
Dynamic Control of Worm Propagation

 Ram Dantu João Cangussu Arun Yelimeli
University of North Texas University of Texas, Dallas University of North Texas

 rdantu@unt.edu cangussu@utdallas.edu aky0001@unt.edu

Abstract

In a computer network, network security is

accomplished using elements like firewalls, hosts,
servers, routers, intrusion detection systems, and
honey pots. These network elements need to know the
nature or anomaly of the worm in priori to detect the
attack. Modern day viruses like Code red, Sapphire
and Nimda spread very fast. For example, Sapphire
can double its size and infect more than 90% of the
vulnerable hosts within 10 minutes. There fore it is
impractical if not impossible for human mediated
responses to these modern day fast spreading viruses.
Several epidemic studies show that automatic
tracking of resource usage and control is an effective
method in containing the damage. In this paper we
propose a state space feedback control model to
detect and control the spread of these viruses by
measuring the number of connections an infected
host makes.

The objectives of the mechanisms are to
slow down the spreading velocity of a worm by
controlling (delaying) the total number of
connections made by an infected host. As expected,
the model showed that the sooner the infection is
detected the faster the reduction of the spreading
velocity. Additionally, the deployment of a controller
at different levels (host and firewall) has shown to be
very promising.

1. Introduction

In the past active worms have taken hours if
not days to spread effectively. This gives sufficient
time for humans to recognize the threat and limit the
potential damage. This is not the case anymore.
Modern viruses spread very quickly. Damage caused
by modern computer viruses (example - Code red,
sapphire and Nimda) is greatly enhanced by the rate
at which they spread. Most of these viruses have an
exponential spreading pattern. Future worms will
exploit vulnerabilities in software systems that are
not known prior to the attack. Neither the worm nor

the vulnerabilities they exploit will be known before
the attack and thus we cannot prevent the spread of
these viruses by software patches or antiviral
signatures [1].
 Some of the objectives of this paper are to
design a State space control model to: (1) detect
worm based threats; (2) dynamically quarantine
infections to localized sectors to prevent propagation
of infection and develop technologies to
automatically and dynamically quarantine these fast
spreading worms to a peak infection portion of 1% of
vulnerable machines that would otherwise infect
approximately 100% of vulnerable machines.

The model developed is based on the
analysis of some popular worms that spread very fast
caused havoc in the recent history. Below is a brief
description of these worms, their spreading pattern
and some of the techniques these worm authors’ use
to increase the spread rate.

Code Red I : On July 12, 2001, this worm began to
exploit the buffer-overflow vulnerability in
Microsoft's IIS web servers. Upon infecting a
machine, the worm checks to see if the date (as kept
by the system clock) is between the first and the
nineteenth of the month. If so, the worm generates a
random list of IP addresses and probes each machine
on the list in an attempt to infect as many computers
as possible. Once Code-Red infected a host, it spread
by launching 99 threads, which generated random IP
addresses, and then tried to compromise those IP
addresses using the same vulnerability. In some cases
a hundredth thread defaced the web server [3].

Code Red I I : This worm also used the same
Microsoft’s IIS web server’s buffer overflow
vulnerability as Code Red I. This worm had single
stage scanning technique and used a localized
scanning strategy, which made it successful in
infecting addresses close to it. It chose a random IP
address from within the class B address space (/16
network) of the infected machine with probability of
3/8 and it chose from its own class A (/8 network)
with probability ½ and finally a random address from
the whole internet with a probability 1/8. This

strategy was very successful, because there was more
probability of finding vulnerable machines within a
network, once it has passed through the external
firewall. [3]

Nimda: this worm had a very ferocious spreading
strategy. It used multiple ways to spread through the
network. This worm is believed to have used the
following five different strategies to spread
1. “By infecting Web servers from infected client

machines via active probing for Microsoft IIS
vulnerability.

2. By bulk emailing of itself as an attachment based
on email addresses determined from the infected
machine.

3. By copying itself across open network shares.
4. By adding exploit code to web pages on

compromised servers in order to infect clients
which browse the page.

