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Abstract—As the world continues to enhance and strengthen its 
emergency services, mobile phones may be used to aid in safe 
driving practices and detection of emergencies. To our 
knowledge, no work has been reported in understanding vehicle 
motion using accelerometers/compass in cell phones. In this 
paper, we used the multiple sensors in a Google phone to classify 
safe versus unsafe driving. In particular, we used breaking 
distance, acceleration, and deceleration for detecting safe verses 
unsafe braking. Next, we calculated the displacement in the axis 
perpendicular to the trajectory of vehicle and used it to classify 
safe and unsafe lane changes. The direction of the phone with 
respect to the motion of the vehicle is important during 
calibration of the above measurements, so we used 2D and 3D 
rotation matrices for transforming device orientation. Future 
work includes calibration of braking distance, lane changes, and 
reliable transformation of phone orientation with respect to 
trajectory of the vehicle. 

Keywords-testbed; accelerometer; Android; mobile phone; 
driving;  safe;  unsafe;  orientation;  emergency 

I.  INTRODUCTION 
Mobile phones which have embedded accelerometers may 

be used for risk level detection while riding in a vehicle. 
Accelerometers have been gaining in popularity lately, mostly 
because of advances in gaming technology. They are typically 
used as 2-dimensional sensors for consumer electronics, such 
as cameras, to determine orientation, but may be used to 
enhance safety. Programming with accelerometers on the 
Android platform is straightforward and supports three axes. A 
triple-axis accelerometer is important for this study because 
phones may be carried in any orientation, as opposed to the 
device being carried in a known orientation in other studies [1-
5]. 

Coupled with GPS capabilities, a microphone, and a digital 
compass, T-Mobile’s G1 phone running the Android platform 
may provide an ideal test bed for mobile risk level detection 
[3]. Using accelerometer measurements, it should be possible 
to classify driving habits as safe or unsafe. In this paper, we 
look at the two horizontal axes to determine the safety level of 
the driver. 

II. TRIAXIAL CONSIDERATIONS 
As Table I shows, the two horizontal axes are x and y. 

These axes were chosen for experiments because the driver has 

direct control over them in the way he steers, accelerates, 
and/or breaks. While abnormalities in the z axis may look 
different for safe and unsafe driving, these are more typically 
caused by road conditions than by driving habits. 

TABLE I.  SIGNIFICANCE OF TRIAXIAL MEASUREMENTS 

Measurements Obtained 
Axis 

Direction Typical Driving 

x Left/right Change in direction (Steering) 

y Front/rear Accelerator and brake pedals; friction 

z Up/down Bumps in the road 

 

The normal phone orientation used for all the 
measurements has the phone situated with its x axis parallel to 
the direction of travel, the y axis horizontally perpendicular, 
and the z axis vertical. In this context, our desired orientation is 
a quantifiable placement of the phone relative to the direction 
of travel. The T-Mobile G1 does have an orientation sensor, 
reporting values of “azimuth”, “pitch”, and “roll”. The phone 
also has a GPS sensor that will give the direction of travel. 
Using these values, we should be able to adjust accelerometer 
measurements to a known orientation. 

Disorientation is almost guaranteed to occur during field 
tests and when the program is in use because flat surfaces are 
hard to find in a car. Placing a phone in such a location may 
result in sliding. Phones may be kept in such non-ideal places 
as the driver’s pocket, on the dashboard, or in a compartment 
within the car. 

It is far more beneficial from a modeling and processing 
perspective to fit the data we have to a known model. If we 
leave the model open to all possibilities, complexity rises so it 
is more difficult to understand. Also, if our intentions are to 
model the car’s behavior, adjusting data to the car’s orientation 
should provide more meaningful results. 

III. BRAKING 

A. Safe Versus Unsafe Braking 
When the phone is in its normal position, a change in the 

vehicle’s speed is measured along the x axis.  
The term “acceleration” in this case is used to mean an increase 
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in speed and “deceleration” to mean a decrease in speed, 
without regard to the acceleration vector’s angle. 

