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Abstract

Network attacks have become so fast that human mitigation does not cope with security requirements. In

addition, attacks are done in a smarter way mutating itself to prevent detection. Therefore, defense mechanisms

must be automatic to comply with attack speed and adaptive to comply with their mutation. An architecture to

support this trend in defense mechanisms is proposed here. The architecture is based upon three conceptual pillars.

The first is based on the use of a multi-feedback loop control to slow down an attack. The second lies on machine

learning concepts to properly distinguish between normal e attack traffic. Finally, social network provides the

mechanisms to determine trust and reputation levels of network elements. A case study on the application of the

proposed architecture to a worm propagation attack provides the initial evidence of the efficacy and applicability

of the approach.

Keywords: automatic adaptive defense, multi-loop feedback control, social network, machine learning, worm

propagation.

I. INTRODUCTION AND MOTIVATION

The Internet is prone to worm propagation, denial of service, virus and spams among other attacks.

These are partly due to openness of the Internet and the lack of self defense on every node and application.

For example, the spreading rate of worms has recently reached alarming velocity. That is, previous worms
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had a slow spreading rate allowing timely human reaction. However, this is not the case anymore and

worms are spreading at an exponential rate. At these spreading levels, by the time a worm is detected, the

majority of the hosts are already infected. Future worms will exploit vulnerabilities in software systems

that are not known prior to the attack. Neither the worm nor the vulnerabilities they exploit will be known

before the attack and thus we cannot prevent the spread of these viruses by software patches or antiviral

signatures [1].

There is a need to control fast spreading viruses automatically since they cannot be curtailed only

by human initiated control. Some of the automatic approaches like quarantining the systems and shutting

down the systems reduce the performance of the network. False positives are one more area of concern [1].

Williamson describes a novel approach to this problem. This situation can be improved considerably by

using benign responses, those that slow but do not stop the virus. The main idea is to delay the virus

and earn time for human mediated responses [1]. Feedback control strategy is desirable in such systems

because well-established techniques exist to handle and control these systems. This technique is based

on the fact that an infected machine tries to make connections at a faster rate than a machine that is not

infected. The idea is to implement a filter, which restricts the rate at which a computer makes connection

to other machines. The delay introduced by such an approach for normal traffic is very low (0.5-1 Hz).

This rate can severely restrict the spread of high-speed worm spreading at rates of at least 200 Hz [1].

In addition to containing the worm propagation, distributed denial of service (DDoS) is another attack

that requires fast intervention and automated response. Since attacks can be very severe and fast, a single

network element may not be able to prevent the attack. Some of the requirements for an automated

response are described next:

� Multiple levels of defense: in order to contain the attack to small number of nodes, we need sufficient

communication between the different network elements. Infected elements should share the attack-

specific information with their neighboring networking as well as with the perimeter controller.

� Cooperation among multiple elements: a new protocol need to be defined for communicating with

the neighboring devices. In addition, a new message format needs to be defined. IETF has defined

an intrusion exchange format but this does not cover all the threat-specific information.

� Solution that can handle multiple threats: from our observations, several kinds of worms, and DDoS

attacks have similar symptoms. Typically these are memory depletion, CPU exhaustion, and high
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volume of connections. It is desirable for any prevention/detection technique to block multiple threats.

� Automated patching for vulnerabilities: currently patching (after vulnerabilities are announced) is

done manually. Hence it takes several hours and probably days. So it is practically impossible to

contain an attack within few minutes. On the other hand, if we can automatically update signatures [2],

[3], [4], firewall rules, configuration parameters, and patches, majority of the nodes can be saved from

intrusions.

Here we describe a novel architecture for network level security based on feedback control theory. We

described this architecture in three levels. At network level, we propose a multi-level feedback controller.

Next, at the nodal level, we use the proposed methods for interworking of control system theory, machine

learning and social-technical procedures. Tuning the input parameter in a controller is a challenging task.

We have used the machine learning techniques for automatically setting the parameters for minimum

number of false alarms. Next task is how to trust the neighbor for sharing the security related information.

We have based these decisions on the trust and reputation of the sessions being generated. The heart of the

controller is based on a two-queue system. These are safe and suspect queue. The suspected connections

(marked by the machine intelligence) are delayed for processing and thus slowing down the attack. In the

following sections we describe the details of the architecture, and controller.

