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ABSTRACT 

Distributed Denial of Service(DDoS) attacks are inevitable. The 

existing defensive mechanisms are relatively outdated. In this 

paper, we present a passive mechanism to reduce the impact of an 

attack on the network. We designed and implemented a robust 

feedback architecture, to maintain the stability of the network 

despite attacks. During an attack, the controller of the feedback 

architecture detects the irregularities in the response time and the 

necessary changes are made to the configuration to maintain the 

network in steady state. In this approach first, we model the 

network using black-box system identification technique. Second, 

we validate the model with test data by conducting various 

experiments such as varying the network topology.  Last, we test 

the model with the feedback architecture built in our lab 

environment. Results show that the feedback architecture provides 

an average model fit accuracy with positive results.1 

CCS CONCEPTS 

• Control system theory → Feedback control; System 

Identification • Networks → Network resilience; Distributed 

Denial of Service attack (DDoS) 

1 INTRODUCTION 

On October 21, 2016, Dyn, Inc., an Internet infrastructure company 

that provides core Internet services for Twitter, Reddit, and Spotify 

among others, sustained a distributed denial of service (DDoS) 

attack that took down a significant portion of the Internet on the 

U.S. East Coast [1]. Despite their best efforts, the effects of the 

multiple attacks were felt for several hours as Dyn used a wide 

range of techniques in their armor such as traffic shaping and 

rebalancing, internal filtering, and scrubbing services to recover 

from the attacks [2]. One problem with a DDoS attack such as this 

is that it may be difficult to distinguish between legitimate traffic 

and attack traffic. In fact, these attacks generated a barrage of 

legitimate retry activity that only made the impact on their 

customers and end users even worse. 

Interest in network security is skyrocketing due to the 

numerous highly visible and severely crippling attacks of our 

computers and networks and the resulting perception that our 

digital presence and environment is no longer secure. Despite the 

existence of a number of cybersecurity tools and techniques, many 
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networks are still vulnerable to malicious attacks. Since network 

systems are complex, unpredictable, and highly dynamic, static 

techniques that are reactive in nature are not able to effectively 

respond to the changing environment in real-time. In this manner, 

feedback control systems can play a vital role in mitigating these 

malicious attacks in real-time [21] by detecting and controlling the 

connections made by an infected host. 

Understanding the dynamic nature of traffic in a network is 

critical to being able to create and maintain an accurate model. 

Continuous revision and understanding of the model for a variety 

of given inputs and outputs, therefore, is critical to the success of 

being able to provide resiliency in the face of an attack or failure in 

the network. The response of the network as well as service 

disruptions should also be studied carefully to be able to 

characterize the behavior of the system. Once these components are 

understood, feedback mechanisms can then be applied to allow the 

network to adapt its configuration in response to an attack or failure 

to provide and maintain an acceptable level of throughput. 

Current mitigation techniques are extremely slow and subject to 

error, especially in the face of changing attack vectors that can vary 

in size and approach. In this paper, we propose a robust feedback 

mechanism to provide resilience in a network that is both scalable 

and effective in real-time. We look to system identification to 

design a model of our complex and dynamic network. We then 

validate our model using a configurable network that can act upon 

feedback received from our transfer function model and respond to 

disruptions in the network. The importance of this mechanism is 

that it provides a passive, real-time, and scalable solution to 

mitigate the impact of an attack on the network. 

1.1 RELATED WORK 

Control theory approach has been applied to wide range of 

computing systems [7]. There has been significant amount of 

research on identifying and performance modeling of web servers 

[5, 13, 15, 17]. Most of these models are based on linear time 

invariant (LTI). There have been also several approaches for 

designing software systems using control theory [14]. An LPV 

approach to performance modeling of web server on a private cloud 

was presented in [12]. In this work an operating region for 
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the web server was defined around which the LPV state space 

model was derived. An LPV approximation for admission control 

of a web server was presented in [15]. T Patikirikoral et al., 

proposed a Hammerstein-Weiner nonlinear model based control for 

quality of service(QoS) management [18]. A control oriented 

model for performance management in virtual environment was 

suggested by Dharma Aryani et al., [19]. Most of these works 

concentrate on performance analysis of a web server and software 

systems.  An Architecture for network security using feedback 

control has been proposed in [21]. These mechanisms do not model 

the attack.  

