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Abstract 

 
In a computer network, network security is 

accomplished using elements like firewalls, hosts, 
servers, routers, intrusion detection systems, and 
honey pots. These network elements need to know the 
nature or anomaly of the worm in priori to detect the 
attack. Modern day viruses like Code red, Sapphire 
and Nimda spread very fast. For example, Sapphire 
can double its size and infect more than 90% of the 
vulnerable hosts within 10 minutes. There fore it is 
impractical if not impossible for human mediated 
responses to these modern day fast spreading viruses. 
Several epidemic studies show that automatic 
tracking of resource usage and control is an effective 
method in containing the damage. In this paper we 
propose a state space feedback control model to 
detect and control the spread of these viruses by 
measuring the number of connections an infected 
host makes. 

The objectives of the mechanisms are to 
slow down the spreading velocity of a worm by 
controlling (delaying) the total number of 
connections made by an infected host. As expected, 
the model showed that the sooner the infection is 
detected the faster the reduction of the spreading 
velocity. Additionally, the deployment of a controller 
at different levels (host and firewall) has shown to be 
very promising.  
 
1. Introduction 
 

In the past active worms have taken hours if 
not days to spread effectively. This gives sufficient 
time for humans to recognize the threat and limit the 
potential damage. This is not the case anymore. 
Modern viruses spread very quickly. Damage caused 
by modern computer viruses (example - Code red, 
sapphire and Nimda) is greatly enhanced by the rate 
at which they spread. Most of these viruses have an 
exponential spreading pattern. Future worms will 
exploit vulnerabilities in software systems that are 
not known prior to the attack. Neither the worm nor 

the vulnerabilities they exploit will be known before 
the attack and thus we cannot prevent the spread of 
these viruses by software patches or antiviral 
signatures [1]. 
 Some of the objectives of this paper are to 
design a State space control model to: (1) detect 
worm based threats; (2) dynamically quarantine 
infections to localized sectors to prevent propagation 
of infection and develop technologies to 
automatically and dynamically quarantine these fast 
spreading worms to a peak infection portion of 1% of 
vulnerable machines that would otherwise infect 
approximately 100% of vulnerable machines.  

The model developed is based on the 
analysis of some popular worms that spread very fast 
caused havoc in the recent history. Below is a brief 
description of these worms, their spreading pattern 
and some of the techniques these worm authors’  use 
to increase the spread rate. 
 
Code Red I : On July 12, 2001, this worm began to 
exploit the buffer-overflow vulnerability in 
Microsoft's IIS web servers. Upon infecting a 
machine, the worm checks to see if the date (as kept 
by the system clock) is between the first and the 
nineteenth of the month. If so, the worm generates a 
random list of IP addresses and probes each machine 
on the list in an attempt to infect as many computers 
as possible. Once Code-Red infected a host, it spread 
by launching 99 threads, which generated random IP 
addresses, and then tried to compromise those IP 
addresses using the same vulnerability. In some cases 
a hundredth thread defaced the web server [3].  
                                                                                                                                                                                                   
Code Red I I : This worm also used the same 
Microsoft’s IIS web server’s buffer overflow 
vulnerability as Code Red I. This worm had single 
stage scanning technique and used a localized 
scanning strategy, which made it successful in 
infecting addresses close to it. It chose a random IP 
address from within the class B address space (/16 
network) of the infected machine with probability of 
3/8 and it chose from its own class A (/8 network) 
with probability ½ and finally a random address from 
the whole internet with a probability 1/8. This 



strategy was very successful, because there was more 
probability of finding vulnerable machines within a 
network, once it has passed through the external 
firewall. [3] 
 
Nimda: this worm had a very ferocious spreading 
strategy. It used multiple ways to spread through the 
network. This worm is believed to have used the 
following five different strategies to spread 
1. “By infecting Web servers from infected client 

machines via active probing for Microsoft IIS 
vulnerability. 

2. By bulk emailing of itself as an attachment based 
on email addresses determined from the infected 
machine. 

3. By copying itself across open network shares. 
4. By adding exploit code to web pages on 

compromised servers in order to infect clients 
which browse the page. 

