
Extending UML for Modeling and Design of Multi-Agent
Systems

Krishna Kavi
Department of Computer Science

The University of North Texas
P.O. Box 311366, Denton, Texas 76203

kavi@cs.unt.edu

David C. Kung, Hitesh Bhambhani,
Gaurav Pancholi, Marie Kanikarla
Department of Computer Science and

Engineering
The University of Texas at Arlington

P. O. Box 19015, Arlington, TX 76019

kung@cse.uta.edu

ABSTRACT
Over the last decade the popularity of agent-based systems
has increased rapidly because agents bring intelligence, rea-
soning and autonomy to software systems. Recent advances
in middleware and run-time systems have helped in design-
ing agent-based systems. However, until recently, little work
has been reported in defining a software architecture, mod-
eling and analysis tools that can be used by software en-
gineers. In this paper, we present a framework for model-
ing, analysis and construction of agent-based systems. The
framework is rooted in the Belief Desire Intention (BDI) for-
malism and extends the Unified Modeling Language (UML)
to model MAS. We introduce several modeling constructs
including Agent, Belief, Goal, Plan, FIPA Performative,
KQML-Performative, and Blackboard. In addition, we in-
troduce Agent Goal Diagram to model the relationships be-
tween the goals and the environment of an agent; Use Case
Goal Diagram to model the relationships between use cases
and goals; Agent Domain Model to facilitate understanding
of domain knowledge of an agent; Agent Sequence Diagram
to model interactions within an agent. Similarly, Agent
Activity Diagram and Agent Statechart Diagram are intro-
duced. We illustrate the framework through an agent-based
intelligent elevator system.

General Terms
Software Engineering, Multi-Agent Systems, Modeling, De-
sign, UML

1. INTRODUCTION
Over the last decade the popularity of agent-based systems
have increased rapidly because agents bring intelligence, rea-
soning and autonomy to software systems. Agents are being
used in an increasingly wide variety of applications from
simple e-mail filter programs, such as MAXIS [17], to com-

plex mission control and safety critical systems including
air traffic control, such as OASIS [16]. Until recently few
proposals for Agent Oriented Software Engineering and ex-
tensions to UML have been reported [5, 24, 22]. This should
be contrasted with the object-oriented (OO) paradigm that
is supported by modeling languages such as UML and a va-
riety of CASE tools that aid during the analysis, design,
implementation and validation phases of OO software sys-
tems: all of which contributed to the universal acceptance
of the OO paradigm. In this paper, we propose a framework
based on extensions to UML to support multi-agent systems
(MAS) development. Our approach is rooted in the BDI
formalism [21], but stresses practical software design meth-
ods instead of reasoning theories. In particular, we propose
to extend UML [2] with modeling constructs called Agent,
Belief, Goal, Plan, FIPA Performative, KQML Performa-
tive, and Blackboard. Agent is the super-type for all agent
types. Belief, Goal and Plan model the reactive and proac-
tive behaviors of agents. An agent has, among other data
types, a collection of beliefs, goals and plans. Belief s are
the agent’s observations and/or sensing of the environment
and are updated by sensors or other agents. Changes in an
agent’s beliefs trigger the re-evaluation of the utility values
of goals of the agent. Changes to goals’ utility values result
in pre-empting some plans and initiating new plans. Execu-
tion of plans affects the environment which in turn changes
the beliefs, and so on. Agent communicate with each other
through agent communication performatives such as FIPA
[4] or KQML [7], or shared blackboards as in Linda or its
extensions [18]. Figure 1 shows the conceptual model of
our framework. We introduce Agent Goal Diagram (AGD)
to model the relationships between the goals and the en-
vironment, the Use Case Goal Diagram (UCGD) to relate
use cases and goals, Agent Domain Model (ADM) to facili-
tate understanding of domain knowledge of an agent, Agent
Sequence Diagram (ASD) to model interactions within an
agent. Similarly, Agent Activity Diagram and Agent State-
chart Diagram are introduced.

