
Automating ECU Identification for Vehicle Security

Michael Jaynes
and Dr. Ram Dantu

Department of Computer Science and Engineering

University of North Texas

Denton, Texas 76203

Email: michaeljaynes@my.unt.edu

rdantu@unt.edu

Roland Varriale II
and Nathaniel Evans

Cyber Operations, Analysis and Research

Argonne National Laboratory

Lemont, IL

Email: rvarriale@anl.gov

nevans@anl.gov

Abstract—The field of vehicular cybersecurity has received
considerable media and research attention in the past few years.
Given the increasingly connected aspect of consumer automobiles,
along with the inherent danger of these machines, there has
been a call for experienced security researchers to contribute
towards the vehicle security domain. The proprietary nature of
Controller Area Network (CAN) bus messages, however, creates a
barrier of entry for those unfamiliar, due to the need to identify
what the messages on a given vehicle’s bus are broadcasting.
This work aims to automate the process of correlating CAN bus
messages with specific Electronic Control Unit (ECU) functions
in a new vehicle, by creating a machine learning classifier that
has been trained on a dataset of multiple vehicles from different
manufacturers. The results show that accurate classification is
possible, and that some ECUs that broadcast similar vehicle
dynamics broadcast similar CAN messages.

Index Terms—automotive security, machine learning, classifi-
cation, CAN bus

I. INTRODUCTION

As consumer automobiles have become increasingly depen-

dent upon technology, interest in researching these vehicles as

a potential attack surface has risen sharply. This is especially

true given that some of the newer model years have been

shipped with outward-facing channels of communication like

Wi-Fi and 3G installed. This communication functionality

enables remote cyber attacks through vulnerabilities that ex-

ist on vehicles, which are no longer strictly theoretical in

nature. Dr. Charlie Miller and Chris Valasek have famously

demonstrated some exploits of these vulnerabilities [1] [2]

[3]; moreover, other researchers have provided substantial

contributions within this domain [4]. To prepare for, and

defend against, this threat, security researchers at vehicle

manufacturers, government agencies, and research institutions

are exploring many facets within the automotive cybersecurity

field.

Cognitive distance provides a substantial roadblock which

prevents more experienced security experts from applying their

knowledge and skillset to the automotive domain. Simply

put, although there are basic networking principles at work

within vehicles, the difficulty in understanding the protocols

and identifiers on a new vehicle lie in the proprietary nature

of each vehicle’s configuration. Consumer automobiles sold

in America starting with model year 2008 all use a CAN bus

architecture for communicating between the various embedded

systems, or ECUs, that aid or control vehicle functions [5].

Despite the fact that the CAN bus is the standard for American

cars, the actual messages that are sent on the CAN bus

vary from manufacturer to manufacturer and even between

different models and model years from the same manufacturer.

This diversity provides a frustrating experience, as it is often

unclear what any of the messages on the CAN bus are

broadcasting when the traffic is monitored — particularly if the

vehicle is unfamiliar or the researcher is less experienced. The

lack of consistent information creates a myriad of problems

directly affecting ability to create sound, applicable, and secure

solutions, since the ECU communication data is not publicly

known.

Previous research exists that demonstrates the validity of

utilizing machine learning classifiers on vehicle data, as is

presented in this paper. A recent SAE technical paper [6]

used a neural network-based recgonition module in order to

recognize manipulated ECUs. The recognition module uses

simulated vehicle data such as speed and RPM as input into

a neural network and was able to recognize ECUs that had

been manipulated. Similarly, an older paper [7] utilized other

features about driver behaviors, such as trip distance and av-

erage and maximum acceleration and deceleration, which are

fed to a machine learning algorithm for the purpose of saving

fuel by optimizing power control. The authors also utilize a

neural network specifically for the purpose of predicting road

types and traffic congestion in order to further improve the

reduction in fuel usage.