See Figure 1 for an example of safe acceleration and 
deceleration. Of course “safe” is a relative term so this paper 
only assumes that “safe” driving and “unsafe” driving have 
measureable differences in acceleration. 

 

Figure 1.  Safe Acceleration and Deceleration 

 

What we see here is the phone at rest for the first few 
seconds on an incline, then a mountain-shaped acceleration in 
the negative y direction for about twelve seconds. The 
mountain-shaped region represents vehicle acceleration. After 
that, there is a plateau-shaped acceleration in the positive y 
direction followed by another period of rest. The plateau-
shaped acceleration represents vehicle deceleration. 

Looking at the periods of rest, it is obvious that the car is on 
somewhat of an incline. We can also see that the beginning 
incline is roughly the same as the incline at the end. Vehicle 
acceleration is measured in the negative y direction and 
deceleration in the positive y direction. As we see in this chart, 
safe acceleration and deceleration never reaches more than 0.3 
g in either the positive or negative direction. 

 

Figure 2.  Unsafe Acceleration 

 

The unsafe acceleration depicted in Figure 2 shows the 
same overall shape of safe acceleration but a slightly higher G-
force of 0.43 g on this incline. Apparently the car used (2007 
Pontiac G6 Sport) does not have enough power to significantly 
amplify the acceleration chart. 

Unsafe deceleration, however, does show a significant 
difference. One such example is in Figure 3. The deceleration 
looks similar to the one in Figure 1, except that the vehicle did 
not sustain a high acceleration plateau. In this experiment, the 
G-force reached as high as 0.66 g at its peak. Looking at the 
chart, the sudden drop off in acceleration corresponds to the 
brakes locking onto the wheel’s rotor. After locking, there is a 
period of oscillation for a few seconds as the car rocks back 
and forth. 

 

Figure 3.  Unsafe  Deceleration 

 

Using this data it is easy to see the difference between safe 
and unsafe deceleration, yet the distinction is not so clear for 
accelerations. 

B. Braking Distance 
As acceleration is the double-derivative of distance, it is 

possible to perform a double integration to recover distance 
used in stopping a vehicle. Begin with a known estimate of 
speed from the GPS sensor and knowledge of when braking 
occurs. From Figure 1 and Figure 3 the point at which the 
driver begins to decelerate is apparent, as is the point at which 
the driver comes to a complete stop. Performing the first 
integration on the data determines speed measured by the 
accelerometer. Since the GPS speed sensor is assumed to be 
more accurate for this calculation, the first integration is 
linearly adjusted to fit within a proper window. 

The second integration yields a rough estimate of distance 
used for stopping. In the trials, distance acquired from 
calibrated data had a high correction. We can use this distance 
to aid in determining safety. 
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IV. CHANGING LANES 

A. Safe Versus Unsafe Lane Changes 
When the phone is in its normal position, a lane changes are 

measured mostly along the x axis. It should be possible to 
measure curve safety with the x axis. The physics vector 
definition of acceleration in the x axis is not used here because 
the x axis is always relative to the vehicle. 

Figure 4 shows two safe lane changes which are safe and 
firm enough to register on the accelerometer by visual 
inspection. Note that there is an incline in this data as well.  

 

Figure 4.  A Series of Safe Lane Changes 

 

In Figure 4, there is first acceleration in the positive x 
direction, which means that the vehicle is making a lane change 
to the left. After that we see acceleration in the negative x 
direction as the vehicle completes its lane change and starts 
another one in the opposite direction. The next lane change to 
the right has noticeably more acceleration than the first. 

Unsafe lane changes can be seen in Figure 5. These lane 
changes take less time, so there are more of them performed in 
the same amount of time. Figure 5 shows a G-force of well 
over 0.5 g in the x direction. 