II. PROPOSED SECURITY ARCHITECTURE

A typical communication system is based on final or leaf nodes and internal nodes. Host computers in

a network and phones in a telephone system are examples of leaf nodes. Internal nodes could be routers

and firewalls in a network and switches and stations in telephone systems. Based on this general structure

a defense architecture construct upon feedback control concepts is proposed. The architecture relies on the

deployment of controllers at all levels and the sharing of information among these controllers. Also, the

defense mechanism can be applied to different types of services such as VoIP (Voice over IP), multimedia,

video, and data communication.

A secured network consists of firewalls, sensors, analyzers, honey pots, and various scanners and probes.

These components are either separate elements or collocated with hosts, servers, routers and gateways.

In this architecture, a (centralized or distributed) controller is responsible for collection and monitoring

of all the events in the network. It is a distributed controller and it is knowledgeable about the network
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Fig. 1. Controller architecture for end-to-end security engineering. This diagram describes a logical view of a multi-loop feedback

controller.The controlling functions are distributed and spread across several network elements. Detection of abnormal behavior in a host can

take several hundred milliseconds where as it may take several hours for a human operator to react and reconfigure the network. Similarly

a firewall at the perimeter can take several minutes for automatic detection of suspected hosts and adaptation of firewall rules.

topology, firewall configurations, security policies, intrusion detections and individual events in the network

elements. This controller is a logical function and can be deployed anywhere in the network. As shown in

Figure 1, the controller communicates with other controllers located in different network elements. These

network elements are responsible for detection and collection of the events in the node and communicate

to the controller. Subsequently, controller will run through the algorithms, rules, policies and mathematical

formulas (transfer functions) for next course of action. These actions are communicated to the clients.

As described in Figure 1, the architecture evolves from a concept of closed multi-loop control. Changes

regarding the security behavior are captured and mixed with the incoming network signals. This piece of

information is used to formulate the next course of action. The final result is outcome from multiple loops

and integration of multiple actions. The response times within each loop (we call them defender-loops)

varies from few milliseconds to several tens of minutes. For example, nodal events like buffer overflows,

performance degradation can be detected in matter of milliseconds. On the other hand, it may take several

seconds to detect failed logins, changes to system privileges and improper file access.

The proposed architecture is based first on slowing down an attack so that a pattern can be identified.

Different types of attacks have different side effects at different levels and sharing information helps on

identifying malicious behavior. In addition, attacks occurs with such speed that human detection is almost

impossible. Techniques such as machine learning can be used to identify pattern behaviors and detect the

attack. However, by the time a proper identification is made, almost all nodes have already been affected

by the attack. The use of control theory concepts and machine learning techniques can be combined to

provide an automatic and adaptive efficient solution. The use of a controller cannot contain an attack by
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itself but it has been shown that it can slow it down considerably as seen in Section II-C. Figure 2 describes

an architecture for automatic defense, building blocks, and their interaction in securing the network. The

machine learning system (MLS) learns the legitimacy of the incoming connection based on the number

of input and output connections, number of infected hosts, connections dropped, etc. [5] In addition

this system receives information about the trust and reputation of the incoming connections. This allows

machine learning techniques enough information to properly identify the attack and take measurements

(update the signature of filters in the system [2], [3], [4], update set points and other parameters of the

controller, etc.). Moreover proper identification decreases the chances of false positives and/or negatives.

However, such solution is not enough in the sense that communicating elements may be infected and the

information shared (used by the machine learning techniques) may not be reliable. Social networks can

then be used to determine trust and reputation levels for the elements. Based on these levels, the type and

amount of information to be shared can be specified as well as the use of information received by other

elements. Based on this information, MLS classifies the information as legitimate and new connections.

In particular the MLS considers the past experience (history) with source and calculates the probability of

incoming connection as legitimate or unknown. Social networks system (SNS) receives this classification

and computes the trust and reputation of incoming sessions based on the social closeness of the source.

For example, the social closeness depends if the elements are considered friends, coworkers or family.