The current methods of determining the identifiers and mes-

sage contents of CAN bus messages can be time-consuming,

unreliable, or infeasible. Currently, identifying CAN messages

involves a manual process of monitoring CAN traffic while

performing vehicle operation to produce a loose guideline to

send messages using trial-and-error. For example, a researcher

might watch the CAN bus traffic and look for messages

that change when turning the steering wheel, or pressing the

brake pedal. Unfortunately, this will not always allow for a

researcher to distinguish between closely-related messages,

and there are a fair number of messages that cannot be

identified in this manner. Another method of identification is

to physically disconnect individual ECUs from a CAN bus

2016 15th IEEE International Conference on Machine Learning and Applications

978-1-5090-6167-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICMLA.2016.53

632

Fig. 1. CAN-frame format

and look for the absence of messages which were previously

present. Since many ECUs regularly send out CAN messages

with specific arbitration identifiers (arbIDs), disconnecting an

ECU can determine exactly which messages that ECU is

sending out. However, this method is much more difficult and

might be infeasible for many researchers.

Instead of being forced to use tedious, manual methods, the

goal of this research was to determine if machine learning

techniques could aid in an automated identification of ECUs

within the context of CAN bus message content. Due to the

restrictions of the CAN protocol, each CAN message contains

only 8 bytes of data. Although ECU identifiers may differ

greatly on different vehicles, some messages seem to have

similar message formats. Classifiers such as nearest neighbor

(k-NN) and multilayer perceptron networks have previously

provided accurate results on similar types of data sets, given

a sufficient training set of labeled vehicle CAN data. Initially

this data would have to be manually labeled using one of

the above methods, and a variety of different vehicles and

manufacturers should be included to ensure that the new

vehicle in question would be covered. Eventually, a user front-

end could be designed so that newly classified results could be

saved, verified, and added to the dataset. This would continue

to increase the accuracy of and eventually even reduce the need

for the machine learning process entirely. For testing purposes,

one vehicle of the dataset of collected vehicle data would be

kept out of training the classifier to serve as the test set similar

to the concept of 10-fold cross validation.

II. DATASET COLLECTION

Data collection for each vehicle included in the dataset was

obtained through Intrepid Control Systems’ neoVI FIRE CAN

bus hardware, which plugs into a vehicle’s on-board diagnostic

(OBDII) port and provides a stream of data to a laptop over

USB. However, it would be possible to perform the same data

collection with any number of much less expensive hardware

solutions. Vehicle Spy 3, a software product also distributed

by Intrepid1, provided a graphical user interface that offers

substantial functionality, such as scripting, logging, and filter-

ing features that make it easier to sort through the myriad

1https://www.intrepidcs.com/

CAN bus messages, in addition to the ability to perform

basic operations, such as reading and transmitting messages.

Although this study explicitly used the proprietary offerings of

Intrepid, there are also open-source software solutions, such

as the SocketCAN can-utils on Linux, which may be coupled

with cheaper hardware to offer similar functionality at a lower

cost.

A complete set of messages for each vehicle were not

identified, but a small subset was chosen in order to determine

the viability of this method of identification. It was not feasible

to identify a large number of messages in each vehicle, due to

constraints on access to each vehicle. The messages that were

chosen were brake pedal pressure, acceleration pedal pressure,

steering wheel position, wheel speeds, and gear shift position.

These were chosen mostly for the ease and consistency with

which they could be identified by a researcher sitting in a

new car for a short amount of time. After these messages had

been identified and labeled in the Vehicle Spy 3 software, a

log file is collected of a short (3-5 minutes) driving scenario

that includes reversing, turning, accelerating, and braking. This

log is then exported for pre-processing. Currently, the dataset

includes log files from 9 different vehicles, ranging in model

years from 2011-2016, including but not limited to vehicles

from Ford, Toyota, Dodge, Hyundai, and VW. This selection

of vehicles is representative of many of the vehicles present on

US roadways. This diversity in the dataset suggests the content

of the message is a more important factor in identification than

manufacturer.