 

Figure 5.  A Series of Unsafe Lane Changes 

 

Using this data, not only is it possible to count lane changes 
and detect when they occur, it is possible to classify safe and 
unsafe lane changes. A person trying to weave in and out of 
traffic might very well perform several lane changes of this 
type over a short period of time. 

B.  Lane Change Width 
When a lane change occurs, there should be a measureable 

displacement in the axis perpendicular to the vehicle’s 
trajectory. The vehicle’s relative x-axis changes directions 
relative to the lateral axis throughout the lane change. Figure 6 
shows a curve which causes a displacement in the lateral axis. 
Input information includes time, speed (estimated by the GPS 
sensor), and relative x-axis measurements reported by the 
accelerometer.  

 

Figure 6.  Rotation Displacement 

 

First, we shall note the radius of a curve with respect to 
speed (v) and x-axis acceleration (ax). 

  (1) 

Therefore, 

  (2) 

Next we find angular speed using acceleration, time (t), and 
radius. 

  (3) 

Therefore, 

  (4) 
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The angle (θ) of the curve can be found by simply 
integrating the angular speed over time, or in this case, 
summing instantaneous angles. 

  (5) 

From Figure 6, we can find a relationship between r, θ, and 
x. 

  (6) 

Finally, solving for x and plugging in values of r and θ from 
prior equations yields the required formula. 

  (7) 

Given that the range of a cosine function will always be 
bound between -1 and 1, the bracketed portion of the previous 
equation can never be negative. The same is true for v2, which 
leaves the sign of the acceleration to directly determine the sign 
of our resulting displacement, x. Also note that the cosine 
function is symmetrical about the y-axis so the formula will not 
be affected by the sign of θ. 

For testing, speed should remain constant while input 
values of time and acceleration change. We will assume that 
the reported acceleration is a weighted average of acceleration 
over the previous time period. Applying the formula 
sequentially to individual accelerometer readings leads to poor 
results and experiments with time weighted averaging are 
underway. 

It is important to note which derived values in the previous 
equations can be instantaneous (used only for one line of 
calculations) or cumulative. All input values are assumed to be 
instantaneous in order to perform the calculations except for 
elapsed time, which was already cumulative and must be made 
instantaneous. Radius (r) and angular speed (ω) are 
instantaneous. Angle (θ) and total lateral displacement (x) are 
integrated values and as such must be cumulative. This 
information is summarized in Table II. 

TABLE II.  PERSISTENCE OF LANE WIDTH VARIABLES 

Value Symbol Persistence 

Time  Instantaneous 
X-Axis Accelration  Instantaneous 
Speed   Instantaneous (constant) 
Radius   Instantaneous 
Angular Speed   Instantaneous 
Angle   Cumulative 
Total Lateral 
Displacement 

  Cumulative 

 

V. TRANSFORMING DEVICE ORIENTATION 
Sensor data collection with the mobile phone requires some 

extra considerations regarding device placement. We may not 
assume a given orientation of the mobile phone with respect to 
a vehicle’s motion. Instead, orientation 

The direction the phone is facing is called its “azimuth”. 
This is a compass measurement which reports deflection from 
true North. In addition to accelerometer and GPS sensors, the 
G1 does come with a digital compass [3]. The direction of the 
phone’s face will determine azimuth. For example, the LCD 
display has to be pointing North in order for the azimuth to 
read a value of “North”. If a person is already facing North and 
looks at the phone, it will likely read “South”. Use Table III as 
a reference for azimuth values. Note that when the phone is in a 
horizontal position, it will be nearly impossible to see an 
accurate azimuth value. 

TABLE III.  PERSISTENCE OF LANE WIDTH VARIABLES 

Cardinal Direction Reported Azimuth Value 

North 0 or +360 
East +90 
South +180 
West +270 

 

 “Pitch” readings usually show a slant upward or downward 
from the direction of travel. An airplane’s pitch would be 
positive on take-off because the nose is in the air. If the plane 
were to take a nose dive, its pitch would be negative. On G1 
phones, we can consider the speaker end of the phone its nose. 
However, when the nose is down there will be a positive pitch, 
and when the nose is up we will see a negative pitch. The sign 
in this case correlates to shifts in the accelerometer’s y-axis 
measurements. Values range from -180 to 180 degrees. 