Initial experiments have shown that the proposed architecture is general enough to be applied to any

topology, though the topology may affect the communication overhead. The controllers to be deployed

are software based and therefore are not affected by the topology. In addition the proposed architecture

can be used to defend against different threats such as distributed denial of service (DDoS) and worm

propagation. The controllers in this case can use different signatures to identify different threats at different

levels. For example, in the case of a spreading worm, the change in velocity in the number of connection

requests can be used to identify a possible infection at host level. At this point, the controller at the host

is activated. The host then communicate this to the firewall which can use a different signature, such

as change in the acceleration in the number of requests, to activate its own controller. A DDoS attack

can use different signatures (such as CPU exhaustion and memory exhaustion) and different controllers

to contain the attack. Therefore, the proposed architecture is general with respect to services, topologies,

threats, and signatures.
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Fig. 2. General control structure to be used in the end-to-end security engineering architecture in Figure 1. For adapting to the dynamic

traffic, automatic signatures are created and fed to the automatic controller. In addition, machine intelligence can be adopt based on the

events happening in other networks elements. The communication between the network elements can be carried through the exchange of

control messages using a low-overhead protocol.

A. Three Dimensional Defense

As stated in Section II, the proposed architecture is constructed upon concepts from very distinct

areas: control theory, machine learning, and social behavior. Below we describe the role of each of these

disciplines.

Control Theory: There has been over 40 years of research in control theory and its application ranges

from obvious areas such as electrical and mechanical engineering to less common areas such as biology

and software engineering. Recently, researchers have also start using control theory for quality of service

and for network security purposes [6], [7], [8]. In order to provide automatic defense, a mechanism to

regulate properties of the network must be in place. The mechanism must be able to drive the property

of interest to a desired level by regulating network related inputs (number of packets per time unit, time

out, etc.). Also, in some situations a steady state must be achieved. Finally, such mechanism must be

easy to deploy and should not demand large computational resources. Feedback control theory provides

such mechanism. For example, a PID (Proportional, Integral, and Derivative) controller can be used to



7

regulate suspicious traffic and slow down a spreading worm. A PID controller can be easily implemented

and deployed with negligible resource usage.

Machine Learning: Algorithms based on machine learning techniques can be mainly used for detection

purposes [5]. Under our perspective, detection has three dimensions. The first regards the process of

identifying if/when an element of the network is under attack. The second dimension deals with the

problem to distinguish between normal and malicious traffic while the third dimension tries to identify

the source of the attack (for example, an executable inside an element or an external element). A large

body of work already exists on these areas [5]. For example, a classification method based on learning

decision trees and rules has been used to reduce false alarms, achieving accuracies ranging from 91%

to 98% [9]. Their classifier algorithm complements the training examples with domain-knowledge rules

provided by some expert or by an early iteration of the algorithm. Lane proposes a semi-supervised model

that has achieved results ranging from 93% to 97% [10]. His approache is based on the relaxation of key

assumptions for intrusion detection and the use of partially observalbe Mrakov decision process. Another

approach uses protocol behavior for detection reaching between 82% and 100% accuracy depending on

the windows size (amount of data) used [11]. Since many attacks are related to the improper use of a

protocol, the classification is done when the protocol use deviates from the intended use. Moore and

Zuev [12] make use of supervised machine learning to classift network traffic. They use a Naive Bayesian

approached improved by the use of a fat correlation-based filter. Their results using the improved approach

range from 84% to 96% accuracy in the classification. Alternatively, machine learning techniques have

been used to classify incoming calls on voice over IP. The approach proposed by Kolan and Dantu [13] is

based on a feedback structure using bayesian learning to compute trust and reputation of an incomming

call and ultimately determining if the call is a spam or not. They have achieved results of 97.6% accuray

with 0.4% of false postives and 2% of false negatives. A list of these classification schemes as well as

their accuracy is presented in Table I.

Social Behavior: Learning the behavior of the participating entities would let us make many intelligent

decisions regarding how and what information to share. The behavior of the participating entities can be

learned during the course of a period of time. The behavior can be estimated by their past history. This

process of observing an element’s behavior over a period of time constitutes the “trust” of the element.

This available trust information helps in classifying the participating entities in cluster of distinct levels
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Learning Technique Accuracy

Learning decision Trees [9] 91% to 98%

Semi-supervised model [10] 93% to 97%

Protocol behavior [11] 82% to 100%

Supervised Mahine-learning [12] 84% to 96%

Trust and Reputation Bayesian Analysis [13] 97.6%

TABLE I

MACHINE LEARNING TECHNIQUES APPLIED TO TRAFFIC CLASSIFICATION AND THE RESPECTIVE ACCURACY OF THE CLASSIFICATION

SCHEME

of trustiness. Human feedback (implicit or explicit) can be part of it [14].