5. By scanning for the backdoors left behind by
Code Red II and also the “sadmind” worm” [3]

Sapphire: sapphire worm was one of the fastest
worms in history. It was so fast, it doubled in size
every 8.5 seconds and infected more than 90% of the
vulnerable hosts within 10 minutes. This worm also
used a buffer overflow vulnerability of Microsoft’s
SQL server. It infected more than 75000 hosts and
caused extreme consequences such as cancelled
airline flights, interference with elections and ATM
failures [4].
 One of the most significant features of
Sapphire was its speed of spread. The worm achieved
full scanning rate (over 55 million scans per second)
in approximately three minutes. It slowed down after
initial exponential rate due to bandwidth constraints
of the network but most vulnerable machines were
infected within 10 minutes of the worm’s release [4].
 Sapphire used random scanning strategy to
spread though the network. Worms using random
scanning strategy have exponential pattern at the
beginning of the spread and slow down later as they
try to infect the same machine again and again.

Response to Sapphire’s spread

Most accurate data was obtained from the
University of Wisconsin Advanced Internet Lab,
where all packets into an otherwise unused network
(a “ tarpit” network) are logged.

Many sites began filtering all the UDP
packets with a destination port of 1434. Though
filtering reduced the bandwidth consumed by the
infected hosts, it did nothing to limit the spread of the

worm.

Figure 1. Aggregate Scans/Second in the first 5

minutes based on incoming connections to
the WAIL Tarpit.

The response was so slow that by the time

filtering was implemented; the worm had infected
almost all the susceptible hosts [4]. Figure 1 & 2
shows the scanning rate of this virus in the first five
minutes and first twelve hours after the launch of the
worm.

Figure 2. Aggregate Scans/Second in the 12 hours

after Initial outbreak [4].

Distr ibuted Denial of service attacks

This can be described as attempt by an
attacker to prevent legitimate users from using
resources. An attacker usually floods the network and
steals the bandwidth available to the user.
 Some well-known examples of denial of
service attacks include:

• “Attempts to “ flood” a network, thereby
preventing legitimate network traffic.

• Attempts to disrupt connections between
two machines, thereby preventing access to
a service.

• Attempts to prevent a particular individual
from accessing a service.

• Attempts to disrupt service to a specific
system or person” [2].

V. Paxson et al describes some of the techniques,

which could be used by the worm authors to enhance
the spread rate of worms.

“ Better ” worms - theory

There are several ways a worm spreads
through the network. Some of the common
techniques employed by the worms are discovering
more widespread security holes and increasing the
scanning rate. Apart from these some of the strategies
that a worm author could adopt are:

(i) Hit-list scanning.
(ii) Permutation scanning.
(iii) Topologically aware worms.
(iv) Internet scale hit lists.

The ultimate goal of all these strategies is to
spread the worm as fast as possible.

(i) Hit-list scanning: though most of the worms
propagate exponentially, it is the initial take off time
that is difficult. It takes more time to infect the first
1000 machines. The strategy to overcome this
problem is called Hit list scanning. In this strategy
the worm author collects a list of 10,000 to 50,000
potentially vulnerable machines.
 Some of the ways the worm author collects
these list of vulnerable machines are:

• Stealthy scans – it can be obtained by scanning

the entire Internet.
• Distributed scanning – Using this strategy the

attacker can scan a few dozen to few thousand
already-compromised “zombies” .

• DNS searches – A list of domain names can be
obtained and then their IP addresses from
domain names.

• Spiders – Use of web-crawling techniques
similar to search engines to get a list of most
interconnected web sites.

• Public surveys - there are surveys to a get a list
of potential targets.

• Just listen – Some applications like peer-to-peer
networks advertise their servers, also previously

effective worms broadcast the vulnerable
machines.

(ii) Permutation scanning: one of the main problems
faced by random scanning was that many infected
machines were scanned many times wasting time.
This problem was overcome in permutation scanning
where all worms share a common pseudo random
permutation of the IP address space.

(iii) Topological scanning: This is an alternative
approach to obtain a set of vulnerable IP addresses.
This method uses information contained in the
victim’s machine.