III. FEATURE SELECTION

The broadcast nature of the CAN bus limits the set of

features available for message classification, as there are no

source or destination addresses, nor is there much header

information at all. The CAN format includes an arbID for

each message which serves as something of an identifier for

the message — however, different ECUs might both send

messages with the same arbID, and every device on the bus

receives every message broadcast. Further considerations of

the CAN bus messaging protocol, such as the fact that certain

1-bit flags that are available as part of the CAN specification

are rarely different between any of the messages on the CAN

bus of an average car, can be omitted completely due to the

633

lack of information gain for that feature. For reference, Fig. 1

shows the format of a CAN frame. The Control bits typically

are the same for all messages on a particular vehicle, and the

CRC data doesn’t provide much information.

Initially this study utilized the following features:

• Arbitration ID (arbID)

• Relative time since last message received on that arbID

(Δt, in seconds)

• Message data payload (separated into 8 bytes, B1-B8)

The Δt attribute was provided by the Vehicle Spy 3 soft-

ware; no extra work was required to calculate this value. This

value was included as a feature because it was hypothesized

that certain types of messages might share a timing setup

on different vehicles. However, once a sizeable dataset had

been collected and different classifiers were being tested,

classification was tested with the first two attributes removed

(arbID and Δt). For most classifiers, this produced results that

had similar or even higher accuracy values, which suggests

that for some of the messages being identified, there is

enough information gain in the data payload of the messages

themselves for identification purposes.

IV. CLASSIFICATION

The training and testing of machine learning algorithms for

the purposes of classifying this CAN bus data was done with

the open-source, Java-based program Weka. The use of Weka

allows for operation in diverse environments since it is written

in Java and can utilize the trained classifier in a potential

front-end by calling on Weka libraries across a diverse pool

of devices and operating systems.

For pre-processing this data, a Python script was written

and used alongside a standard text editor. The text editor was

used to remove extraneous leading lines put into the log file by

Vehicle Spy 3 and to replace missing byte values with a value

of zero. The script then read through the logs, converted the

hexadecimal (hex) representation of the bytes into decimal,

and removed lines that were unlabeled messages. This was

done to reduce non-operational data and increase overall pro-

cessing and classification speed of a reduced dataset. The hex

to decimal conversion was done to handle Weka’s difficulty

with parsing hex values the bytes needed to be numeric

and not nominal attributes. Finally, the individual logs were

combined into a larger training file and shuffled, with one

vehicle’s log held back to be used as the test set.

A number of different classifiers were applied and then the

results were compared, trying to determine which would be

best-suited to the dataset. Since the initial tests included the

arbID as a feature of the model, classifiers based on decision

trees seemed unlikely to produce accurate identification, since

a decision tree would put a lot of weight on arbIDs while train-

ing, but the test vehicle will almost always be using different

values for each message. The nearest neighbor classifier stood

out as a potentially successful classifier, given the nature of

CAN bus messages in most vehicles. Since there are only 8

bytes to work with, messages that perform similar functions in

different vehicles typically use similar methods of scaling and

Fig. 2. Comparison of Weka classifiers

formatting. Therefore, even with very different arbID values,

the data itself should be similar enough across vehicles that

the correct class will be the closest in most distance metrics.

The following classifiers were tested, given by their Weka

naming convention (note that some were omitted from section

V):

• Naı̈ve Bayes (with kernel estimation)

• Bayesian Network

• Simple Logistic

• Multilayer Perceptron

• LibSVM

• IB-k nearest neighbor

• KStar

• RandomForest decision tree

V. RESULTS

Fig. 2 shows a breakdown of some of the accuracy values

provided by different classifiers that were tested. This shows

the similarity or dissimilarity between the accuracy before and

after the arbID and Δt attributes were removed. In particular,

the decision tree classifier performed very poorly when these

values were left in, but performed quite well when they

were removed. An increase in accuracy was expected with

the removal of arbIDs, but the difference between the two

was quite drastic. Meanwhile, the nearest neighbor classifier

ignores the Δt and arbID values when determining distance

anyway, so there is no change in accuracy when those values

are removed.

