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Abstract
Purpose – Mobile computing research has been focused on developing technologies for handheld
devices such as mobile phones, notebook computers, and mobile IP. Today, emphasis is increasing
on context-aware computing, which aims to build the intelligence into mobile devices to sense and
respond to the user’s context. The purpose of this paper is to present a context-aware mobile
computing model (ContextAlert) that senses the user’s context and intelligently configures the mobile
phone alert mode accordingly.
Design/methodology/approach – The paper proposes a three-step approach in designing the
model based on the embedded sensor data (accelerometer, GPS antenna, and microphone) of a G1
Adriod phone. As adaptivity is essential for context-aware computing, within this model a new
learning mechanism is presented to maintain a constant adaptivity rate for new learning while
keeping the catastrophic forgetting problem minimal.
Findings – The model has been evaluated in many aspects using data collected from human subjects.
The experiment results show that the proposed model performs well and yields a promising result.
Originality/value – This paper is distinguished from other previous papers by: first, using multiple
sensors embeded in the mobile phone, which is more realistic for detecting the user’s context than
having various sensors attached to different parts of user’s body; second, by being a novel model that
uses sensed contextual information to provide a service that better synchronizes the user’s daily life
with a context-aware alert mode. With this service, the user can avoid the problems such as forgetting
to switch to vibrate mode while in a meeting or a movie theater, and taking the risk of picking up
a phone call while driving, and third, being an adaptive learning algorithm that maintains a constant
adaptivity rate for new learning while keeping the catastrophic forgetting problem minimal.
Keywords Mobile communication systems, Adaptive system theory
Paper type Research paper

1. Introduction
Having a handheld device recognized its user’s context fits to the scope of context
awareness, which is one of the hottest current research areas. Context-awareness aims
to enhance our quality of life with intelligent computing devices sensing and reacting
to the environment and presence of users. Existing handhled devices such as mobile
phones and personal digital assistants (PDAs) have already taken steps towards this
computing paradigm.

With the embedded sensors in today’s mobile phones such as accelerometer, GPS,
and audio sensor, the user’s context can be sensed and estimated to some extent using
machine learning techniques. In this article, we design and evaluate a context-aware
mobile computing model, known as ContextAlert, that intelligently configures the mobile
phone alert mode according to user’s situational context. For example, the phone can be
automatically set to vibrate mode while the user is in a meeting, automatically configured
to handsfree mode while the user is driving, etc.

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/1742-7371.htm
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Several previous works have been done in context awareness such as service
discovery, online/mobile social modeling for providing better services, activity
recognition, personal/object positioning, and person identification. Our work is closely
related to activity recognition for which previous works have used either a single or
multiple sensors attached to different parts of user’s body.

We distinguish this work from other previous works by the following contributions:

. We use multiple sensors embeded in the mobile phone, which is more realistic for
detecting the user’s context than having various sensors attached to different
parts of user’s body.

. We propose a model that uses sensed contextual information to provide a service
that better synchronizes the user’s daily life with a context-aware alert mode
control. With this service, the user can avoid the problems such as forgetting to
switch to vibrate mode while in a meeting or a movie theater, and taking the risk
of picking up a phone call while driving.

. As adaptivity is essential for context-aware computing, within our model we
propose a learning mechanism that maintains a constant adaptivity rate for new
learning while keeping the catastrophic forgetting problemminimal.

The rest of the article is organized as follows: Section 2 briefly reviews the literatures in
context awareness that is related to our work. Section 3 presents the system overview
of ContextAlert. Section 3 describes our proposed framework for ContextAlert. Our
approach in designing ContextAlert is evaluated with several experiments and the
results are shown in Section 5. We point out some limitations of our work in Section 6.
Section 7 concludes this article with a summary and an outlook on future work.

2. Related work
Context-aware computing research is scoped by ubiquitous computing, a term that
was coined by Weiser (1993, 1995). It has also been referred to as pervasive computing
and ambient intelligence, which is a computing paradigm that makes multiple
computing devices available throughout the physical environment and effectively
invisible to the user. Several researchers have attempted to define ‘‘context’’ (Schmidt
et al. 1999; Chen and Kotz, 2000; Dey, 2001; Hofer et al., 2003; Prekop and Burnett, 2003)
since Schilit et al. (1994) and Schilit and Theimer (1994) first introduced it in 1994. Han
et al. (2008) divided context into physical, internal, and social context.

Several works in physical context have focused on service discovery in ubiquitous
computing environments based on the user’s context (e.g. Coen, 1998; Czerwinski et al.,
1999; Friday et al., 2001; Chen et al., 2001; Zhu et al., 2003; Chetan et al., 2005; Toninelli
et al., 2008; Park et al., 2009). Meanwhile, research in the social context area has been
reported in both online and mobile social networks by modeling social dynamics and
using social context information to provide better service for users (e.g. Paulos
and Goodman, 2004, Davis and Karahalios, 2005; Eagle and Pentland, 2005; Oulasvirta
et al., 2005; Buriano, 2006; Eagle and Pentland, 2006; Kostakos et al., 2006; Jian et al.,
2008). Our work is in the area of internal context, which was defined as an abstract
thing inside people such as feeling, thought, task, action, interest, and so on (Han et al.,
2008). Recent works include context extraction (e.g. Siewiorek et al., 2003; Krause et al.,
2003; Adams et al., 2006, Husna et al., 2008), activity recognition (e.g. Bao and Intille,
2004; Munetoshi et al., 2004, Koichi, 2004), personal/object positioning (e.g. Kourogi and
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Kurata, 2003; Liu, 2006), and person identification (e.g. Bernardin and Stiefelhagen,
2007; Suutala and Röning, 2008; Grosse et al., 2008).