Social networks can be used to represent elements relationships that can be derived along the paths

of the network [14]. These relationships are transitive and transparent. If domain A trusts domain B and

domain B trusts domain C, then with a high degree of confidence, an argument can be made that Domain

A can trust domain C. These social networks can be used to infer the associated relations between the

elements of the network. The social network represents the associated and trusted neighbors from which

the user is willing to receive/share information. A graph can be generated based on neighboring elements

and can be used to derive the reputation of an element. Reputation is derived from trusted peers while the

trust is calculated based on the past history. The peer proxies would derive reputation by their trusted peer

proxies, and this would continue until the last proxy in the via list (for example, relays in the email header)

or the proxy that is reachable from source by one hop is reached. Based on the reputation inference from

the peer proxies of the source and the entities in-between, the reputation can be inferred.

The algorithm’s accuracy and false alarms are described in [14] through an example on how to

detect unwanted emails. Dantu and Kolan [14] devised a technique for classifying the emails as “spam”,

“phishing,” and legitimate. They classify the incoming emails by performing the following analysis on the

header; DNS-header analysis, SMTP path-and-relay analysis, social-network analysis, time series analysis,

and principal-component analysis [15]. Finally, based on the results from these analyzes, they successfully

isolated unsolicited and phishing emails from legitimate emails. Furthermore, they categorized spammers

and phishers into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers,

and suspects. Next, they classified legitimate emails and trusted domains into socially close (family
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members, friends), socially distinct (strangers, etc), and Opt-outs (tele-marketing). Finally, they analyzed

the technique’s performance for false positives and false negatives using ROC curves. Overall, our classifier

resulted in a precision of 98.65% which is well comparable to the precisions achieved by current filters

as can be seen in Table II. The details of the intellegent classifier are described in [15].

Analyses False Positives False Negatives Precision Phishing Hits

DNS header analysis 260 00 85%

DNS header Analysis + social network analysis 13 05 92.63%

DNS header Analysis + social network

Analysis + time series analysis

06 01 98.4%

TABLE II

SUMMARY OF RESULTS (DNS-HEADER ANALYSIS, SOCIAL NETWORK ANALYSIS AND TIME SERIES ANALYSIS) ANALYSES PERFORMED

ON AN E-MAIL CORPUS CONSISTING OF 13,843 EMAILS COLLECTED OVER 2.5 YEARS.

B. Experimental setup

In order to evaluate the potential of the proposed approach we have used a virtual network testing

environmnet, named Goliath [16], to conduct the experiments. Goliath allows for the creation of multiple

“virtual” nodes in a single machine and any overlay netwrok topology can be chosen. Goliath has been

built on top of a real-life netwrok and, therefore, incorporates all TCP properties. For the experiments

conducted here a total of 42 machines have been used with 12 virtual nodes in almost all machines

totalling 500 virtual nodes. Also, since Goliath is a platform free environment, a mixture of Windows and

Linux machines have been used. The results for this initial experiment are presented next in Section II-C.

C. Preliminary Results

Preliminary results of applying a PID controller to slow down a spreading worm are presented next.

The results are a clear indication that the solo use of a controller can slow down the worm but cannot

contain it. The integration with other techniques form a more complete solution for the problem as seen

in Figure 3. The controller is based on a queue system of connection requests as described next.

It is assumed that, as the number of requests increases, a portion of them will be sent to a delay queue

to be served later. The remaining ones are sent to a safe queue to be served immediately. The overall
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structure of this queue system is depicted in Figure 3. Parameters related to the size of the delay queue

and the number of dropped (time-out) connections are used to control the total number of connections

resulting in a slow down of a spreading worm [7]. Sapphire worm spreading is taken as an example to

show the applicability of our approach. The number of requests generated by the worm increases according

to an s-shape format [17]. The goal of the example is to slow down the spreading velocity of a worm by

controlling the total number of connections detected by a firewall.

It is assumed here that all requests in the safe queue, at one point in time, are served. Therefore, at each

time a server is allocated to handle the requests at the safe queue, it serves all the new incoming requests

plus all the ones transferred from the delayed queue at the previous time period. Hereafter we refer to

the proposed approach by ADS (Automated Defense System). The input for the ADS is the number of

requests. In a normal traffic condition this number tends to vary over a constant value. However, under

an attack condition the number of requests will assume a different behavior. At the host level a step input

can be used to characterize the attack. Once the host is infected, the worm will try to make a certain

number of connections per time unit in addition to the normal requests. The step function however cannot

characterize an attack at the firewall level. For a large network, an S-shaped function is a better alternative
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to represent such behavior.