In the next section we review background materials. Sec-
tion 3 presents new modeling constructs as well as new di-
agrams for MAS modeling. The extensions are illustrated
in section 3.3. Related work is discussed in section 4 and
conclusions and future work is in section 5.

Goal

Beliefs

Environment

Goal

Beliefs

PlansPlans

FIPA

Environment

Beliefs Plans

Goals

Blackboard

KQML

Figure 1: A conceptual model for the framework

2. BACKGROUND

2.1 Agents Versus Objects
An object is an entity that encapsulates state and behavior
while a class is a template from which objects can be cre-
ated. Every object is an instance of a class. There is no ac-
cepted definition of what “agent based” or “agent oriented”
programming means. However there is a generally accepted
list of characteristics associated with agents including sit-
uatedness, autonomy and flexibility. Situatedness implies
that agents receive input from an environment and perform
actions that may change the environment. Agents must be
flexible in the sense that they should be both reactive (timely
response) and proactive(goal-oriented behavior). Agents are
autonomous in the sense that they do not require external
intervention to carry out their tasks and may refuse to ser-
vice a request1.

OO programming encourages encapsulation of object state
and behavior but it is sometimes desirable to share beliefs
among agents via a knowledge base or a blackboard. Agents
have reactive as well as proactive goals and behaviors. The
behavior of an agent may be different over time and may
be non-deterministic. Agents may inherit plans (which are
similar to methods), beliefs (which are similar to instance
variables) and goals (for which there is no direct counter
part in OO).

The Unified Modeling Language (UML) [2] is a widely used
standard in the OO paradigm for software requirements
analysis and software design. While UML is an excellent
modeling language for OO systems, it lacks the capability to
readily model and specify multiagent systems. This is due to
the fundamental differences between OO systems and agent-
based systems. Objects are passive components whereas
agents are autonomous. Objects are reactive whereas agents
are proactive and situation-aware.

1In our framework, this is implicitly accomplished by the
utility values of goals. That is, when beliefs change, goals
are evaluated to re-assign utility values. The utility values
affect which goal(s) to pursue; and hence, the request may
not be serviced if the associated goal yields a low utility
value.

2.2 BDI Formalism
The BDI architecture associates with agents, beliefs (typi-
cally about the environment and other agents), desires or
goals to achieve, and intentions or plans to act upon to
achieve its desires. In formal terms, one can utilize logic to
describe these components and reason about MAS. In prac-
tical terms, beliefs can be viewed as the state of the world.
Desires (or goals) may be associated with a utility value so
that desires can be differentiated. Desires can be evaluated
using “path formulas” whereby all possible paths associated
with a desire can be evaluated. In practical terms, evalua-
tion functions can be used to dynamically update goal val-
ues. Intentions reflect the actions that must be exercised to
achieve the goal values. Thus intentions indicate the actions
along a path formula in the decision tree used to compute
goal values.

3. EXTENDING UML
The framework is aimed to provide a modeling language
to help application engineers to focus their effort on agent-
oriented modeling rather than having to define and con-
struct an agent model from the scratch. We introduce a
number of modeling constructs with model-defined struc-
tural and behavioral features and relationships to support
the BDI model. These constructs are Agent, Belief, Goal,
Plan, FIPA Performative, KQML Performative and Black-
board. Agent is the basic modeling construct. Agent has Be-
lief, Goal and Plan instances, which are related as explained
in section 2.2. Agent, Belief, Goal and Plan are implemented
as abstract classes in the proposed framework. Application
specific BDI agent (resp. belief, goal, plan) types are im-
plicitly defined as subclasses of Agent (resp. Belief, Goal,
Plan); and hence, they inherit the model-defined structural
and behavioral features and relationships. As in OO, con-
crete, application specific types must implement the inher-
ited abstract features. In this way, the framework enforces
the BDI model but also provides the flexibility for imple-
menting application specific behavior, including re-using an
existing design or implementation.