(iv) Flash worms: This is an alternative to hit-list
scanning discussed. Using an OC12 connection all
the web servers can be scanned within 2 hours. The
list is divided into n blocks. After infecting a host, the
worm hands over the list to a child worm, which goes
on and infects that particular block. Thus parallel
spreading can be achieved and hence faster worms
[4].

Existing Defenses

There are a variety of network components
in the market today that protect machines from
different kinds of worms. Network perimeter is
primary concern for security managers. Security
managers have focused on multiple security
components to keep their networks safe. Examples
are: firewalls, intrusion detection systems, and honey
pots.

Intrusion Detection Systems: intrusion detection
systems are like burglar alarms. There are two types
of intrusion detection systems, one is network and
another is host. Network intrusion detection systems
examine the network traffic and host intrusion
systems detect outsider infiltration as well as
unauthorized access by users who are trusted
insiders. Intrusions are characterized into network
traffic patterns that are suspicious and these are
called signatures. These signatures are compared
against the network traffic patterns and deviation
generates security alerts. But these alerts can be false
alarms. Due to nature of the signatures, these systems
can be as accurate as the signatures themselves.
Moreover, these systems are reactive and cannot
prevent the attacks [5].

Firewalls: Currently there are several kinds of
firewalls deployed in the perimeter of the networks.
These are: static packet filters, dynamic packet filters,

circuit level packet filters, proxy gateways, and
stateful inspection firewalls. Proxy firewalls often
only have the packet filter rules applied or are used to
protect just one server, such as external web server.
Hence most of these firewall rules are static and
cannot respond to dynamic changes [5].

Firewall Routers: Routers with firewalls are great
for cost containment. However, they add complexity
and overhead to the router’s function. Many security
experts are concerned in having all security in one
box [5].

Honey Pots: Honey pots lure attackers by presenting
a more visible and apparently vulnerable resource
than the enterprise network itself. These are also
useful for forensics. But these can be vulnerable
themselves because they attract attackers special
attention. Also if they are incorrectly configured, they
make network more vulnerable [5].

Thus firewalls, routers, Intrusion detection
systems, and honey pots can be very useful as
elements for network defense but they can not protect
the network by themselves. But by careful integration
and engineering of these devices, security level can
be increased [5].

2. Methodology

 There is a need to control the spread of
above mentioned, fast spreading viruses

automatically. They spread very fast for human
initiated control. Some of the automatic approaches
like quarantining the systems and shutting them down
reduce the performance of the network. False
positives are one more area of concern [1].

Williamson [1] describes a novel approach
to this problem. This situation can be improved a lot
by using “benign” responses, those that slow but do
not stop the virus. The main idea is to delay the virus
by so long as to earn time for human mediated
responses [1]. Feedback control strategy is desirable
in such systems because well-established techniques
exist to handle and control such a system [15].

This technique is based on the fact that an
infected machines tries to make connections at a
faster rate than the machine that is not infected. The
idea is to implement a filter, which restricts the rate at
which a computer makes connection to other
machines. The delay introduced by such an approach
for normal traffic is very low (0.5 –1 Hz). This rate
can severely restrict the spread of high-speed worm
spreading at rates of at least 200 Hz [1].

As a first step towards our design, we apply
feedback control to the first level of hierarchy (node).
We will then expand the model to further levels as
shown by the system architecture in the next section.
By careful integration, engineering, measurement and
control of these devices, network security level can
be increased [5][6]. We have implemented classical
feedback control theory model for network-level
security management.

Advantages of feedback control are: (i)
System (e.g., group of security components in a
network) output can be made to follow the specified
function in an automatic fashion; (ii) System
performance is less sensitive to variations of

parameter values; and (iii) Use of feedback makes it
easier to achieve the desired transient and steady-
state response.