A protocol is required to define the overall working of the system in an organized manner. In case

of a worm attack it is necessary that the protocol achieves the desired function, and that the defense

mechanism is able to contain the spread of the worm. The assumption here is that there is an infected

host in the network. The firewall interacts with both infected and uninfected hosts. Normally, a mixture of

normal and attack traffic is sent by the infected host. When an uninfected host receives an infected packet

and an attack is detected, it sends an infected signal to the firewall and starts infecting other hosts. This

occurs when any host on the network is infected in this manner. At each point, the firewall checks for a

threshold number of infected hosts. Once the threshold for infected hosts is reached, the firewall sends

a kill process or reduce setpoint signal to all the infected hosts and a reduce PID setpoint signal to all

the uninfected hosts. The firewall also checks for the containment threshold, which is reached when there

are no infection messages in the network for a certain period of time. Once the containment threshold is

reached the firewall again sends a reset signal to all uninfected hosts. This signal resets the setpoint to

initial values.

The objective of our approach is to delay the worm propagation and restrict the spreading to a small

number of hosts. The performance of ADS depends on a number of variable parameters and the outcomes

may vary based on the values of these parameters. For example, the outcome may vary depending on the

portion of connection requests forwarded to suspect queue compared to the safe queue. In this context, we

assumed two modes of queuing; one intelligently (based on machine learning techniques) and another one

randomly. Similarly, the firewall has the option of issuing different commands to the hosts for stopping

the spread of worm. For example, it can ask the hosts to kill a suspected process or drop all the requests

in the suspect queue (again, machine learning can be used to identify malicious executable code [5]). We

divided the experiments into two parts: i) control using inner loop (host only - Figure 4(a)); and ii) control

using the inner and outer feedback loops (host and firewall - Figure 4(b)). As can be seen in Figure 4(a)

the deployment of the controller at the host level can slow down the attack but cannot contain it. Also, the

higher the efficiency of the machine learning algorithm used in the identification of normal and malicious

packets, the longer it takes to infect all hosts. Figure 4(b) shows the results of applying the controller

both at host and firewall level. Again, the solo use of the controller does not contain the attack but when

combined with machine learning algorithms to identify malicious executable code, ADS is able to contain
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Fig. 4. Results from the use of a PID controller at: (a) host level only and (b) host and firewall level.

the attack to less than 5% of infected nodes.

The results in this section show that ADS is very effective against fast scanning worms. The results from

the experiments show that by using just the inner loop (controller deployed only at the host level), we can

delay the spread of worm by more than five minutes. When we use the outer loop (controller deployed

at firewall) in conjunction with the first one, we notice a five-fold increase in delay in the spread of the

worm. The outer loop can operate in two modes: the drop-mode (drop all connections in the delayed

queue) and the kill-mode (kill all processes generating suspect traffic). In drop-mode connections to be

sent to the delayed queue can be identified without intelligence (selected randomly) or with intelligence

(using a machine learning algorithm to identify attack patterns). We achieve an eight-fold increase in the

delay when we use the outer loop in the drop-mode and a twelve-fold increase in the delay when we

add intelligence in the drop-mode. We achieved better results when we used the outer loop in the kill

mode, where we were able to limit the spread of the worm to a few machines in the network. In this

mode, similar to the drop-mode, we achieved better results by containing the worm to less than 5% of

the machines in the network, when we used intelligence to distinguish between attack traffic and normal

traffic. Even without the use of intelligence to classify the traffic, with the use of the outer loop, we were

able to contain the worm to 10% of the machines in the network. Use of intelligence to classify traffic,

in general, increases normal traffic throughput, while reducing the number of false positives. Thus we see

that ADS is able to effectively contain as well as prevent the spread of the worm as described in [7].