To the best of our knowledge, the use of feedback control 

to build resilient network has to be yet explored. However, there 

has been work done on the resilience problem of routing in a 

parallel link network with a malicious player using game theoretic 

approach [22]. But their focus was on building efficient solution 

algorithms. The solution was a theoretical approach. 

Our approach has a solid defense mechanism. The 

feedback mechanism implemented in our approach stabilizes the 

network and makes the network function robustly despite of attack. 

Also, we prove that the QoS of the network remains same even after 

the network is disrupted. 

 

 

 

 

 

2  ARCHITECTURE 

2.1 Network Topology 

To demonstrate the effectiveness of our feedback mechanism, 

we implement a network connected in parallel using eight Cisco 

Catalyst devices as shown in Figure 2. The network itself consists 

of three parallel links, each comprising of four routers connected in 

series. Each router is a configured to use the Open Shortest Path 

First (OSPF) protocol. The three-parallel links are configured such 

that they share the load equally. The administrative distances 

between the routers are made identical. The router R4 in Figure 2 

is configured to perform the load-balance operation per destination. 

This load-balance feature in the Cisco router distributes the packets 

based on the destination address. 

The design of this network is deliberate so as to be able to 

measure the performance of our network relative to one connected 

in series as shown in Figure 1. In this manner, we are able to study 

the response of the network and establish benchmarks needed to 

characterize the behavior of the system and ultimately understand 

the dynamics of the system and be able to respond to disruptions or 

failures in the network. 

2.2  Client 

Linux containers (LXC) [11] were used to emulate real word 

scenario. LXC is an operating system level virtualization that is 

able to run multiple Linux hosts on a single system. These 

containers can resemble clients in sending requests to a web server. 

These containers are connected through a bridge interface in a same 

subnet. In this manner, we are able to model a significant number 

of users making requests to the server. 

2.3  Server 

A standalone machine is used to host an Apache HTTP web 

server [10] using an Intel Xenon processor (4 cores) with 32 GB 

RAM. The Apache server is configured to accept 50,000 requests 

per second. This configuration is required to ensure that all of the 

client requests in our model are served without being rejected. The 

Keep-Alive directive is enabled in the configuration to reduce the 

Figure 1: Experimental Topology: Network elements connected in 

series  

Figure 2: Experimental Network Topology: Network Elements Connected in Parallel  
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number of connections that will ensure the server does not become 

overloaded. 

3  METHODOLOGY 

3.1  System Identification 

To be able to analyze the stability and sustainability of a 

network so as to design a robust feedback system, a system model 

representing the complex network is required. A lower-order linear 

model is not adequate to model the dynamics of such an intricate 

network. We are thus motivated to derive a model using the system 

identification technique. System identification is the science of 

building analytical models of dynamic systems from observed 

input-output data [4]. Using this process, we are able to obtain a 

mathematical relation between the input and output data.  

We use a black box approach to identify the model of the plant 

as shown in Figure 3. We consider the complete network 

comprising of clients, network devices, such as routers, switches, 

etc., and web server as a plant. We then model this plant using the 

system identification toolbox present in Matlab [8]. The input 

parameters to the plant are the number of users browsing the web 

server and the number hits, or requests, per second to the web 

server. The output parameter that is measured is response time, 

which serves as a Quality of Service (QoS) metric. 

3.2  Assumptions 

The following assumptions are made to identify and model the 

system: 

1) We consider two inputs: the number of users making 

requests of the web server and the number of hits per 

second. We define the number of hits as the number of new 

or unique users sending requests to the server.  

2) We limit the total number of users to 20,000. 

3) The web server serves a single static page with a size of 

200 KB.  

4) We consider one output: the response time.  

5) We consider the system to be stable when connected in 

parallel and modeled the system accordingly. 

3.3  Generation of Client Requests 

We use the Apache Jmeter load tester to generate the HTTPS 

requests as well as to measure the performance of the server in 

terms of the response time. In particular, we apply the distributed 

testing [23] component of Jmeter to send multiple HTTPS requests 

from the Linux containers. In distributed testing, one master node, 

or controller, initiates the test on multiple slave systems. The Linux 

containers, operating as slave systems, can then periodically send 

the QoS performance data such as response time, latency, number 

of requests, etc. to the master controller. The master controller also 

collects the performance metrics from the server, such as CPU and 

memory utilization, thus acting as a sensor that records the output 

data periodically. 