Laerhoven and Cakmakci (2000) proposed a context-awareness system that learned
the user’s activities from two-axis accelerometers, passive infrared sensors, carbon
monoxide sensor, microphones, pressure sensors, temperature sensors, touch sensors,
and light sensors using Kohonen self-organizing maps and Markov models.

Lester et al. (2004) presented a method using accelerometers to determine if two
devices were carried by the same person based on a coherence function (a frequency-
domain linear correlation).

Lukowicz et al. (2004) presented a technique to automatically track the progress
of maintenance or assembly tasks using body-worn three-axis accelerometers,
microphones, and computers based on frequency-matching sound classification
technique that combined the intensity analysis of signals frommicrophones at different
parts of body and correlation analysis of surrounding sounds and user activity.

Bao and Intille (2004) developed a system to detect activities such as walking, sitting,
standing, running, and so on using body-worn two-axis accelerometers based on mean
energy, frequency-domain entropy, and correlation and decision tree classifiers.

Krause (2006) presented a multi-sensor wearable system that learned context-aware
personal preferences by identifying individual user states and observing how the user
interacted with the system in these states. This work was based on the previous model
proposed by Siewiorek et al. (2003). Sensor data were preprocessed using different
methods such as fast Fourier transform and principal component analysis (PCA), and
then clustered using Kohonen self-organizing maps (Kohonen, 2001) andMarkovmodels.

Jin et al. (2008) proposed a context-awareness system that distinguished user motion
states and recognized emergency situations using a two-axis accelerometer, heat flux
sensor, galvanic skin response sensor, skin temperature sensor, and near-body ambient
temperature sensor based on a fuzzy inference model.

These recent works in internal context area adopt the wearable computer approach,
which requires several sensors to be attached to specific parts of the user’s body to
sense the most accurate context data. These approaches are thus not realistic.
Nevertheless, the preprocessing techniques, machine learning approaches, and
probabilistic models used in these works are useful.

There are some recent studies reported in recognizing activities using an
accelerometer attached to the mobile device. Iso and Yamazaki (2006) proposed a gait
analyzer based on a three-axis accelerometer mounted on a mobile phone using a
wavelet packet decomposition for preprocessing data and a self-organizing map with
Bayesian theory for classification. Yi et al. (2005) conducted a study to determine what
contextual information could be obtained from a three-axis accelerometer attached to a
PDA by having subjects perform some activities while carrying PDAs.

3. Context-aware alert mode
The user’s context is very complex to be comprehended entirely from sensor data. We
nevertheless believe that it can be estimated and interpreted to some extent. With the
embedded sensors in the mobile phones such as the accelerometer, GPS, and audio
sensor, the user’s movement, mobility, and ambient noise level can be sensed respectively.

We propose here a context-aware alert mode control (ContextAlert) that configures
the call alert to the most suitable mode corresponding to user’s context. With today’s
mobile phones, the user has three call alert options: ringer, vibrate, and handsfree.
These options are suitable for different situations. Handsfree mode (bluetooth headset)
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is most suitable when the user is driving a vehicle. In fact, many states in the USA have
prohibited drivers from talking on mobile phones while driving (Governors Highway
Safety Association, 2009). Vibrate mode is most suitable when the user is in a meeting,
theater, library, etc. Ringer is used mostly in general and it is preferred in situations in
which the user can be interrupted by a ringer such as while shopping, having lunch, or
walking in a park.

Our notion of context is therefore defined as a user’s physical situation, which is
a cluster of feature attributes obtained from the sensor data at an interval of time.
Accordingly, the user’s context can be divided into three states:

(1) Uninterruptible by ringer (UR): In this state, user does not want to be
interrupted by a ringer. Normally, this situation occurs while user is in a
considerably quiet place with low movement and mobility e.g. in a meeting, in
a theater, at a library, etc.

(2) Interruptible by ringer – vehicular mode (IR-V): The user can be interrupted by
a ringer in this state but it is unable to use hands to operate the phone. This is
usually a driving situation, in which the environmental noise level is typically
higher than in the UR state. The movement is normally low but the mobility is
clearly high.

(3) Interruptible by ringer – non-vehicular mode (IR-N): This state corresponds to
situations in which user is interruptible by a ringer and not driving a vehicle.
Situations include shopping in a mall, walking with friends in a hall way,
having lunch, and jogging in a park. These situations are typically at high
ambient noise level, high movement, and low mobility.

With these user context states, ContextAlert sets the alert option to the most suitable
mode according to Definition 1, learns the user’s preference from the feedback, and
adjusts the inference engine accordingly (shown in Figure 1).

Definition 1. If the user’s context is UR, then the most suitable alert option is vibrate
mode. If the user’s context is IR-V, then the most suitable alert option is handsfree
mode. If the user’s context is IR-N, then the most suitable alert option is ringer mode.

4. Framework
This section describes the ContextAlert framework, which includes our approach in
designing the models and details on sensor data acquisition, data preprocessing, the
context classifier, the inference engine, and the adaptive learning mechanism.