It is clear from the experiments above that a complete solution does not lie on the use of a single

technique and on its application at a single level. Feedback control can slow down a worm but it cannot
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contain the worm. In addition, the controller is more effective when an intelligent algorithm is used to

identify malicious packets. In the experiments above, the identification has been done randomly to show its

effect. Actual techniques can be based on machine learning concepts or bayesian approaches [5]. Finally,

containment cannot be achieved by a single element of the network and cooperation and information

sharing are crucial for an automatic defense system. Therefore, trust and reputation of the elements need

to be taken into consideration when receiving and sending information and Social Networks can play an

important role in defining the level of cooperation.

III. RELATED WORK

Recently automated defense against attacks has been a major topic of discussion in the network security

community. In a recent paper, Cisco [18] clearly states the need for self-defending network. It also

describes some of the properties of such an adaptive system. The properties are: (i) Remain active all

the time; (ii) Perform unobtrusively; (iii) Minimize propagation of attacks; and (iv) Quickly respond to

as-yet unknown attacks. Our conjecture is that ADS has all the above properties, thus it is a suitable self

defending mechanism. Next we compare ADS with some of the contemporary approaches. To the best our

knowledge, only the work of Porras, Levitt, et. all [8] takes a comparable approach for automated defense

of worms. However ADS outperforms their approach by containing the attacks to a smaller number of

nodes in a shorter period of time.
���

- An OS independent Heuristics-based Worm-containment System. [19]: This work presents results

about controlling the worm using heuristics at the host level. Their system continuously observes outgoing

network traffic over a finite-duration traffic window, and using heuristic-rules executing in a secondary

environment, detects infections. Their system automatically quarantines the machine to stop further

propagation of the worm. Similarly, ADS also has a host level detector, but adds a network level feedback

and the decision to quarantine is based on both host and network level, thus resulting in less false

positives. Hence using both the host and the network level makes containment more effective. Also, we

have a feedback control mechanism which does not use heuristics but uses the current state to provide

feedback to the controller.
���

- Fast Containment of Scanning Worms [20]: This work uses a method where they limit a worm’s

spread by isolating it to a small subsection of the network. They achieve this by turning the scan suppressor
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around and then use their own scan detector algorithm which does not let the worm escape once the worm

comes into the internal network. Their work is suitable for deployment in low cost network hardware.

We concentrate on stopping of the worm itself and do not care about the way its scanning. The method

described in [20] works only at the network level. ADS works at both the network and the host levels.
�	�

- Throttling Viruses - Restricting propagation to defeat malicious mobile code: In [21], Matthew et

al. show that if a worm is spreading through a network, the connection rate within the network goes

up. They also try to control the increase of rate of spreading to hosts. In this work, they try to limit

the number of connections made to a new host. They first filter the connections going to new hosts and

then limit them using a delay queue, similar to our system. In this work we use the same fact that an

uninfected machine will behave differently than an infected machine when worm is spreading through

a network. The difference in our work is that we use intelligent queuing (based on trust and reputation

described in [14]) and our filter is based on control systems feedback loop which continuously monitors

the outgoing connection rate. If the connection rate goes up, it brings the rate down by dropping requests

regardless of whether it is going to new or old host.
�	


- Feedback Control Applied to Survivability: In this work Kreidl et al. [22] use a host-based feedback

model to keep the host running even when there is a worm in the network. Their architecture consists

of a set of sensors, actuators and a controller. The purpose of the sensors is to detect any anomaly. The

actuators’ purpose is to keep the anomaly under check. The sensors and the actuators are controlled by the

controller. When some anomaly, such as worm attack happens, the sensors give feedback to the controller,

which then activates the actuator, based on the feedback. Thus, their method is a type of feedback control

defense. Our work also uses the feedback model, but ADS is based on control system theory. The sensor

is based on the connection rate; they use a commercial IDS system for sensing. Both ADS and their model

kill processes in an effort to stop the spread of the worm. ADS does it considering the current state of

the network, while they consider the state of the host.
���

- Modeling a Computer Worm Defense System [23]: This work uses two steps to propose a defense

against worms. First there is a friend model where hosts exist in the form of a set of friends. When one

of the hosts gets infected, it finds out the PT (Perceived Threat) from that attack and tells its friends,

alerting them to look for a similar attack. The second step is a tree model architecture. Here the authors

represent the network elements in a tree model where all internal nodes are firewalls and all the leaves are
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vulnerable nodes. It is assumed that each node has an equal number of children. The tree has a threshold

defined for each level. Once the threshold for that node is reached, i.e. the number of children is greater

than the threshold value; the node first enables its firewall rules and then informs its parent node about

the presence of some anomaly. Thus the information about the anomaly propagates up the tree, resulting

in multilevel security. In ADS firewall (or any perimeter controller) controls the action of each host by

sending appropriate signals to it. The hosts do not share anything between them which considerably

reduces the overhead. We use a feedback control at host and firewall to control the rate and we are not

concerned with the prediction of threats but their identification.