3.4  Background Traffic 

We use the hping3 [3] tool as a background traffic generator 

to insert homogenous traffic along the routers R1 and R3 as 

shown in  Figure 2. This tool can generate this background traffic 

when the network is connected in series or when the parallel links 

are enabled, distributing traffic evenly among the three active 

paths. 

3.5  Feedback 

Prior to being able to implement the feedback architecture 

shown in Figure 4, we identify the applicable model using the 

system identification toolbox. We then conduct several 

experiments to determine the region of stability, or acceptance, for 

the response time and thus are able to identify the dynamic 

characteristics of the system accordingly. In doing so, we found that 

the network is more resilient when connected in parallel compared 

to the network connected in series Section 3.1. Hence, we consider 

this parallel network as a benchmark for our model.  

With the network initially connected in series, the feedback to 

the network is applied by enabling the parallel links. The closed 

loop feedback model of our approach is shown in Figure 4. For the 

purposes of this paper, we consider the homogenous background 

traffic to be legitimate traffic. The response time is fed back to the 

proportionality controller, which is aware of the network topology. 

This feedback is then used to detect anomalies in the response time. 

When the network is attacked, the network can go into an unstable 

state. With the help of the feedback mechanism, the controller 

detects the irregularities and disturbances of the response time so 

that the necessary configuration changes can be made to bring the 

network back to the desired state.  

4 ANALYSIS OF RESULTS 

Our approach is to initially model traffic when the network 

connectivity is fixed in series and in parallel to establish a baseline 

of what we would expect our input-output traffic profile to look like 

Network 

(Plant) 

users 

  server hits 

response time (s) 

 

Figure 3: Open loop system. The input variabes are number of 

users and server hits; The output variable measured is response 

time to access the web page. 

Network 
Change 

configuration 

Monitor 

response 

time 

Disturbance 

Feedback 

signal 

legitimate 

traffic 

Attack  

Figure 4: Automatic Feedback Control:  Real-time Configuration 

Changes in the event of a Disturbance (e.g., DoS attack)  
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during an attack. Figure 5 shows this input-output of attack traffic 

with background traffic data collected from the network connected 

in series and in parallel. The input to the network is the number of 

users and the hits to the server. The output of the network is the 

corresponding response time, measured in milliseconds. 

As is shown, the network is loaded with a step input of 20,000 

users sending requests to the web server. We can easily observe 

that, when given the same number of users making requests to the 

server, the response time of the network performed significantly 

better than that of the network connected in series, as we expect, 

resulting in approximately a 25% drop in the response time. As a 

result of this increase in throughput, the number of successful hits, 

or requests, increased by approximately 16% for the network 

connected in parallel. Thus, we would want our feedback system to 

be able to bring our input-output traffic profile, when connected in 

series that of the traffic profile for the network connected in 

parallel.  

4.1 Stability analysis 

4.1.1 Stable system. Here, we focus on the stability of networks. 

In particular, we note that network traffic itself can be unstable, 

perhaps due to large fluctuations in demand brought about by a 

varying number of users and retry attempts in the case of timeouts 

or other message failures. First, we attempt to model the steady 

state, and then compare the responses with the model using fit 

accuracy in such that the higher the fit, the closer, or more stable, 

our data is to the model. Figure 7 shows the fit accuracy of the 

predicted transfer function model against the traffic data collected 

from the network connected in series using only attack traffic. 

Figure 5: System response for the network connected in series and in parallel topologies. (a) Response time for the HTTPS requests   for 

the series and parallel network configuration (b) and (c) are the number of users and number of hits connected in series and parallel. 

Figure 6: The transfer function (through system identification) 

closely follows the experimental data even during an attack. 

(observed 79% match). Parallel network topology was used as 

shown in Figure 1, 
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Since our model shows a fit accuracy of approximately 81%, we 

establish this transfer function model as a baseline for a stable 

region.  

We then model the steady state for attack and background traffic 

when the network is connected in parallel, as is seen in Figure 6. 

We observe that the fit accuracy for our network connected in 

parallel is nearly 80%, which now serves as our benchmark for us 

to attain for our network under attack.  

