for a 10% increase in the value of β and θ

0 50 100 150

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

∆ c

time(t)

∆β =10% ∆θ = 10% ∆α = 10%

0 50 100 150
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

∆ d

∆β =10% ∆θ = 10% ∆α = 10%

time(t)

Fig. 6. Sensitivity of C(t) and D(t) for a 10% increase in the value of α, β, and θ

timing-out. Consequently, a smaller number of requests are transferred from the
delayed to the safe queue which also experiences a decrease. Such behavior is
shown in Figure 4. Combined changes for θ and α present a behavior similar to
Figure 4. Though more requests are sent to the safe queue, more are dropped
from the delayed queue and less are transferred from the last to the former.

Sensitivity Analysis of an Attack Containment Model 135

Fig. 7. Sensitivity of the safe queue

with respect to a 10% change in the

α parameter at different time stamps

Fig. 8. Sensitivity of the delayed queue

with respect to a 10% change in the α

parameter at different time stamps

A combined change of θ and β produces initially small increase in the size off
the safe queue. Though more requests are being transferred, initially, the dropped
(due to time out represented by θ) requests are more than the transferred ones
since θ is slightly larger than β. After some time, the changes average out and
the sensitivity goes to zero as noticed from Figure 5.

A different behavior is observed when all the three parameters are subjected
to 10% changes. In this case, the safe queue suffers an overall increase with some
oscillation before saturating as can be seen in Figure 6. The oscillation is due to
the fact that the overall number of requests (represented by u(t)) grows faster at
the beginning and since α has also being increased, it compensates the changes
in θ and β. After sometime, the changes in θ and β overcomes the growth of u(t)
and the change in α and the systems stabilizes.

All the results above are for changes of the parameters at time t = 0, i.e., at
the beginning of the spreading of a worm. Next, we analyze not only the changes
in the parameters but also the effect of delaying these changes (t > 0). The
following plots represent the time, the time of the change of the parameter(s),
and the sensitivity. As depicted in Figures 7 and 8, the time of change of α has
no effect on the behavior of both queues. Though more requests are sent directly
to the safe queue, less are being transferred from the delayed to the safe at any
point in time. This explains the behavior of Figures 7 and 8.

Changes in β represent the behavior shown in Figures 9 and 10. The size of
the delayed queue builds up with time. The later the change in β, the larger the
size of the delayed queue at that time. Therefore, more requests are transferred
from the delayed to the safe queue and an immediate increase is observed in
the last. However, the size of the delayed queue starts to decrease and so does
the size of the safe queue. This is observed until the increase in the number of
requests (input u(t)) compensates this behavior and the system starts to present
the same behavior as of changing β at time t = 0. This oscillation can be seen
as one step toward the equilibrium point, i.e., the saturation level of the queues
and the input. The behavior of the delayed queue for a 10% change in θ is similar

136 R. Dantu, J.W. Cangussu, and J. Turi

Fig. 9. Sensitivity of the safe queue

with respect to a 10% change in the

β parameter at different time stamps

Fig. 10. Sensitivity of the delayed

queue with respect to a 10% change

in the β parameter at different time

stamps

Fig. 11. Sensitivity of the safe queue

with respect to a 10% change in α and

θ at different time stamps

Fig. 12. Sensitivity of C(t) and D(t)

for a 10% increase in the value of α, β

and θ

to the one in Figure 10 (as it is any change that involves either β, θ, or both).
However, the safe queue presents a continuous decrease up to the saturation point
as less requests are now transferred. As with the changes in the parameters at
time t = 0, the combined change of α and β presents a similar behavior as the
change of β (Figures 9 and 10). However, as expected, the magnitude of the
changes are amplified when both parameters suffer a simultaneous perturbation.
The sensitivity of FBAC Model with respect to a combined change of 10% in
parameters α and θ at increasing time stamps is depicted in Figure 11. In this
case, at the beginning of the change when the input values are smaller, the
change in α overcomes the change in θ. That is, initially the additional requests
sent directly to the safe queue (a consequence of increasing α) are larger than
the additional time-out requests (a consequence of increasing θ). However, as
the delayed queue saturates, the time-out requests become larger than the extra

Sensitivity Analysis of an Attack Containment Model 137

requests send to the safe queue which then presents an overall decrease as seen in
Figure 11. The behavior for combined changes of β and θ has a similar behavior
as described above. However, the magnitude of the sensitivity and the reasons
for the behavior are different. In the first case the maximum increase of the safe
queue is around 0.3% which is amplified by more than six times when the changes
are for β and θ. Until the size of the delayed queue starts to decrease due to the
change in θ, more requests are transferred to the safe queue which presents an
initial increase in its size. After some time period, the changes compensate each
other and the sensitivity goes to zero.