Features � Approaches 
 ��� ��� ��� ��� ��� ��� ��� ��� ADS

Cooperative � � �
Centralized Control � � � � � � � �
Distributed Control �
Host based only � � �
Network based only � � �
Host and Network based � �
Single loop control � � � � � � � �
Multi loop control �
Single variable control � � � � � � � �
Multi variable control �

TABLE III

COMPARISON BETWEEN ADS AND 8 DIFFERENT APPROACHES. FEATURES IN BOLD REPRESENT DESIRED ONES.

�	�
- Mitigating Distributed denial of Service Attacks using a Proportional-Integral-Derivative Con-

troller [24]: This work presents some similarities with the ADS approach as they also use a PID controller

to control the incoming connection rate. They create a model which stops any denial of service attempt on

the network. Their model is not a host-based model, rather their model sits on outer routers of a protected

network. The difference is that we observe the outgoing rate for each host, and we are not concerned

with the incoming rate. ADS is based on a well formulated state space model discussed in Section II-C

and also has an outer loop controller at the firewall. The differences between their approach and ADS are

listed in Table III.
���

- A Hybrid Quarantine Defense [8]: This work suggests two approaches, rate limiting and a
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collaborative action. Porras and Levitt [8] claim that rate limiting will delay the worm attack and that

the collaborative approach will not let it reach the saturation level in a network. They suggest that it is

best to use a hybrid of these methods. They use MATLAB to validate their methodology. The work done

here takes the same two approaches. We have an inner loop and outer loop (representing collaboration)

based on control system theory. Also, we verify this by taking a more practical approach, using the testbed

developed instead of a simulated MATLAB environment. Our approach contains the infection rate to 0.9%

of hosts per minute compared to 5% with their approach. While their approach appears to be based on

single loop single variable control ADS use a mutli-loop multi variable control.
�	�

- Adaptive Defense Against Various Network Attacks [25]: Similarly to what is proposed here, Zou’s

work addresses general solutions for various network attacks. They propose a defense mechanism which

adapts according to the severity of the attack computed using metrics associated with different attacks.

The adaptation is done by minimizing the cost of false positives and false negatives. That is, the cost of

accepting attack traffic or dropping normal traffic. Their approach appears to properly identify and predict

the severity of the attack. Consequently slowing down/decreasing the effects of the attack is achieved.

It is clear that Zou’s adaptive approach improves upon fixed-parameter filtering. The approach proposed

here is more comprehensive than their solution. As seen in Section II-C, ADS can not only identify and

slow down the attacks but also contain them. This is achieved through sharing of information among

network elements and also through the use of control theory and machine learning techniques. ADS is

a cooperative, distributed, network and host based approach with multi-loop and multi-variable solutions

whereas Zou’s approach is a centralized non-cooperative host based approach with single-loop solutions.

In general, host-based or network-based defense alone can be both ineffective and inefficient. A

combination of both host-level and network-level defenses with intelligent quarantining is a good approach

for containing an attack propagation. Also, a centralized control appears to limit the effectiveness of

automatic defenses and increase the overhead; a distributed control appears to be a better solution. A

cooperative approach is therefore also desired since elements of the distributed control will need to share

information. Another important aspect in improving the state of the art in automatic defenses is the use of

multi-loop as well as multi-variable control. While this increases the complexity of the controllers it also

increases their effectiveness. Table III presents a comparison among the techniques described above and

ADS. As can be observed, ADS has all desired components to attain a more generic and efficient solution
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in order to achieve automatic defense.

IV. DEFENDING AGAINST DIFFERENT ATTACKS

The architecture described in Figure 1 is very general purpose and can be used to defend from several

different kinds of attacks. The three dimensional approach described in the Section II-A can be used

in prevention and detection of several attacks such as DDoS, worm propagation, and spamming. In this

section, we describe the common features in these attacks and how the features of the architecture can

provide a comprehensive solution.