In general, beliefs may be shared and modified by other
agents. This can be achieved either by direct communi-
cation using KQML [7] or FIPA-ACL [4] messages, shared
knowledge-bases or blackboards (e.g., Linda or its exten-
sions such as LIME [18]). Goals can be proactive or reac-
tive – proactive goals reflect the desires of an agent. These
goals may impact how an agent reacts to external events
(including the possibility of ignoring external stimuli — ac-
complished by ignoring/giving up goals with lower utility
values). Reactive goals reflect how an agent can be situated
in an environment.

3.1 New Modeling Constructs
The following provides (albeit an incomplete) list of new
modeling constructs for MAS. An agent specification lan-
guage (ASL) in BNF is given in [12].

Belief: Belief has a name for identifying Belief instances, a
set of user-defined, application dependent annotations, and
a list of goals that may be affected by changes to the be-
lief. Examples of application dependent annotations are
sampling frequency and probability of change of sensed val-
ues. Belief has methods for querying and updating a belief

and relating goals with a belief. When a Belief instance is
change, the affected Goal instances are informed, see below.

Goal: Goal has a name, a utility value, set and get func-
tions, and a plan to accomplish the goal. The utility value of
a goal indicates how valuable the goal is to the overall goal
of the system. In addition, Goal has two abstract functions:
beliefChanged(b: Belief) and eval():real. The former is auto-
matically invoked by a changed belief that affects the goal.
It allows the goal to respond to belief changes. The utility
values are real values between 0 and 1 with 0 representing
unreachable goals. The implementation of eval() is appli-
cation dependent and can be a conventional decision tree,
Computational Tree Logic (CTL) derivations as described
in [20], or any other evaluation mechanism appropriate for
the type of agent.

Plan: Plan has an identifying name and an abstract exe-
cute() method which can be invoked by a Goal object to
start a plan. A subclass of Plan must implement the exe-
cute() method according to the concrete plan. The imple-
mentation may invoke KQML/FIPA performatives to com-
municate with other agents as well as perform conventional
and knowledge based computations. In general, plans can
be implemented by the command pattern [8]. The generic
command class may implement Thread and the command
subclasses each implements an action of the agent. A plan
can be defined as a sequence of command objects and dy-
namically generated according to the reasoning steps. Plan
also has a stop() method which can be invoked to terminate
the plan.

Beliefs, Goals and Plans: These are collections of Belief,
Goal and Plan objects and provide standard operations for
querying, inserting, updating and deleting an element. These
collections also have operations of their respective compo-
nent types and delegate the call to each of the component
type instances.

FIPA, and KQML Performatives: There are two Com-
mand Patterns [8] introduced to accommodate all the FIPA
and KQML speech act performatives, respectively. Their
subclasses are named after the performatives, each subclass
implements the functionality of one performative. New speech
act performatives can be supported by introducing addi-
tional command patterns.

FIPA, and KQML Interfaces: These interfaces define
method signatures that correspond to FIPA and KQML per-
formatives, respectively. Again, new speech act performa-
tives can be supported by introducing additional interfaces.

Agent: Agent is the superclass for all agent types. It
has Beliefs, Goals, Plans and methods to select the opti-
mal goal. It has an abstract goalValueChanged (g: Goal)
method, which is automatically invoked when a goal in-
stance is changed. Agent implements both FIPA and KQML
Interfaces and delegates the implementation of the perfor-
matives to the appropriate FIPA or KQML Performative
subclasses. This way our framework accommodates both
FIPA and KQML performatives and their extensions.

Blackboard: This is a concrete class, supported by the
Singleton Pattern and Flyweight Pattern [8], to permit the
use of shared blackboards. Agent can define polymorphic
methods for reading, removing, writing, and appending to
the blackboard (similar to Linda or LIME [18]).

Figure 2 shows the nations for above modeling constructs.