5. By scanning for the backdoors left behind by 
Code Red II and also the “sadmind”  worm” [3] 

 
Sapphire: sapphire worm was one of the fastest 
worms in history. It was so fast, it doubled in size 
every 8.5 seconds and infected more than 90% of the 
vulnerable hosts within 10 minutes. This worm also 
used a buffer overflow vulnerability of Microsoft’s 
SQL server. It infected more than 75000 hosts and 
caused extreme consequences such as cancelled 
airline flights, interference with elections and ATM 
failures [4]. 
 One of the most significant features of 
Sapphire was its speed of spread. The worm achieved 
full scanning rate (over 55 million scans per second) 
in approximately three minutes. It slowed down after 
initial exponential rate due to bandwidth constraints 
of the network but most vulnerable machines were 
infected within 10 minutes of the worm’s release [4]. 
 Sapphire used random scanning strategy to 
spread though the network. Worms using random 
scanning strategy have exponential pattern at the 
beginning of the spread and slow down later as they 
try to infect the same machine again and again. 
 
Response to Sapphire’s spread 
 

Most accurate data was obtained from the 
University of Wisconsin Advanced Internet Lab, 
where all packets into an otherwise unused network 
(a “ tarpit”  network) are logged. 

Many sites began filtering all the UDP 
packets with a destination port of 1434. Though 
filtering reduced the bandwidth consumed by the 
infected hosts, it did nothing to limit the spread of the 

worm. 
 

 
Figure 1. Aggregate Scans/Second in the first 5 

minutes based on incoming connections to 
the WAIL Tarpit. 

 
The response was so slow that by the time 

filtering was implemented; the worm had infected 
almost all the susceptible hosts [4].  Figure 1 & 2 
shows the scanning rate of this virus in the first five 
minutes and first twelve hours after the launch of the 
worm. 

 
Figure 2. Aggregate Scans/Second in the 12 hours 

after Initial outbreak [4]. 
 
Distr ibuted Denial of service attacks 
 

This can be described as attempt by an 
attacker to prevent legitimate users from using 
resources. An attacker usually floods the network and 
steals the bandwidth available to the user. 
 Some well-known examples of denial of 
service attacks include: 
 

• “Attempts to “ flood”  a network, thereby 
preventing legitimate network traffic. 



• Attempts to disrupt connections between 
two machines, thereby preventing access to 
a service. 

• Attempts to prevent a particular individual 
from accessing a service. 

• Attempts to disrupt service to a specific 
system or person”  [2]. 

 
V. Paxson et al describes some of the techniques, 

which could be used by the worm authors to enhance 
the spread rate of worms. 
 
“ Better ”  worms - theory 
 

There are several ways a worm spreads 
through the network. Some of the common 
techniques employed by the worms are discovering 
more widespread security holes and increasing the 
scanning rate. Apart from these some of the strategies 
that a worm author could adopt are: 

 
(i) Hit-list scanning. 
(ii) Permutation scanning. 
(iii) Topologically aware worms. 
(iv) Internet scale hit lists. 
 

The ultimate goal of all these strategies is to 
spread the worm as fast as possible.   
 
(i) Hit-list scanning: though most of the worms 
propagate exponentially, it is the initial take off time 
that is difficult. It takes more time to infect the first 
1000 machines. The strategy to overcome this 
problem is called Hit list scanning. In this strategy 
the worm author collects a list of 10,000 to 50,000 
potentially vulnerable machines. 
 Some of the ways the worm author collects 
these list of vulnerable machines are: 
 
• Stealthy scans – it can be obtained by scanning 

the entire Internet. 
• Distributed scanning – Using this strategy the 

attacker can scan a few dozen to few thousand 
already-compromised “zombies” . 

• DNS searches – A list of domain names can be 
obtained and then their IP addresses from 
domain names. 

• Spiders – Use of web-crawling techniques 
similar to search engines to get a list of most 
interconnected web sites. 

• Public surveys - there are surveys to a get a list 
of potential targets. 

• Just listen – Some applications like peer-to-peer 
networks advertise their servers, also previously 

effective worms broadcast the vulnerable 
machines. 