N od e ev en t s

I n t r u si on
D et ec t i on

A u d i t i n g

M on i t or i n g

Pr ep ar at i on /Plan n i n g

N ew sign atu r e
an d aler t s

U n ex p ect ed
Pin ho l es

Fi l ter f alse
posi t i v es

F in ger p r i n t s

R ou t i n g an om al i es

F r om t h e n et w or k T o t h e N etw or k

M ap p in g

M apping securi ty
f eatu r es to a
N et w ork el em ent

Secu r i t y
r ep or t i n g

U p d at e
F W r u l es

U p d ate
Sign a t u r es

R ecov er y
& R esp on se

Pr otoco l
vu l nerab i l i t i es

N od al
A n om al i es

C hanges i n
c on f i gurati on

~100ms~ 1 sec~ one m inute~ few m inutes

M easu r em ent s

Fi gure 3. C on trol l er arch i tecture for end-to-end secur i ty engineering

System architecture

It is assumed a secured network consists of
firewalls, sensors, analyzers, honey pots, and various
scanners and probes. These components are either
separate elements or collocated with hosts, servers,
routers and gateways.

In this architecture, a (centralized or
distributed) controller is responsible for collection
and monitoring of all the events in the network. This
controller is knowledgeable about the network
topology, firewall configurations, security policies,
intrusion detections and individual events in the
network elements. This controller is logical function
and can be deployed anywhere in the network.

As shown in Figure 3, the controller
communicates with clients located in different
network elements. Clients are responsible for
detection and collection of the events in the node and
communicate to the controller. Subsequently,
controller will run through the algorithms, rules,
policies and mathematical formulas for next course of
action. These actions are communicated to the
clients.

As described in Figure 3, the architecture
evolves from a concept of closed loop control.
Changes regarding the security behavior are captured
and mixed with the incoming network signals. This
piece of information is used to formulate the next
course of action. The final result is outcome from
multiple loops and integration of multiple actions.
The response times within each loop are indicated in
Figure 3 (we call them defender-loops). Response
time varies from few milliseconds to several tens of
minutes. For example, nodal events like buffer
overflows, performance degradation can be detected
in matter of milliseconds. On the other hand, it may
take several seconds to detect failed logins, changes
to system privileges and improper file access.

We split the number of connection requests into
three categories.

• Connections to machines that are considered safe

(a queue is maintained for safe list connections)
• Connections that are delayed (All the connection

not present in the safe list but can go through)
• Connections that are dropped for other reasons

Next, a state model for the diagram shown above is
presented where control is achieved by varying
model parameters.

State Model

Here it is assumed that, as the number of
requests increases, a portion of them will be sent to a
delay queue to be served later. Parameters related to
the size of the delay queue and the number of
dropped connections are used to control the total
number of connections resulting in a slow down of
spreading worm.

Sapphire worm spreading is taken as an
example to show the applicability of our approach.
The goal of the example is to slow down the
spreading velocity of a worm by controlling the total
number of connections (C(t)) detected by the host. A
model capturing the behavior of the system, i.e., how
the number of total connections is changing is needed
to achieve this goal. We assume here that as the
number of request increases, a portion of them will
be sent to a delay queue to be served later.
Parameters related to the size of the delayed queue
and the number of dropped connections are used to
control the total number of connections resulting in a
slow down of a spreading worm [6][7].

Threshold

α

α

Delay queue

Accepted connections
Connections
requests

d
ββββ

1- 2α

D

Connections
not accepted

Figure 4. Model for connections accepted, delayed

and rejected for parametric control.

The rate of change of the number of
connections (dc/dt) is proportional to the number of
dropped connections (-dc, where d is the specified
drop rate) plus the number of connections removed
from the delayed queue (βD, where β is delay
parameter and D is the number of delayed
connections on the queue) and the new successful
connections (αu, where α is the percentage of not
delayed connections). This results in

c dc D uβ α= − + +
�

 (1)
Differentiating Eqn. 1 we obtain

[]c d c= −
�� �

 (2)

Substituting for c
�

 we obtain

2c d c d D d uβ α= − + − +
��

 (3)
The rate of change in the size of the delayed

queue (dD/dt) is proportional to the new incoming
successful connections send to the queue (αu) minus
the connections removed from the queue -βd. This
results in

D D uβ α= − +
�

 (4)