Figure 1.
System overview of
ContextAlert
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4.1 A three-step approach
There are three steps in our design. The first step is ‘‘training,’’ which is an offline
supervised learning process to construct an initial context map by classifying the
labeled training samples into three different context states (UR, IR-V, and IR-N). In this
step, sensor data are preprocessed to obtain useful features (details are described in
section 4.3), then fed into classifier to generate an initial context map using PCA
(details are described in section 4.4). The second step is ‘‘inferring,’’ which is an online
unsupervised learning process to analyze input sensor data and infer the user’s context
state based on k-nearest neighbor algorithm (k-NN) and finite state machine model
(details are described in section 4.5). The third step is ‘‘user preference learning,’’ which
is an online supervised learning process to learn the user’s preferences based on the
feedback (details are described in section 4.6). This three-step approach is illustrated
in Figure 2. On top of the three-step approach, a learning algorithm is applied for the
system to remain adaptive for new learning while the catastrophic forgetting problem
is maintained at a minimum (details are described in section 4.7).

4.2 Data acquisition
In this work, the data were collected using the embedded sensors of the G1 phones (T-
Mobile, 2009) with Google Android 1.1 operating system, 32 bit QualcommMSM7201A
(528MHz CPU clock), 256MiB ROM, and 192MiB RAM. These sensors included
a three-axis accelerometer, a GPS navigation system with Qualcomm MSM7201A
gpsOne using NIMEA 0183 protocol, and an audio sensor with 16 bit nominal
quantization and a sampling frequency of 44,100Hz.

To acquire data from these sensors, we created an application for G1 phone using
Android 1.1 SDK (2009). The phone was carried inside the front pants pocket while the
data were collected.

Figure 2.
Our three-step approach

constructs an initial
context map using

supervised learning in the
training step, then uses

the initial map to estimate
user’s context in the

inferring step, and learns
user’s preference from

the feedback
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4.3 Preprocessing methods
Preprocessing is needed to extract useful features from the raw sensor data. To estimate
the user’s movement, we compute the magnitude of the force vector by combining the
measurements from all three axes using Equation (1) to derive a net acceleration (a)
independent of orientation. Note that if there is no movement, the magnitude is
approximately at 1G due to Earth’s gravity (9.8m/s2).

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2y þ c2z

q
; ð1Þ

where cx, cy, and cz are measurements from x, y, and z-axis of accelerometer, respectively.
Figure 3 shows the net acceleration’s magnitude of a subject walking, standing,

running, and sitting. The subject carried the phone in his pant pocket for this
experiment and all other experiments in this article.

For estimating the user’s mobility, we use GPS data to compute the traveling speed
by calculating a distance (minimum distance or length of a displacement) between
user’s current position and the previous one based on the latitude and longitude
information. Then the user’s traveling speed can be obtained simply by dividing the
distance by a time difference between two positions as given by Equation (2):

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!1 % !2Þ2 þ ð"1 % "2Þ2

q
& 111

!T
; ð2Þ

where !i and "i denote a latitude and a longitude value at location i, respectively. The
constant 111 is the approximated converting ratio of distance from one geographic degree
to kilometer unit. Time difference between two locations is represented by !T in hour
units.

Figure 3.
An example of magnitude
of the force vector by
combining the
measurements from all
three axes from
accelerometer
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An example of the traveling speed based on GPS data is illustrated in Figure 4 as a subject
walking to a car, driving to the destination, thenwalking away the car as he arrives.

For the audio sensor data, we sample the audio signal at 8 kHz and extract the
running average envelope, which gives us a smoother signal (less noise) than its
original signal and peak envelope as our interest in the loudness of the ambient noise
(amplitude of the audio signal). We compute the running average envelope (e) with
window size of 50 using Equation (3):

eðnÞ ¼ 1

w
fgðn% wÞ þ gðn% wþ 1Þ þ ' ' ' þ gðn% 1Þ þ gðnÞ þ gðnþ 1Þ

þ ' ' ' þ gðnþ w% 1Þ þ gðnþ wÞg; ð3Þ

where g(n) is the amplitude of audio signal with n ¼ f1; 2; 3; . . .g and w is the size of
window.

Figure 5 shows an example of the running average envelope while a subject is walking
to a car, listening to music while driving, andwalking away from the car after parking.

4.4 Context classifier
The context classifier is used in the offline training process (step 1) to take
preprocessed data and project them onto feature space creating an initial ‘‘context map’’
withM trained data arrays.

With our preprocessed data, the (labeled) input data array of the classifier (x) at any
interval of timeT can be expressed as follows:

xm ¼
VarðAmÞ
EðSmÞ
EðEmÞ

2

4

3

5; ð4Þ

Figure 4.
An example of traveling

speed based on GPS
information
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where Am ¼ famð1Þ; amð2Þ; . . . ; amðnaÞg, Sm ¼ fsmð1Þ; smð2Þ; . . . ; smðnsÞg, Em ¼
femð1Þ; emð2Þ; . . . ; emðneÞg, and na, ns, ne are the total numbers of data points within T
of Am, Sm, and Em, respectively. We take the variance (Varð'Þ) of Am and expected
values (Eð'Þ) of Sm and Em. Hence the training data matrix for constructing the initial
context map is Xtrained ¼ fx1; x2; . . . ; xMg.

To project our training data onto a context map, we apply PCA ( Jolliffe, 2002). We
transform our three-dimensional input data to two-dimensional feature space by
retaining two principal components that have the maximum variation in the original
data array, namely the first and second principal components, i.e.

Y ¼ W 0
CX ; ð5Þ

where Y is the data on a transformed space (or context map in our case), X is the data
matrix, and WC is the first C singular vectors (C ¼ 2 in our case) where
W ¼ w1 w2 . . . wp½ ) (p is the original data’s dimensionality, e.g. p ¼ 3 in our
case), the order of w is according to the variance or eigen value i.e. varðw0

iXÞ ¼ "i and
"1 * "2 * ' ' ' * "p, and 0 denotes transpose.