 
(ii) Permutation scanning: one of the main problems 
faced by random scanning was that many infected 
machines were scanned many times wasting time. 
This problem was overcome in permutation scanning 
where all worms share a common pseudo random 
permutation of the IP address space.  
 
(iii) Topological scanning: This is an alternative 
approach to obtain a set of vulnerable IP addresses. 
This method uses information contained in the 
victim’s machine. 
 
(iv) Flash worms: This is an alternative to hit-list 
scanning discussed. Using an OC12 connection all 
the web servers can be scanned within 2 hours. The 
list is divided into n blocks. After infecting a host, the 
worm hands over the list to a child worm, which goes 
on and infects that particular block. Thus parallel 
spreading can be achieved and hence faster worms 
[4]. 

 
Existing Defenses 
 

There are a variety of network components 
in the market today that protect machines from 
different kinds of worms. Network perimeter is 
primary concern for security managers. Security 
managers have focused on multiple security 
components to keep their networks safe. Examples 
are: firewalls, intrusion detection systems, and honey 
pots.  
 
Intrusion Detection Systems: intrusion detection 
systems are like burglar alarms. There are two types 
of intrusion detection systems, one is network and 
another is host. Network intrusion detection systems 
examine the network traffic and host intrusion 
systems detect outsider infiltration as well as 
unauthorized access by users who are trusted 
insiders.  Intrusions are characterized into network 
traffic patterns that are suspicious and these are 
called signatures. These signatures are compared 
against the network traffic patterns and deviation 
generates security alerts. But these alerts can be false 
alarms. Due to nature of the signatures, these systems 
can be as accurate as the signatures themselves. 
Moreover, these systems are reactive and cannot 
prevent the attacks [5].   
 
Firewalls: Currently there are several kinds of 
firewalls deployed in the perimeter of the networks. 
These are: static packet filters, dynamic packet filters, 



circuit level packet filters, proxy gateways, and 
stateful inspection firewalls. Proxy firewalls often 
only have the packet filter rules applied or are used to 
protect just one server, such as external web server. 
Hence most of these firewall rules are static and 
cannot respond to dynamic changes [5]. 
 
Firewall Routers: Routers with firewalls are great 
for cost containment.  However, they add complexity 
and overhead to the router’s function. Many security 
experts are concerned in having all security in one 
box [5].    
 
Honey Pots: Honey pots lure attackers by presenting 
a more visible and apparently vulnerable resource 
than the enterprise network itself. These are also 
useful for forensics. But these can be vulnerable 
themselves because they attract attackers special 
attention. Also if they are incorrectly configured, they 
make network more vulnerable [5].  

Thus firewalls, routers, Intrusion detection 
systems, and honey pots can be very useful as 
elements for network defense but they can not protect 
the network by themselves. But by careful integration 
and engineering of these devices, security level can 
be increased [5]. 
 
2. Methodology 
 
 There is a need to control the spread of 
above mentioned, fast spreading viruses 

automatically. They spread very fast for human 
initiated control. Some of the automatic approaches 
like quarantining the systems and shutting them down 
reduce the performance of the network. False 
positives are one more area of concern [1].  

Williamson [1] describes a novel approach 
to this problem.  This situation can be improved a lot 
by using “benign”  responses, those that slow but do 
not stop the virus. The main idea is to delay the virus 
by so long as to earn time for human mediated 
responses [1]. Feedback control strategy is desirable 
in such systems because well-established techniques 
exist to handle and control such a system [15].  

This technique is based on the fact that an 
infected machines tries to make connections at a 
faster rate than the machine that is not infected. The 
idea is to implement a filter, which restricts the rate at 
which a computer makes connection to other 
machines. The delay introduced by such an approach 
for normal traffic is very low (0.5 –1 Hz). This rate 
can severely restrict the spread of high-speed worm 
spreading at rates of at least 200 Hz [1]. 

As a first step towards our design, we apply 
feedback control to the first level of hierarchy (node). 
We will then expand the model to further levels as 
shown by the system architecture in the next section. 
By careful integration, engineering, measurement and 
control of these devices, network security level can 
be increased [5][6]. We have implemented classical 
feedback control theory model for network-level 
security management.  