Where D is the size of the delay queue; d is the drop
rate; β is the delay parameter; u is the total
connections arriving; and α is the success rate

Combining equations for dC/dt and dD/dt in

state variable format leads to

[]2

0

0

0 0

c c
d

c d d c d u

D
D

β α
β α

β α

� �
� �� � −� � � �� �� � � � � �� �= − + −� � � � � �� �� � � � � �−� � � �� �� � � �

� �

�

�� �

�

 (5)

[]2

0 1 0 0

1 0 0 0

0

0 0 1 0

C c
C

c u
d d d

C D
D

β α

� �
� � � �� �� �
� � � �� �� �
� � � �� �= +� �
� � � �− −� �� �
� � � �� �� � � �� � � �� �� �

�

�

��

 (6)

The output vector of Eq. (6) presents the

results for the computation of the total number of
connections C(t) as shown in Figure 6a, the rate of
change of the first derivative of C(t), that is, the
acceleration (Figure 6b), and the number of
connections on the delayed queue (Figure 6c). The
input in Eq. (6) represents the number of requested
new connections per time unit. In the case of a

normal traffic the average number of requests can be
considered constant over a period of time. However,
an S-shape form is expected for the spread function
of a worm and dU/dt=U(1-U) is used to generate the
input. The solid line in Figure (6) represents the
behavior of the system with drop rate and delay
parameters under “regular” conditions. A question is
of keen interest here: “How to use the output of the
model to detect a spreading worm?” Once an

Figure 6: Behav ior of the state model for the control of the number of connections on the presence of a
worm spreading according to an S-shape function. (a) Shows the total number of connections with and
without feedback; (b) shows the acceleration and the detection times; (c) shows the number of connections
on the delayed queue; and (d) shows the results of the application of the feedback loop approach at the host
and at the firewal l level.

infection is identified, feedback control can be used
to reduce the velocity of the spreading function.

The dashed lines in Figure 6 represents the
results for different detection times of the application
of feedback control for the scenario described above.

The acceleration value of the number of
connections is used here as a detection mechanism.
That is, when the acceleration reaches a certain
threshold the drop rate and the delayed parameters on
the model in Eq. (6) are adjusted to slow down the
spreading of the worm. Figure 6a shows the results of
this detection mechanism for three distinct values for
the threshold. As expected, the sooner the infection is
detected the faster the reduction of the spreading
velocity.

Now, consider a scenario where hosts are
connected to the firewall and a controller is available
at the hosts and at the firewall. The control can be
done at the host level, at the firewall level, or at both
levels. Figure 6 shows the results of applying or
firewall) converges to the same results though a
larger overshoot is observed at the firewall level.
Regarding detection time, the acceleration at the
firewall level increases faster than at the host level
and consequently an earlier detection time is
expected at the firewall level. As observed from
Figure 6, a double feedback loop has the advantage
of the early detection time at the firewall level and a
more effective result in slowing down the infection.

As shown in the graph the system was tested
to check the behavior by applying control at different
stages on spreading.

4. Design & Implementation

Figure 9: Communication between various elements
for meeting end-to-end security requirements

It is assumed a secured network consists of firewalls,
sensors, analyzers, honey pots, and various scanners
and probes. These components are either separate
elements or collocated with hosts, servers, routers
and gateways.

In this architecture, a (centralized or
distributed) controller is responsible for collection
and monitoring of all the events in the network. This
controller is knowledgeable about the network
topology, firewall configurations, security policies,
intrusion detections and individual events in the
network elements. This controller is logical function
and can be deployed anywhere in the network.

As shown in Figure 8, the controller
communicates with clients located in different
network elements. Clients are responsible for
detection and collection of the events in the node and
communicate to the controller. Subsequently,
controller will run through the algorithms, rules,
policies and mathematical formulas for next course of
action. These actions are communicated to the
clients.