4.5 Context inference engine
The context inference engine is in the online inferring process (step 2), which takes a
new (unlabeled) preprocessed data array along with the trained data arrays, projects
them onto context space, and makes an initial classification for the new data based on
k-NN algorithm (Shakhnarovich et al., 2006) using the Euclidean distance. The initial
classification is then fed into a transition supervision process based on a finite state
machine model to make the final inference.

Thereby, the input data matrix for the PCA is X ¼ fXtrained; xnewg such that the new
and trained data are transformed by the same function. With the new coordinates,
the new data is then classified to the most likely context state (Z), which is the
most common class amongst the k nearest neighbors in the context space, where
Z 2 fUR; IR-V;UR-Ng. The initial classified context state then undergoes the
supervision process to supervise the transitions from one context state to another. This

Figure 5.
An example of running
average envelope while a
subject is walking to a
car, driving with music
on, and walking away
from the car after parking
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supervision process uses a finite state machine architecture where each state
represents the user’s context and transitions are represented by edges between states.

4.6 User preference learning
This is a process of learning the user’s personal preference. It is inevitable that the
initial context map does not fit perfectly to the user’s preference. This process is
therefore essential to personalizing ContextAlert. The process can be as simple as the
flow diagram shown in Figure 6. Once the user makes a change to the alert mode, the
user will be prompted to have ContextAlert learn his/her setting. If the answer is ‘‘Yes,’’
then the context map is adjusted accordingly. However, if the answer is ‘‘No,’’ then no
learning is needed and hence the context map is not modified.

4.7 Adaptive learning
With the proposed model, ContextAlert would start out highly adaptive with a high
learning rate, would gradually become fixed as number of learned data increases.
After this stage, it would be hardly capable of learning any more, which would create a
problem as the system needs to remain adaptive. Overwriting previously learned data
with the new learning can improve the adaptivity of the system. However, the tradeoff
is known in the field of machine learning as the Stability-pasticity dilemma or
catastrophic forgetting (French, 1999), which refers to the problem of designing a
learning system to remain plastic or adaptive and preserve its previously learned
knowledge while continuing to learn new things, which can also mean preventing the
new learning fromwashing away the memories of prior learning.

To address this challenge in designing a context-awareness system, we propose
a learning mechanism that remains adaptive while keeping catastrophic forgetting
minimal. The adaptivity (!) can be defined simply as a learning rate for new data as:

! ¼ Amount of New Learning Data

Amount of Learned Data
: ð6Þ

In our case, the amount of new learning data is one and the amount of learned data is
M/3 for each context state. Thus the learning rate decreases exponentially with M. To
stay adaptive, M must be fixed and hence removing previously learned data is
an option. In this approach, we cannot avoid the catastrophic forgetting problem.
Nevertheless, we can minimize it.

Forgetting is a loss of memories, which can be quantified as a difference between the
set of prior memories before and after a new learning. Let #ðbÞ and #ðaÞ denote the set of
prior memories in three-dimensional space before and after a new learning, respectively.

Definition 2. If x
ðbÞ
k is the kth memory point before a new learning in three-

dimensional space (d1; d2; d3) and x
ðaÞ
k is the kth memory point after a new learning,

Figure 6.
User preference learning

process flow
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then the difference between the x
ðbÞ
k and x

ðaÞ
k ($k) can be computed using Euclidean

distance as:

$k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðbÞk ðd1Þ % x

ðaÞ
k ðd1ÞÞ2 þ ðxðbÞk ðd2Þ % x

ðaÞ
k ðd2ÞÞ2 þ ðxðbÞk ðd3Þ % x

ðaÞ
k ðp3ÞÞ2

q
: ð7Þ

If xðaÞk does not exist (or has been removed), then $k ¼ 1 (complete loss of memory).

Definition 3. If #ðbÞ ¼ fxðbÞ1 ; xðbÞ2 ; . . . ; xðbÞM g and #ðaÞ ¼ fxðaÞ1 ; xðaÞ2 ; . . . ; xðaÞM g, then the
total loss of memories (" ) is the sum of $k for k ¼ 1; 2; . . . ;M, i.e.,

" ¼
XM

k¼1

$k : ð8Þ

To minimize the loss of memory from a new learning, we merge two nearest memory

points to one memory point located at the mid point between the two. If xðaÞm is the

merging of xðbÞi and xðbÞj , then the total loss of memory is:

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðbÞi ðd1Þ % x

ðaÞ
m ðd1ÞÞ2 þ ðxðbÞi ðd2Þ % x

ðaÞ
m ðd2ÞÞ2 þ ðxðbÞi ðd3Þ % x

ðaÞ
m ðd3ÞÞ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðbÞj ðd1Þ % x

ðaÞ
m ðd1ÞÞ2 þ ðxðbÞj ðd2Þ % x

ðaÞ
m ðd2ÞÞ2 þ ðxðbÞj ðd3Þ % x

ðaÞ
m ðd3ÞÞ2

q

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðbÞi ðd1Þ % x

ðaÞ
m ðd1ÞÞ2 þ ðxðbÞi ðd2Þ % x

ðaÞ
m ðd2ÞÞ2 þ ðxðbÞi ðd3Þ % x

ðaÞ
m ðd3ÞÞ2

q
;

ð9Þ

and the merged memory point is occupied at:

x
ðbÞ
i ðd1ÞÞ þ x

ðbÞ
j ðd1Þ

2
;
x
ðbÞ
i ðd2ÞÞ þ x

ðbÞ
j ðd2Þ

2
;
x
ðbÞ
i ðd3ÞÞ þ x

ðbÞ
j ðd3Þ

2

 !