Advantages of feedback control are: (i) 
System (e.g., group of security components in a 
network) output can be made to follow the specified 
function in an automatic fashion; (ii) System 
performance is less sensitive to variations of 

parameter values; and (iii) Use of feedback makes it 
easier to achieve the desired transient and steady-
state response. 
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System architecture 
 

It is assumed a secured network consists of 
firewalls, sensors, analyzers, honey pots, and various 
scanners and probes. These components are either 
separate elements or collocated with hosts, servers, 
routers and gateways.  

In this architecture, a (centralized or 
distributed) controller is responsible for collection 
and monitoring of all the events in the network. This 
controller is knowledgeable about the network 
topology, firewall configurations, security policies, 
intrusion detections and individual events in the 
network elements. This controller is logical function 
and can be deployed anywhere in the network.   

As shown in Figure 3, the controller 
communicates with clients located in different 
network elements. Clients are responsible for 
detection and collection of the events in the node and 
communicate to the controller. Subsequently, 
controller will run through the algorithms, rules, 
policies and mathematical formulas for next course of 
action. These actions are communicated to the 
clients. 

As described in Figure 3, the architecture 
evolves from a concept of closed loop control. 
Changes regarding the security behavior are captured 
and mixed with the incoming network signals. This 
piece of information is used to formulate the next 
course of action. The final result is outcome from 
multiple loops and integration of multiple actions. 
The response times within each loop are indicated in 
Figure 3 (we call them defender-loops). Response 
time varies from few milliseconds to several tens of 
minutes.  For example, nodal events like buffer 
overflows, performance degradation can be detected 
in matter of milliseconds.  On the other hand, it may 
take several seconds to detect failed logins, changes 
to system privileges and improper file access. 
 

We split the number of connection requests into 
three categories.  

 
• Connections to machines that are considered safe 

(a queue is maintained for safe list connections) 
• Connections that are delayed (All the connection 

not present in the safe list but can go through) 
• Connections that are dropped for other reasons 
 
Next, a state model for the diagram shown above is 
presented where control is achieved by varying 
model parameters.  
 

State Model 
 

Here it is assumed that, as the number of 
requests increases, a portion of them will be sent to a 
delay queue to be served later. Parameters related to 
the size of the delay queue and the number of 
dropped connections are used to control the total 
number of connections resulting in a slow down of 
spreading worm. 

Sapphire worm spreading is taken as an 
example to show the applicability of our approach. 
The goal of the example is to slow down the 
spreading velocity of a worm by controlling the total 
number of connections (C(t)) detected by the host. A 
model capturing the behavior of the system, i.e., how 
the number of total connections is changing is needed 
to achieve this goal. We assume here that as the 
number of request increases, a portion of them will 
be sent to a delay queue to be served later. 
Parameters related to the size of the delayed queue 
and the number of dropped connections are used to 
control the total number of connections resulting in a 
slow down of a spreading worm [6][7]. 
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Figure 4. Model for connections accepted, delayed 

and rejected for parametric control. 
 

The rate of change of the number of 
connections (dc/dt) is proportional to the number of 
dropped connections (-dc, where d is the specified 
drop rate) plus the number of connections removed 
from the delayed queue (βD, where β is delay 
parameter and D is the number of delayed 
connections on the queue) and the new successful 
connections (αu, where α is the percentage of not 
delayed connections). This results in 

c dc D uβ α= − + +
�

                   (1) 
Differentiating Eqn. 1  we obtain 



[ ]c d c= −
�� �

                              (2) 

Substituting for c
�

 we obtain 

2c d c d D d uβ α= − + − +
��

               (3) 
The rate of change in the size of the delayed 

queue (dD/dt) is proportional to the new incoming 
successful connections send to the queue (αu) minus 
the connections removed from the queue -βd. This 
results in  

D D uβ α= − +
�

                          (4)                          
 
Where D is the size of the delay queue; d is the drop 
rate; β is the delay parameter; u is the total 
connections arriving; and α is the success rate 

 
Combining equations for dC/dt and dD/dt in 

state variable format leads to 
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   (6) 