5. Conclusions

 In this paper, we have proposed a security
controller based upon the feedback control theory.
The presented state model has shown to be
completely controllable and observable in addition of
being stable. Several measurements, signatures,
topological changes, finger prints are continuously
extracted from the network. These measurements are
fed back to the feedback control loop and compared
with the existing conditions and an error is generated.
This error signal is used to calculate the transfer
function of the feedback loop and update the security
components in the network. For example, new policy
rules are added, deleted and new honey pots may be
created.
 To satisfy the feedback control loop, a
specification and requirements for expected output
need to be specified. Also, certain measurements,
benchmarks, and metrics are specified for satisfying
these requirements. Likewise, certain buffer size,
CPU utilizations are also specified. Further work
involves specification of requirements, and
benchmarks, and deriving transfer functions for each
module in the feedback loop.

6. References

[1] Williamson, M.M, “Throttling Viruses: Restricting
propagation to defeat malicious mobile code”, Computer
Security Applications Conference, 2002. Proceedings. 18th
Annual, 9-13 Dec. 2002 Page(s): 61 –68

[2] Lau, F.; Rubin, S.H.; Smith, M.H.; Trajkovic, L.;,
“ Distributed denial of service attacks” , Systems, Man, and
Cybernetics, 2000 IEEE International Conference on,
Volume: 3 , 8-11 Oct. 2000, Page(s): 2275 -2280 vol.3

Controller

Cl ient Cl ient Cl ient Cl ient Cl ient

Fi rewall Sensor Analyzer End Uni t

Client

Router Server

1. Topology of Network
2. Security status
3. Collection and distribut ion
4. Policies, access control lists and conf iguration
5. Probes and attack related informat ion

----- Distributed Controller

[3] S. Staniford, V. Paxson, and N. Weaver. “How to own
Internet in your spare time”, In Proceedings of the USENIX
Security Symposium, pages 149--167, August 2002.

[4] David Moore, Vern Paxson, Stefan Savage, Colleen
Shannon, Stuart Staniford, Nicholas Weaver, “The spread
of the sapphire worm”,
http://cs.berkely.edu/~nweaver/sapphire

[5] R.V. Dantu, “An Architecture of Security Engineering” ,
ACSA Workshop on Application of Engineering Principles
for Security System Design, November, 2002.

[6] R.V. Dantu “Feedback control for network security
engineering” , 18th Annual ACSCA Conference on practical
solutions to security engineering, December 2002.

[7] João W. Cangussu, Ray A. DeCarlo, and Aditya P.
Mathur, “A Formal Model of the Software Test Process” ,
IEEE Transactions on Software Engineering, vol. 28, no. 8,
pp. 782-796, August, 2002.

[8] Somayaji, A., and Forrest, S., “Automated response
using system-call-delays” , Proceedings of the 9th USENIX
Security Symposium, 2000.

[9] João W. Cangussu, Ray A. DeCarlo, and Aditya P.
Mathur, “Using Sensitivity Analysis to Validate a State
Variable Model of the Software Test Process” , IEEE
Transactions on Software Engineering, vol. 29, no. 5, pp.
782-796, May, 2003.

[10] Graham C. Goodwin, Stefan F. Graebe and Mario S.
Salgado, “ Control System Design” , Prentice Hall, 2001.

[11] João W. Cangussu, Ray A. DeCarlo, and Aditya P.
Mathur, “ A Sate Model for the Software Test Process with
Automated Parameter Identification” , Proceeding of the
2001 IEEE Systems, Man, and Cybernetics. Tucson,
Arizona, pp. 706-711.

[12] João W. Cangussu, Ray A. DeCarlo, and Aditya P.
Mathur, “Feedback Control of the Software Test Process
Through Measurements of Software Reliability” ,
Proceedings of the 12th IEEE International Symposium on
Software Reliability Engineering, pp. 232-241, Hong Kong.

[13] David Moore, Colleen Shannon, Geoffrey M. Voelker,
Stefan Savage, “ Internet Quarantine: Requirements for
Containing Self-Propagating Code”, INFOCOM, 2003.

[14] N. Gandhi, D.M. Tilbury, Y. Diao, J. Hellerstein and
S. Parekh, “MIMO Control of an Apache Web Server:
Modeling and Controller Design” , Proceedings of the
American Control Conference, Anchorage, AK May 8-10,
2002.