Fig. 3 and Tables I and II provide more detailed information

for the IB-1 nearest neighbor classifier, as that classifier had

the most consistent performance, both with and without the

additional attributes. Fig. 3 shows that certain classes were

more easily classified by this model than others; in particular,

the model exhibited poor performance identifying the steering

wheel and accelerator messages. This can be seen in more

detail in Table I. The steering wheel message had much fewer

instances in the test set than some of the other messages, which

634

Fig. 3. Accuracy by message class, IB-1 classifier

TABLE I
IB-1 CONFUSION MATRIX

Classified as -> Wheels Brake Steering PRNDL Accel

Wheels 13491 19 22 0 0

Brake 188 6777 79 30 20

Steering 138 72 116 0 0

PRNDL 0 3 0 149 11

Accel 0 873 1429 233 0

TABLE II
IB-1 PRECISION, RECALL, AND F-MEASURE

TP Rate FP Rate Precision Recall F-Measure

Value 86.8% 3.7% 82.5% 86.8% 84.4%

might have contributed to the poor performance. However,

the accelerator pedal had many more instances but the model

still struggled to recognize these messages correctly, instead

labeling them as steering wheel or brake messages.

This particular implementation of a nearest neighbor classi-

fier is based on the work presented in [8]. It allows the user to

specify an arbitrary k value or select from a few different near-

est neighbor search algorithms (brute force search, KDTree

[9], CoverTree [10]). The results presented here utilize the

default settings of using the brute force search with a k value

of 1.

VI. CONCLUSION

Given the high precision and recall for most of the classes,

these results suggest the viability of the work, as well as areas

of improvement as the dataset expands. Three out of the five

classes tested had TP rates above 90%, and the overall FP

rate was very low. One limitation of the dataset was that the

accelerator pedal message was unable to be identified for every

vehicle, and was therefore underrepresented in the training

dataset. This seems to be reflected in the poor results for

that specific message. Nevertheless, the results suggest that

there is enough similarity between how certain messages (such

as wheel speeds and brake pedal messages) are formatted

on different vehicles, even across manufacturers, that as this

dataset expands to include more vehicles and different types

of messages, classification will still be possible.

VII. FUTURE WORK

In refining the approach to this problem, a larger set of mes-

sages for each vehicle will need to be identified. Expanding

the diversity of message types that are included in the training

process will further test the viability of this identification

method, and provide insight into other weaknesses in this

approach. Further testing will also involve using a trained

model to classify the log file of a test vehicle with all of

the messages present to determine if the model struggles

with falsely identifying unidentified but similar messages on

the CAN bus. Eventually, after the dataset includes multiple

vehicles that have had a majority of their CAN messages

identified, a front-end could be designed to allow a user

to upload his or her own log file for classification. Once

this front-end is developed, the process of identifying CAN

messages on a new vehicle will be made much easier. Rather

than having to spend hours in a vehicle analyzing how the

messages on the CAN bus respond to different triggers or

removing physical ECUs from the CAN bus, a user will be

able to collect a short set of driving data and upload it for

automated classification.

ACKNOWLEDGMENTS

The authors would like to thank the National Science

Foundation (grant number 1229700) for partially funding this

research.

REFERENCES

[1] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” DEF CON, vol. 21, pp. 260–264, 2013.

[2] ——, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, 2015.

[3] ——, “A survey of remote automotive attack surfaces,” black hat USA,
2014.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[5] I. Standard, “Iso 11898, 1993,” Road vehicles–interchange of digital
information–Controller Area Network (CAN) for high-speed communi-
cation, 1993.

[6] A. Wasicek and A. Weimerskirch, “Recognizing manipulated electronic
control units,” SAE Technical Paper, Tech. Rep., 2015.

[7] J. Park, Z. Chen, L. Kiliaris, M. L. Kuang, M. A. Masrur, A. M. Phillips,
and Y. L. Murphey, “Intelligent vehicle power control based on machine
learning of optimal control parameters and prediction of road type and
traffic congestion,” IEEE Transactions on Vehicular Technology, vol. 58,
no. 9, pp. 4741–4756, 2009.

[8] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[9] A. W. Moore, “An intoductory tutorial on kd-trees,” 1991.
[10] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest

neighbor,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 97–104.

635