Table 1 summarizes the average response time in table form 

when the network is connected in series as well as in parallel. We 

observe that the average response time in steady state for networks 

connected in parallel is similar to networks connected in series up 

to 5,000 users. As the number of users increase, however, the 

response time of the network connected in series tends to diverge 

from that of the network connected in parallel. 

4.1.1 Unstable system. Although we observed that when we ran 

attack traffic only in our network connected in series, we obtained 

a rather stable system where our transfer function model yielded a 

very good fit. In Figure 8, we now see that when background traffic 

is added to our network running in series, the fit accuracy of our 

model drops significantly to approximately 33%, indicating that 

our system is now unstable, most likely because the nodes are 

congested possibly due to an attack.  

4.2  Feedback Application 
We now show our input-output traffic profile with attack and 

background traffic when feedback is applied to our network 

connected in series once the system becomes unstable, causing the 

network connection configuration to change from series to parallel. 

When connected in parallel, the load is shared among the links, 

causing in a decrease in the response time for client requests. As a 

result, the number of hits increases as expected because of the 

increase in throughput. Table 2 shows the accuracy of the predicted 

data against the experimental data when the network is connected 

in both series and parallel. It is important to note that as the number 

of users increases in a network connected in series, the fit accuracy 

of our model drops significantly once the number of users reaches 

5,000 or more. The model accuracy for networks connected in 

parallel, however, remain steady throughout the attack. 

 

What is important in Figure 9 is that once our model detects 

instability of the network, our feedback mechanism has a positive 

effect on the network in real-time, not in hours as we saw in the 

case of the DNS attack on Dyn that resulted in a significant amount 

of downtime for its customers and end users. Figure 10 shows the 

stable region of Figure 9 after the feedback mechanism was applied 

that jumps back up to have a fit accuracy of approximately 75%, 

meaning that the network is back in a stable state. Although we did 

not actively stop the attack, we were able to use a passive approach 

to in fact mitigate the attack.  

Figure 7: The identified transfer function model closely follows 

the data collected from the network under attack connected in 

series without the presence of background traffic. 

Figure 8: The experimental data does not follow the identified 

transfer function when the network is under attack. This poor fit 

% indicates that the network is unstable.  

Figure 9: (a) Response time of the network before and after the 

attack .  (b) and (c) are the inputs provided to the network.  The 

feedback is applied at time = 1224 seconds to the network under 

attack. The network goes to stable region from unstable state 

within 300 seconds. (c) shows the increased number of hits due to 

the increase in throughput. 
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Table 1: This table summarizes the average response time, when 

the network is connected both in series and parallel 

No. of 

users 

Average response time (ms) 

Series Parallel 

500 366 272 

1000 1000 900 

5000 3600 3500 

10000 4800 3800 

15000 6600 4300 

20000 7800 6000 

 

Table 2: This table summarizes the average response time, when 

the network is connected both in series and parallel 

Model Accuracy (%)  

No. of users Series Parallel 

1000 64.91 64.34 

5000 70.36 66.32 

10000 74.62 42.23 

15000 76.31 41.11 

20000 80 33.25 

 

 

5 CONCLUSION AND FUTURE WORK 

The attack traffic is modeled in this approach to ensure the 

network maintains a stable state with any type of legitimate traffic 

flowing through the network. Table 1 shows that the passive 

mechanism adapted proves to be promising in maintaining a steady 

state of the network even when it is disrupted. We used a 

proportionality controller for this paper, though we suspect 

significantly better results may be obtained by using a PID and a PI 

controller. 

Our model is trying to fit all the data points in a higher order 

system, which may yield a slightly lower percentage of accuracy. 

The model can be fine-tuned to a lower order for a better fit 

accuracy. When the data is filtered further, lower order models 

yield better accuracy; however, we might lose critical data. 

In the future, we will fine-tune the model by building a better 

controller. The response time does not show a drastic drop 

regardless of adding three parallel links. This is due to the 

bottleneck added at the server. This issue should be able to be 

resolved using a distributed server architecture. We would also like 

to extend this architecture to distributed servers to load-balance the 

requests. We would like to test this feedback mechanism in 

Software Defined Networks architecture where control theory 

proves to be more effective  
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