DDoS: One of the characteristics of the DDoS attacks is the large volume of bursty traffic to a process

or a node. Signatures that can detect the first and second order derivatives of the incoming traffic (e.g.,

computing velocity and acceleration vectors) can be used to detect such sudden bursts. One issue with

this kind of signatures is that it is difficult to differentiate between the bursty and legitimate traffic. Next,

this kind of signatures can be detected at the host as well as at the server. In addition, we can see a

definite correlation of traffic from the outgoing traffic at certain machines. Hence it is important that

several machines to cooperate in detecting the abnormal behavior in a network. For throttling the DDoS

attacks, a fast response is required and hence we used a feedback control system. In fact this system can

be used for controlling incoming as well as outgoing traffic. In particular, intelligent queuing and control

is used to slow down the attacks. Social network analysis can be used for differentiating the friends from

strangers.

Worm Spreading: Unknown worms may be difficult to detect by pre-configured signatures. However, it

may be possible to detect an anomalous behavior such as creation of large number of unexpected processes

and sudden variation of CPU and memory saturation. In some occasions, this can be detected as sudden

burst of outgoing connection requests. In addition, these connections can be originated at the host, server,

and a perimeter of the enterprise network. It is also possible to observe a correlated behavior of infected

hosts and servers. This kind of unexpected behavior can be found at host, server, and the perimeter. Also,

machine intelligence can be effective in the automatic generation of the signatures. After receiving the

automated signatures, a feedback control system can be effective in slowing down the spreading of the

worm. Sometimes, it is possible that machine intelligent fails to detect abnormalities. For example, when

we receive attachments to emails, it is important to undertake a social network analysis to differentiate a
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worm from legitimate execution of a binary.

Spam Detection: From our observation, when it comes to receiving or rejecting emails people use the

social meaning of trust, reputation, and friendship of the sender. Based on the social interactions of an

email user, his incoming email traffic can be divided into different categories, such as Phishing emails,

Telemarketing emails, Opt-ins emails etc. Opt-in emails are the ones we voluntarily opt to receive the

emails from a sender for some information but he might send some unwanted solicitations in addition to

wanted information. Also, quite often, spammers send the unsolicited emails to large number of users.

Hence, suspected email correlation between different recipients can be a good indicator for filtering the

spam. Finally, an explicit as well as implicit feedback from the user can be used for detecting the spam.

An explicit feedback is where the recipients label the incoming email as spam. An example of implicit

feedback is where the recipient continuously deletes the email without reading the email. An integrated

solution containing the user feedback, trust and reputation of the sender can be used for detecting the

spam. We used a multi-stage adaptive spam filter based on presence, trust, and reputation for detecting

spam in emails calls. The results of using feedback control and social network analysis is described

elsewhere [14], [7].

Hence we observe several common functions required for automatically defending attacks. Since attacks

are unknown and unpredictable, it is important the architecture adapts to the attack using adaptive feedback.

V. CONCLUSIONS AND FUTURE WORK

Applications running on the Internet are prone to various kinds of attacks. Examples of these attacks

are: i) DDoS, ii) Worm propagation, and iii) Spamming. These attacks are possible partly because of

openness of the Internet and lack of self defense in the network elements. When a node or network is

under attack, it is required to guarantee the graceful degradation of the applications instead of sudden

death. To accomplish this task, we used an architecture consisting of automatic and adaptive defense

strategies. The approach follows the trend on automatic adaptive defense mechanisms that are required to

cope with fast and aggressive attacks. To supplement these strategies, we used intelligent algorithms to

detect the behavior of the attacker based on the sender’s traffic pattern and receiver’s interest in receiving

the traffic. For example, if there are too many emails/voice-calls from a known receiver within a short

period of time, receiver exhibits uninterest in the incoming sessions. Some other symptoms of attacks are:
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i) sessions consume large CPU/memory bandwidth and ii) originate large number of sessions. In order

to effectively respond to these attacks, we used distributed controllers and a protocol for communication

between them. These controllers can be located either in the host, server or a firewall. As part of the

controller, we used multiple feedback loops and machine intelligence algorithms for learning the sender

and receiver behavior. This kind of learning and control are a closed loop process. The system is normally

at the stable state but becomes unstable based on the degree of attacks. Sometimes it is difficult to detect

the abnormality based on the machine intelligence only. Hence we considered the social network of the

senders and receivers. Overall we observed that cooperation, feedback, self-defense and self healing are

the important characteristics of any effective strategy.
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