The last orientation value is “roll” which represents left and 
right banking of the device. Turning the device on its right or 
left long edge changes its roll value. Again, on the G1, reported 
readings are counterintuitive. A positive roll indicates a bank in 
which the right side of the phone (that is, the side with the 
“end” button) goes down. By contrast, when the phone banks 
to the left, we will see a positive roll. The sign in this case 
correlates to shifts in the accelerometer’s x-axis measurements. 
Values range from -180 to 180 degrees. 

The last reading of import is heading information from the 
GPS sensor. “Heading” is the direction of motion, or in our 
case, the direction of travel. The difference between heading 
and azimuth is that azimuth is the direction the phone is facing 
but heading is the direction of movement. We wish to reconcile 
the azimuth with heading in our rotations. 

Understanding two-dimensional (2D) rotation is 
fundamental for understanding three-dimensional (3D) 
rotation. Once we have a formula, we can apply the transform 
to each coordinate pair to form a new set of points. 

One important thing to realize here is that, since the rotation 
angle is the same for the roughly seven thousand points 
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forming this image, neither the cosine nor sine of the angle 
changes. Processing will be faster to calculate all the sinusoid 
functions in advance of performing the batch calculation. Such 
optimizations are crucial to mobile development because of 
limits on processing power. 

2D rotation matrices lead gracefully into a generalization 
for three dimensions. Euler proved that a single 3D rotation can 
be performed by applying 2D rotations in the proper sequence 
and with the proper angle. 

It is theoretically possible to correct for pitch and roll at the 
same time, however, more study is required and until then we 
are currently limited to one degree of freedom. 

For a roughly 45-degree pitch incline, orientation sensors 

read -41° pitch and ‐1° roll. Original accelerometer readings 

were  ሼ‐0.11,  ‐6.39,  ‐7.37ሽ  for x,  y,  and z axes,  respectively. 

After  the  coordinate  transformation,  output  values  were 

ሼ0.02, 0.01, ‐9.75ሽ, amounting to a 0.5% error in the z axis. 

For a roughly 45-degree roll incline, orientation sensors 

read 0° pitch and ‐44° roll. Original accelerometer readings 

were  ሼ6.74,  ‐0.01,  ‐7.04ሽ  and  output  values were  ሼ‐0.04,  ‐

0.01, ‐9.75ሽ and hence a 0.5% error in the z axis. 

For both of  these  experiments,  expected output  values 

are ሼ0, 0, ‐9.8ሽ. A device already in this orientation indicates 

that its orientation does not need an incline adjustment. 

VI. CONCLUSIONS 
T-Mobile’s G1 phone may be used as a black box to 

determine varying levels of risk while riding in a vehicle. 
General classification is possible given its GPS speed sensor 
and triple-axis accelerometer, but the hardware may not be 
accurate enough to perform other measurements such as 
braking distance and lane change width reliably. In order to be 
useful as a measurement tool and phone, the coordinate space 
must be periodically measured and corresponding 
accelerometer measurements adjusted for. 

VII. FUTURE WORK 
With the latest platform release of Android, 1.5, developers 

now have access to raw microphone data. Prior to version 1.5 
audio was compressed and recorded via an API, after which a 
developer could decompress and analyze it. For this project, the 
two computationally expensive steps of compression and 
decompression are not necessary for all audio. This project will 
expand to include limited audio processing for classification 
purposes. 

Transforming data in three dimensions is a must. Android 
1.5 comes with more functions to help with coordinate 
transformations on the phone but its function to calculate a 
rotation matrix depends on geomagnetic hardware which the 
G1 phone does not have. 
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