3.2 New Diagrams
In this section, we describe a number of new diagrams. Their
use is illustrated in section 3.3:

Agent Goal Diagram (AGD) An AGD depicts the goals
of an agent and their relationships to the environment. In
addition, an AGD depicts relationships among the goals
like goal-subgoal relationship. An AGD can also illustrate
roles of an agent. For example, a goal of an auction agent
playing the role of a buyer could be ”minimize cost”. The
same agent when playing the role of a seller could have a
goal to ”maximize profit”. Thus, the AGD for Auction-
Agent/Buyer would contain ”Minimize Cost” as a goal while
the AGD for Auction-Agent/Seller would contain the goal
”Maximize Profit”.

Use Case Goal Diagram (UCGD) A UCGD combines
the existing Use Case Diagram (UCD) and the AGD and
shows the relationships between use cases and goals. That
is, which use cases would affect which goal and vice versa.
This information provides a high level guidance to Agent
Sequence Diagram (ASD) construction. It can also be used
to check the consistency between UCGD and ASD.

Agent Domain Model (ADM) In OO development, a
System Domain Model (SDM) documents domain object
classes and their attributes and relationships. The exist-
ing SDM is extended to include agents as domain concepts.
Unlike an SDM, an ADM represents the domain knowledge
that is internal to an agent, including the definitions of the
agent’s Beliefs, Goals and Plans and their intrinsic relation-
ships.

Agent Sequence Diagram (ASD) An ASD depicts in-
teractions among the beliefs, goals, plans and other objects
of an agent to collectively carry out a task. It is a refinement
of an agent.

Agent Design Diagram (ADD) ADD is introduced to
document the design of an agent, derived from the corre-
sponding ADM and ASD and implemented as a package in
Java or a module in C++. This facilitates the re-use of an
agent’s design and/or implementation because an applica-
tion can simply import a package or a module.

Agent Activity Diagram (AAD) and Agent State-
chart Diagram (ASCD) These diagrams are introduced
to model the internal activity and information flows and the
internal state behaviors of agents.

3.3 An Example Application
In this section, we illustrate the framework using an intelli-
gent elevator system (IES) example. We use IES for its sim-
plicity and widely known functionality. In addition to the
common features of an elevator system, IES must optimize

Belief Goal Plan Blackboard

GoalsBeliefs Plans

Agent

Agents

Figure 2: Graphical notations

the service and minimize the total movements of all cars to
reduce energy consumption and wear. Optimizing the ser-
vice may be accomplished by minimizing the response time
to requests. In addition, distributed decision making among
the elevator agents are assumed. A detailed description of
IES can be found at
http://www.uta.edu/faculty/kung/doc/elevator.pdf.

We adapt the Unified Process described in [15] and perform
the following steps in each increment:
Step 1) Identify use cases and goals from requirements
Step 2) Refine use case diagrams and goal diagrams
Step 3) Refine system domain model and agent domain mod-
els
Step 4) Specify sequence diagrams and agent sequence dia-
grams
Step 5) Refine design class diagrams
Step 6) Refine other diagrams

We will follow steps 1) – 4) to illustrate the modeling con-
cepts, notations and diagrams. We skip steps 5) and 6).

Step 1) Identify use cases and goals from require-
ments. From the elevator requirements and experience we
identified the following use cases: Go to Floor, Request El-
evator, Open Door, Close Door. The agent goals are: Min-
imize Response Time and Minimize Movement. The Mini-
mize Response Time goal attempts to reduce the response
time by serving the older requests as early as possible while
the Minimize Movement goal tries to reduce the movement
distances by servicing the closest requests.

Step 2) Refine use case diagrams and goal diagrams.
In this step, new use cases and goals are added and exist-
ing ones are revised. The use cases and goals are shown
in use case diagrams and goals diagrams, respectively. The
UCGD for the IES example is shown in Figure 3.a. The
elevator subsystem box shows the use cases and the actor
(the passengers of the elevator). The diagram also contains
a box representing the Elevator Car Agent; recall that the
notation for an agent is the smiley face icon. The goals of
the agent are shown as ovals with a curly paper icon. An
association is drawn between the use case “Request Elev.”
and the two goals signifying that when a passenger requests
an elevator the two goals will be affected. These goals are
sometimes conflicting wherein the agent takes a decision on
which goal to pursue.