The plot in Figure 12 shows the sensitivity of‘ the safe queue of FBAC Model
when all the three parameters are increased by the same factor. A prompt in-
crease in the size of the queue is observed at the beginning. The later the changes
of the parameters, the larger the increase. After that, the queue size suffers a de-
crease, denoted by the initial negative slope in Figure 12, followed by an increase
until a stable point is achieved. This oscillation is due to the same arguments
presented earlier when discussing Figure 6.

4 Concluding Remarks

Automatic containment of the propagation of computer worms is a difficult task
since we do not know the behavior of future worms. But we do know from past
experience that worms propagate by attempting large number of connections
to other hosts. If successful, the infected remote machine will try to infect the
other machines and the process continues. We are researching a containment
model based on the feedback control theory. In order to validate our model, we
have carried out sensitivity analysis on the input parameters (α, β, and θ). We
observed the change in size of these two queues with res pect to time. In addition
we observed another dimension (time of change) with respect to the state of the
worm propagation.

We have increased the values of α, β, and θ in increments of 10%. In all
the three cases, the system became stable before 50 time units and this is well
before the beginning of the attack period. Hence from our analysis we observe
that there is no impact of changing the individual input parameters on the
system accuracy or the stability in containing the attacks. But when we apply
the change at a later time, say during 100 time units, a sudden increase in β will
result in sudden increase in C and we consider this as a merging or clumping
effect. This is due to sudden transfer of connections from the delay queue to
safe queue. Next we have increased two out three parameters simultaneously in
increments of 10%. In all the cases we observed a small oscillation where the size
of safe queue increases/decreases and suddenly reverses the trend. For example,
simultaneous increase of θ and α will result in a sudden increase of safe queue
but trend reverses as θ (drop of connections in the delay queue) increases. This
is due to the fact that initially large number of connections are enqueued to the
safe queue in addition to transfer of connections from delay to the safe queue.
However, as the connections are timed out and dropped at the delay queue, less

138 R. Dantu, J.W. Cangussu, and J. Turi

and less number of connections are transferred to the safe queue. Finally we have
increased all three parameters simultaneously and we found similar oscillation
effects in the beginning. This is expected behavior when compared with the
two-parameter-change.

In all the experiments described above, the size of the oscillation depends on
the instant of change with respect to the S-shaped input. The later the changes,
the larger the oscillation but the system comes back to a stable state within short
period of time and hence there is no impact of this change on the outcome of the
model. Hence from the sensitivity analysis we have verified our assumption that
the changes in the input parameters have no effect on the overall system stability.
But there will be short period of instability in the beginning and after that the
system reaches a stable state and stays there for rest of the time. We have
analyzed the impact due to small changes in the input parameters. The overall
system behavior may be different for large variations of the input parameters.
The analysis of these changes is subject of future work.

References

1. S. Staniford, V. Paxson, and N. Weaver, “How to own internet in your spare time,”
in Proceedings of the USENIX Security Symposium, pp. 149–167, August 2002.

2. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “The
spread of the sapphire worm.” http://cs.berkely.edu/ nweaver/sapphire.

3. M. M. Williamson, “Throttling viruses: Restricting propagation to defeat malicious
mobile code,” in 18th Annual Computer Security Applications Conference, pp. 61–
68, December 2002.

4. Sensitivity Analysis. John Wiley & Sons, 2000.
5. R. Dantu, J. W. Cangussu, and A. Yelimeli, “Dynamic control of worm propaga-

tion,” in Proceedings. ITCC 2004. International Conference on Information Tech-
nology, vol. 1, pp. 419–423, April 5-7 2004.

6. J. W. Brewer, “Matrix calculus and the sensitivity analysis of linear dynamic sys-
tems,” IEEE Transactions on Automatic Control, vol. 23, pp. 748–751, August 1978.

7. R. A. DeCarlo, Linear systems : A state variable approach with numerical imple-
mentation. Upper Saddle River, New Jersey: Prentice-Hall, 1989.

	Introduction
	Feedback Model
	State Model

	Sensitivity Analysis
	Computation of the Sensitivity matrix
	Results of the Sensitivity Analysis

	Concluding Remarks
	References