:

As an example, a graphical representation of the merging process is illustrated in
Figure 7.

To summarize our design, a detailed algorithm of the ContextAlert is given in
Figure 8.

Figure 7.
An example of graphical
representation of the
merging process for
adaptive learning
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5. Experimental results
In this section, we describe our datasets (section 5.1) as well as conduct four
experimental studies to evaluate our approach. In section 5.2, we show the impact of
learning by comparing the performance of a model that uses only a fixed initial context
map (no learning from new data) to a model that starts off with the same initial context
map but its context map grows as it learns new data. In section 5.3, we once again
point out that the growth of the context map with new learnings lowers the adaptivity
rate and causes ‘‘the curse of dimensionality.’’ We thus compare the performance of
a model with growing context map with our proposed merging-based context map
model (MCM). In section 5.4, we show the impact of the proposed supervision process
that can improve the performance of the model. In section 5.5, we show the impact of
applying PCA to our model by comparing the performance of our model with and
without using PCA.

5.1 Datasets
For training, we collected data from three different subjects. Each subject performed ten
different activities shown in Table I. Each activity was performed continuously for ten
minutes by each subject. With a time interval (T) of five seconds (buffer time), we had 120
labeled data arrays. With ten different activities and 120 data arrays per subject, we
thereby had 3,600 labeled data arrays available for constructing the initial context map.

For testing, we collected data from a different group of participating subjects. There
were four subjects in this testing group. Each subject performed five different
sequences of activities, which are listed on Table II. Each sequence was about one hour.

Figure 8.
Context-aware alert mode
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These sequences consisted of all ten activities listed on Table I, 31,690 s (6,338 data
arrays) of UR, 21,430 s (4,286 data arrays) of IR-N, 18,940 s (3,788 data arrays) of IR-V,
and total of 14,412 testing data arrays.

The subjects were asked to keep detailed time logs of activities performed, which
were then used to do hand-labeling of the testing data.

5.2 Impact of learning
Ideally, we would like to have a model with one fixed context map that works perfectly
for any user but this is not realistic. Therefore, in this section, we attempt to show that
such a model performs well to some extent. However, we can improve its performance
by learning from the user.

This experiment and others were set up as follows. The initial context map was
constructed using 100 data arrays from each of the three context states by randomly
selecting training data arrays obtained from the subjects in the training group. The
model was tested with the data obtained from the five sequences of activities by four
subjects described in section 5.1. The testing was done in the order of the sequence, i.e.
testing with sequence 1, then sequence 2, then sequence 3, then sequence 3, and so on.

Table I.
A list of the ten different
activities and their
corresponding context
states

Context state Activity

UR Attending a meeting
Attending a class
Watching movie at a theater
Reading books in a library
Working in an office

IR-N Walking
Jogging or running
Eating at a restaurant
Shopping at a supermarket

IR-V Driving a car

Notes: Four participating subjects performed 20min of each activity from which the training
data arrays were obtained

Table II.
A list of five different
sequences of activities
with the corresponding
context state and
approximate duration

Sequence
number

Sequence of activities with the corresponding context state and
approximate duration

1 Jogging (IR-N, 3min) ) walking (IR-N, 2min) ) library (UR, 25min)
) walking (IR-N, 5min) ) driving (IR-V, 25min)

2 Walking (IR-N, 5min) ) driving (IR-V, 30min) ) walking (IR-N, 10min)
) theater (UR, 15min)

3 Walking (IR-N, 5min) ) library (UR, 25min) ) walking (IR-N, 10min)
) restaurant (IR-N, 20min)

4 Meeting (UR, 25min) ) walking (IR-N, 3min) ) running (IR-N, 2min)
) class (UR, 30min)

5 Working (UR, 10min) ) walking (IR-N, 5min) ) driving (IR-V, 25min)
) walking (IR-N, 5min) ) shopping (IR-N, 15min)

Notes: Each sequence was about one hour. Testing data arrays were obtained from having each
of four subjects performed these sequences
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Table III shows the overall performance from four testing subjects in terms of
accuracy rates per sequence (Acc./Seq.) as well as per context (Acc./Cont.) of a fixed
initial context map model (FCM), which uses only the initial context map without
learning from the user. The result per subject is shown in the Appendix.

Without learning, the FCM shows 76.63 percent overall accuracy. With the same
initial context map, Table IV shows that we can achieve a much higher accuracy rate of
90.55 percent with a growing-with-learning context map model (GCM) that keeps all new
learning data arrays as it is being tested. Hence the context map growswith learning (the
amount of testing data). We assume here that the user corrects all misclassified data
arrays (step 3 of the three-step approach) so that the GCM does not mislearn the data.

5.3 Adaptivity and the curse of dimensionality
A much higher accuracy rate of the GCM comes at a price. As the context map grows
with learnings, its adaptivity decreases exponentially (according to Equation 6). This
also increases the computational cost as the cost of k-NN rises with the number of
learned data, which is a problem known as ‘‘the curse of dimensionality.’’

The adaptivity of GCM can be computed using Equation 6 as the average over three
context data arrays as ! ¼ ð1=3Þðð1=6;338Þ þ ð1=4;286Þ þ ð1=3;788ÞÞ ¼ 0:000218.
With our proposed MCM, which merges the two nearest learned data arrays after each
new learning in the context map, Table V shows that we can achieve a competitive
accuracy rate compared with the GCM at 89.34 percent (about one percent lower).