 
The output vector of Eq. (6) presents the 

results for the computation of the total number of 
connections C(t) as shown in Figure 6a, the rate of 
change of the first derivative of C(t), that is, the 
acceleration (Figure 6b), and the number of 
connections on the delayed queue (Figure 6c). The 
input in Eq. (6) represents the number of requested 
new connections per time unit. In the case of a 

normal traffic the average number of requests can be 
considered constant over a period of time. However, 
an S-shape form is expected for the spread function 
of a worm and dU/dt=U(1-U) is used to generate the 
input. The solid line in Figure (6) represents the 
behavior of the system with drop rate and delay 
parameters under “regular”  conditions. A question is 
of keen interest here: “How to use the output of the 
model to detect a spreading worm?” Once an 

 
Figure 6: Behav ior of the state model for the control of the number of connections on the presence of a 
worm spreading according to an S-shape function. (a) Shows the total number of connections with and 
without feedback; (b) shows the acceleration and the detection times; (c) shows the number of connections 
on the delayed queue; and (d) shows the results of the application of the feedback loop approach at the host 
and at the firewal l level. 



infection is identified, feedback control can be used 
to reduce the velocity of the spreading function.  

The dashed lines in Figure 6 represents the 
results for different detection times of the application 
of feedback control for the scenario described above. 

The acceleration value of the number of 
connections is used here as a detection mechanism. 
That is, when the acceleration reaches a certain 
threshold the drop rate and the delayed parameters on 
the model in Eq. (6) are adjusted to slow down the 
spreading of the worm. Figure 6a shows the results of 
this detection mechanism for three distinct values for 
the threshold. As expected, the sooner the infection is 
detected the faster the reduction of the spreading 
velocity. 

Now, consider a scenario where hosts are 
connected to the firewall and a controller is available 
at the hosts and at the firewall. The control can be 
done at the host level, at the firewall level, or at both 
levels. Figure 6 shows the results of applying or 
firewall) converges to the same results though a 
larger overshoot is observed at the firewall level. 
Regarding detection time, the acceleration at the 
firewall level increases faster than at the host level 
and consequently an earlier detection time is 
expected at the firewall level. As observed from 
Figure 6, a double feedback loop has the advantage 
of the early detection time at the firewall level and a 
more effective result in slowing down the infection. 

As shown in the graph the system was tested 
to check the behavior by applying control at different 
stages on spreading.  

 
4. Design &  Implementation 

Figure 9: Communication between various elements 
for meeting end-to-end security requirements 
 
It is assumed a secured network consists of firewalls, 
sensors, analyzers, honey pots, and various scanners 
and probes. These components are either separate 
elements or collocated with hosts, servers, routers 
and gateways.  

In this architecture, a (centralized or 
distributed) controller is responsible for collection 
and monitoring of all the events in the network. This 
controller is knowledgeable about the network 
topology, firewall configurations, security policies, 
intrusion detections and individual events in the 
network elements. This controller is logical function 
and can be deployed anywhere in the network.   

As shown in Figure 8, the controller 
communicates with clients located in different 
network elements. Clients are responsible for 
detection and collection of the events in the node and 
communicate to the controller. Subsequently, 
controller will run through the algorithms, rules, 
policies and mathematical formulas for next course of 
action. These actions are communicated to the 
clients. 
  
5. Conclusions 
 
  In this paper, we have proposed a security 
controller based upon the feedback control theory.  
The presented state model has shown to be 
completely controllable and observable in addition of 
being stable. Several measurements, signatures, 
topological changes, finger prints are continuously 
extracted from the network.  These measurements are 
fed back to the feedback control loop and compared 
with the existing conditions and an error is generated.  
This error signal is used to calculate the transfer 
function of the feedback loop and update the security 
components in the network.  For example, new policy 
rules are added, deleted and new honey pots may be 
created.   
  To satisfy the feedback control loop, a 
specification and requirements for expected output 
need to be specified. Also, certain measurements, 
benchmarks, and metrics are specified for satisfying 
these requirements.  Likewise, certain buffer size, 
CPU utilizations are also specified. Further work 
involves specification of requirements, and 
benchmarks, and deriving transfer functions for each 
module in the feedback loop.  
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