Table III.
Performance of FCM in
terms of hits and misses

for each context state
and each testing

sequence of activities

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

1 1,138 0 316 50 1,012 108 2,466 158 93.98
2 750 0 638 76 1,356 108 2,744 184 93.72
3 1,252 0 564 1,112 0 0 1,816 1,112 62.02
4 2,686 0 208 84 0 0 2,894 84 97.18
5 512 0 594 644 18 1,186 1,124 1,830 38.05
Total 6,338 0 2,320 1,966 2,386 1,4,02 11,044 3,368 76.63
Acc./Cont. (%) 100.00 54.13 62.99 76.63

Notes: The accuracy rate per context state (Acc./Cont.) is shown in the bottom of the table while
the accuracy rate per sequence (Acc./Seq.) is shown in the last column

Table IV.
Performance of GCM in
terms of hits and misses

for each context state
and each testing

sequence of activities

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

1 1,136 2 360 6 1,078 42 2,574 50 98.09
2 750 0 708 6 1,464 0 2,922 6 99.80
3 1,246 6 1,024 652 0 0 2,270 658 77.53
4 2,628 58 272 20 0 0 2,900 78 97.38
5 500 12 1,002 236 882 322 2,384 570 80.70
Total 6,260 78 3,366 920 3,424 364 13,050 1,362 90.55
Acc./Cont. (%) 98.77 78.53 90.39 90.55

Notes: The accuracy rate per context state (Acc./Cont.) is shown in the bottom of the table while
the accuracy rate per sequence (Acc./Seq.) is shown in the last column
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However, the important improvement of the MCM over the GCM is a much higher
adaptivity rate of ! ¼ 1=100 ¼ 0:01. As the MCM prevents the adaptivity from
decreasing while minimizing the loss of prior learning, the accuracy stays reasonably
high with the context map that remains adaptive.

5.4 Impact of supervision process
With the supervision process, the context state transition is properly guided e.g. if the
user is currently driving (IR-V), in the next five sections he/she will either be driving
(IR-V) or walking away from the car (IR-N); he/she cannot be in a meeting or class.
Adding the supervision process can help improve the accuracy of the model. In fact,
experimental results in Table VI show that the accuracy rate of the MCM with the
supervision process (MCM-S) is improved to 91.20 percent, which is higher than the
MCM and GCM (with much better adaptivity rate than the GCM).

5.5 Impact of PCA
Typically, PCA is used to reduce the dimensionality of a dataset consisting of a large
number of interrelated variables. In our case, PCA is used not only to reduce the
dimensionality of our data matrices but to also reduce the noise from the embedded
sensors (see Table VII). This noise reduction process can help improve the performance
of the classifier and hence improve the accuracy of the model. Without applying PCA,

Table V.
Performance of MCM in
terms of hits and misses
for each context state
and each testing
sequence of activities

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

1 1,128 10 362 4 1,082 38 2,572 52 98.02
2 750 0 706 8 1,464 0 2,920 8 99.73
3 1,246 6 958 718 0 0 2,204 724 75.27
4 2,646 40 266 26 0 0 2,912 66 97.78
5 506 6 788 450 974 230 2,268 686 76.78
Total 6,276 62 3,080 1,206 3,520 268 12,876 1,536 89.34
Acc./Cont. (%) 99.02 71.86 92.93 89.34

Notes: The accuracy rate per context state (Acc./Cont.) is shown in the bottom of the table while
the accuracy rate per sequence (Acc./Seq.) is shown in the last column

Table VI.
Performance of MCM-S
in terms of hits and
misses for each context
state and each testing
sequence of activities

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

1 1,128 10 362 4 1,120 0 2,610 14 99.47
2 750 0 706 8 1,464 0 2,920 8 99.73
3 1,246 6 958 718 0 0 2,204 724 75.27
4 2,646 40 266 26 0 0 2,912 66 97.78
5 506 6 788 450 1,204 0 2,498 456 84.56
Total 6,276 62 3,080 1,206 3,788 0 13,144 1,268 91.20
Acc./Cont. (%) 99.02 71.86 100.00 91.20

Notes: The accuracy rate per context state (Acc./Cont.) is shown at the bottom of the table while
the accuracy rate per sequence (Acc./Seq.) is shown in the last column
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the accuracy of MCM-S is decreased to 85.64 percent as shown by the experimental
results (see Appendix, Table AV).
We have conducted several experimental studies to evaluate our approach in designing
a model for ContextAlert. To summarize the results, Table VIII shows the overall
accuracy of each model. We have shown that ‘‘learning’’ improves the accuracy of the
model but decreases adaptivity, the ‘‘merging-based model’’ helps maintains adaptivity
with a reasonable accuracy rate, the ‘‘supervision process’’ is a key element that
improves performance, and ‘‘PCA’’ is used to reduce sensor noise that can degrade the
performance of the model. From Table VIII, our proposed model (MCM-S) has the
highest performance in both accuracy rate and adaptivity.

Note that the result per subject of each model is available in the Appendix.

6. Limitations of the study
We are aware of the following limitations of this study:

. The evaluation of the user’s preference learning step (step 3 of the three-step
approach) cannot be done in this current study due to the capability of the
current model of the G1 phone.

. With a limited number of testing data, we can only demonstrate the impact of
learning and adaptivity to some extent. We are certain that a much longer period
of testing would yield much clearer results than the current study.

. Similarly, with a larger number of testing subjects, the performance of our model
would have been evaluated more accurately. In this study, we have learned that it
is very difficult to recruit subjects to perform sequences of experiments in
extended hours due to availability, willingness, and enthusiasm.

Table VII.
Performance of MCM-
S(no PCA) in terms of

hits and misses for each
context state and each

testing sequence of
activities

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

1 1,138 0 290 76 1,120 0 2,548 76 97.10
2 750 0 580 134 1,464 0 2,794 134 95.42
3 1,250 2 534 1,142 0 0 1,784 1,144 60.93
4 2,686 0 208 84 0 0 2,894 84 97.18
5 512 0 606 632 1,204 0 2,322 632 78.61
Total 6,336 2 2,218 2,068 3,788 0 12,342 2,070 85.64
Acc./Cont. (%) 99.97 51.75 100.00 85.64

Notes: The accuracy rate per context state (Acc./Cont.) is shown at the bottom of the table while
the accuracy rate per sequence (Acc./Seq.) is shown in the last column

Table VIII.
Overall performance

comparison of different
models in terms of

adaptivity and
accuracy rate

Model Average adaptivity Accuracy rate (%)

FCM 0.01 76.63
GCM 0.0000218 90.55
MCM 0.01 89.34
MCM-S 0.01 91.20
MCM-S (no PCA) 0.01 85.64
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7. Conclusion
Forgetting to switch to vibrate mode while in a movie theater or a meeting, and taking the
risk of picking up a phone call while driving can be avoided if the phone is smart enough to
recognize its user’s situational context. As the first step towards that direction, we propose
a design for a context-aware mobile computing model known as ContextAlert that can
intelligently switches the alert mode according to the user’s context. We divide the user’s
context into three states: UR, IR-V, and IR-N. The alert mode is to be set to the recognized
context state as vibrate, handsfree, and ringer mode for UR, IR-V, and IR-N, respectively.
We have proposed a three-step approach in design based on the embedded sensor data
from accelerometer, GPS antenna, and microphone of a G1 phone. We have evaluated our
model in several aspects using training and testing data collected from participating
subjects. Based on the experiments, the proposed model has shown a promising result.
Nevertheless, our work had some limitations, such as capability of the phone, amount of
testing data, and duration of testing. In our future work, we will continue to examine our
model to improve its performance as well as investigate other applications of the model.
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Appendix

Detailed experimental results

This section includes the experimental results of each subject for each model (see
Tables AI-AV).

Table AI.
Performance of FCM

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 1
1 300 0 96 0 288 12 684 12 98.28
2 180 0 142 38 318 42 640 80 88.89
3 300 0 142 278 0 0 442 278 61.39
4 660 0 40 20 0 0 700 20 97.22
5 120 0 116 184 12 288 248 472 34.44
Total 1,560 0 536 520 618 342 2,714 862 75.89
Acc./Cont. (%) 100.00 50.76 64.38 75.89

Subject 2
1 270 0 70 26 182 78 522 104 83.39
2 220 0 172 8 338 14 730 22 97.07
3 300 0 138 292 0 0 438 292 60.00
4 666 0 46 24 0 0 712 24 96.74
5 132 0 142 180 4 304 278 484 36.48
Total 1,588 0 568 530 524 396 2,680 926 74.32
Acc./Cont. 100.00 51.73 56.96 74.32

Subject 3
1 290 0 76 20 272 18 638 38 94.38
2 170 0 160 14 334 26 664 40 94.32
3 300 0 150 296 0 0 450 296 60.32
4 674 0 68 22 0 0 742 22 97.12
5 126 0 78 214 2 286 206 500 29.18
Total 1,560 0 532 566 608 330 2,700 896 75.08
Acc./Cont. 100.00 48.45 64.82 75.08

Subject 4
1 278 0 74 4 270 0 622 4 99.36
2 180 0 164 16 366 26 710 42 94.41
3 352 0 134 246 0 0 486 246 66.39
4 686 0 54 18 0 0 740 18 97.63
5 134 0 258 66 0 308 392 374 51.17
Total 1,630 0 684 350 636 334 2,950 684 81.18
Acc./Cont. 100.00 66.15 65.57 81.18
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Table AII.
Performance of GCM

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 1
1 300 0 96 0 300 0 696 0 100.00
2 180 0 174 6 360 0 714 6 99.17
3 296 4 208 212 0 0 504 216 70.00
4 652 8 56 4 0 0 708 12 98.33
5 108 12 252 48 236 64 596 124 82.78
Total 1,536 24 786 270 896 64 3,218 358 89.99
Acc./Cont. 98.46 74.43 93.33 89.99

Subject 2
1 268 2 92 4 218 42 578 48 92.33
2 220 0 180 0 352 0 752 0 100.00
3 300 0 184 246 0 0 484 246 66.30
4 642 24 64 6 0 0 706 30 95.92
5 132 0 282 40 226 82 640 122 83.99
Total 1,562 26 802 296 796 124 3,160 446 87.63
Acc./Cont. 98.36 73.04 86.52 87.63

Subject 3
1 290 0 94 2 290 0 674 2 99.70
2 170 0 174 0 360 0 704 0 100.00
3 300 0 332 114 0 0 632 114 84.72
4 656 18 90 0 0 0 746 18 97.64
5 126 0 170 122 214 74 510 196 72.24
Total 1,542 18 860 238 864 74 3,266 330 90.82
Acc./Cont. 98.85 78.32 92.11 90.82

Subject 4
1 278 0 78 0 270 0 626 0 100.00
2 180 0 180 0 392 0 752 0 100.00
3 350 2 300 80 0 0 650 82 88.80
4 678 8 62 10 0 0 740 18 97.63
5 134 0 298 26 206 102 638 128 83.29
Total 1,620 10 918 116 868 102 3,406 228 93.73
Acc./Cont. 99.39 88.78 89.48 93.73

Table AIII.
Performance of MCM

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 1
1 298 2 96 0 300 0 694 2 99.71
2 180 0 174 6 360 0 714 6 99.17
3 296 4 188 232 0 0 484 236 67.22
4 656 4 54 6 0 0 710 10 98.61
5 114 6 162 138 246 54 522 198 72.50
Total 1,544 16 674 382 906 54 3,124 452 87.36
Acc./Cont. 98.97 63.83 94.38 87.36

Subject 2
1 266 4 94 2 222 38 582 44 92.97
2 220 0 178 2 352 0 750 2 99.73
3 300 0 166 264 0 0 466 264 63.84

(continued)
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Table AIII.

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

4 652 14 70 0 0 0 722 14 98.10
5 132 0 216 106 258 50 606 156 79.53
Total 1,570 18 724 374 832 88 3,126 480 86.69
Acc./Cont. 98.87 65.94 90.43 86.69

Subject 3
1 288 2 94 2 290 0 672 4 99.41
2 170 0 174 0 360 0 704 0 100.00
3 298 2 314 132 0 0 612 134 82.04
4 658 16 80 10 0 0 738 26 96.60
5 126 0 116 176 230 58 472 234 66.86
Total 1,540 20 778 320 880 58 3,198 398 88.93
Acc./Cont. 98.72 70.86 93.82 88.93

Subject 4
1 276 2 78 0 270 0 624 2 99.68
2 180 0 180 0 392 0 752 0 100.00
3 352 0 290 90 0 0 642 90 87.70
4 680 6 62 10 0 0 742 16 97.89
5 134 0 294 30 240 68 668 98 87.21
Total 1,622 8 904 130 902 68 3,428 206 94.33
Acc./Cont. 99.51 87.43 92.99 94.33

Table AIV.
Performance
of MCM-S

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 1
1 298 2 96 0 300 0 694 2 99.71
2 180 0 174 6 360 0 714 6 99.17
3 296 4 188 232 0 0 484 236 67.22
4 656 4 54 6 0 0 710 10 98.61
5 114 6 162 138 300 0 576 144 80.00
Total 1,544 16 674 382 960 0 3,178 398 88.87
Acc./Cont. 98.97 63.83 100.00 88.87

Subject 2
1 266 4 94 2 260 0 620 6 99.04
2 220 0 178 2 352 0 750 2 99.73
3 300 0 166 264 0 0 466 264 63.84
4 652 14 70 0 0 0 722 14 98.10
5 132 0 216 106 308 0 656 106 86.09
Total 1,570 18 724 374 920 0 3,214 392 89.13
Acc./Cont. 98.87 65.94 100.00 89.13

Subject 3
1 288 2 94 2 290 0 672 4 99.41
2 170 0 174 0 360 0 704 0 100.00
3 298 2 314 132 0 0 612 134 82.04
4 658 16 80 10 0 0 738 26 96.60
5 126 0 116 176 288 0 530 176 75.07
Total 1,540 20 778 320 938 0 3,256 340 90.55
Acc./Cont. 98.72 70.86 100.00 90.55

(continued)
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Table AIV.

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 4
1 276 2 78 0 270 0 624 2 99.68
2 180 0 180 0 392 0 752 0 100.00
3 352 0 290 90 0 0 642 90 87.70
4 680 6 62 10 0 0 742 16 97.89
5 134 0 294 30 308 0 736 30 96.08
Total 1,622 8 904 130 970 0 3,496 138 96.20
Acc./Cont. 99.51 87.43 100.00 96.20

Table AV.
Performance of
MCM-S(noPCA)

Sequence number
UR IR-N IR-V Overall

Acc./Seq. (%)Hit Miss Hit Miss Hit Miss Hit Miss

Subject 1
1 300 0 86 10 300 0 686 10 98.56
2 180 0 140 40 360 0 680 40 94.44
3 298 2 138 282 0 0 436 284 60.56
4 660 0 42 18 0 0 702 18 97.50
5 120 0 120 180 300 0 540 180 75.00
Total 1,558 2 526 530 960 0 3,044 532 85.12
Acc./Cont. 99.87 49.81 100.00 85.12

Subject 2
1 270 0 62 34 260 0 592 34 94.57
2 220 0 160 20 352 0 732 20 97.34
3 300 0 136 294 0 0 436 294 59.73
4 666 0 46 24 0 0 712 24 96.74
5 132 0 154 168 308 0 594 168 77.95
Total 1,588 0 558 540 920 0 3,066 540 85.02
Acc./Cont. 100.00 50.82 100.00 85.02

Subject 3
1 290 0 74 22 290 0 654 22 96.75
2 170 0 134 40 360 0 664 40 94.32
3 300 0 138 308 0 0 438 308 58.71
4 674 0 68 22 0 0 742 22 97.12
5 126 0 96 196 288 0 510 196 72.24
Total 1,560 0 510 588 938 0 3,008 588 83.65
Acc./Cont. 100.00 46.45 100.00 83.65

Subject 4
1 278 0 68 10 270 0 616 10 98.40
2 180 0 146 34 392 0 718 34 95.48
3 352 0 122 258 0 0 474 258 64.75
4 686 0 52 20 0 0 738 20 97.36
5 134 0 236 88 308 0 678 88 88.51
Total 1,630 0 624 410 970 0 3,224 410 88.72
Acc./Cont. 100.00 60.35 100.00 88.72
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