The use case diagram is the same as conventional UML and

hence we will not repeat here. Goal diagrams are similar
to use case diagrams. Figure 3.a shows a goal diagram on
the right. In addition to the goals, a goal diagram may also
specify relationships among the goals using UML modeling
constructs like inheritance, aggregation and association.

Step 3. Refine system domain model and agent do-
main models. In this step the system domain model [15]
— an ontological or conceptual model [14] for the applica-
tion domain objects, their attributes and relationships —
is constructed or refined for the current increment. The
system domain model for the elevator example consists of
objects representing various parts of an elevator. Since the
domain model has been addressed elsewhere [15], we will
not repeat here. We introduce the Agent Domain Model
(ADM) to capture the application dependent beliefs, goals
and plans of an agent and their properties and relationships.
In our approach, an ADM is constructed for each type of ap-
plication specific agent. Figure 3.b shows an ADM for the
elevator example.

The diagram indicates that the Elevator Car Agent has two
beliefs: ElevCarState and Requests. These beliefs are im-
plicitly defined as subclasses of Belief indicated by the cloud
icon. Changes to the Requests belief will affect the two goals
as shown in the diagram. Similarly, the two goals are sub-
classes of Goal and hence must implement the beliefChanged
(b: Belief) method. The diagram also indicates that the
goals have plans and each plan delegates its task to a com-
mand object [8] that implements a thread.

Step 4. Specify system and agent sequence dia-
grams. For each use case, at least one system level se-
quence diagram is constructed to document how the agents
and other objects work together to accomplish the business
process underlying the use case. This is the same as in OO
modeling [15, 2] except that agents may communicate with
other agents and interact with objects (e.g., opens/closes an
elevator door). Similarly, Agent Sequence Diagrams are con-
structed to show the intrinsic interactions within an agent,
as illustrated in Figure 3.c. We have adopted the notation
(i.e., the 3 with a “X” in it) proposed by O’Dell et al to
represent exclusive-or interaction [19]. In Figure 3.c, the
beliefs, goals and plans are encapsulated in a folder icon.
This hints that the components of an agent are to be de-
signed and implemented as a package in Java or a module
in C++ to facilitate design and code re-use. Within the
folder icon, there is an instance of ElevatorCarAgent. This
is typical in our framework and the instance serves as both

affects

delegate to delegate to

b)

1..*
ElevCarState

floorNo
direction
load

Request
floorNo
direction
status

Requests

Minimize
Movement

type: =reactive

MinimizeTurn
AroundTime

type:=reactive

<<Thread>>
ServReq
Plan2Cmd

execute()

<<Thread>>
ServReq
Plan1Cmd

execute()

execute()

 ServeRequest
Plan2

ServeRequest
Plan1

execute()

�
ElevatorCarAgent

Create (g: Goals, b: Beliefs)
SelectGoal (): Goal

Has-plan

Has-plan

x=read()
update(x)

eval ()

: ElevatorCarAgent

 BlackBoard Minimize
Movement

Serve
Request
Plan 1

 beliefChanged(self)

beliefChanged(self)

Serve
Request
Plan 2

execute()

create(r,s)
create(r,s)

execute()

out(x)

s:ElevCarState
:Elevator
CarAgent

s=getElevCarState()
s=getElevCarState()

goalEvaluated(self

goalEvaluated(self)

u=getUtilValue() v=getUtilValue()

[u>v] pursue ()

[v>u] pursue ()

r:Requests

eval ()

exclusive-or

simultaneously

asynchro
nous

 Minimize
TurnaroundTi
me

c)

a)

Elevator System

b
 � Elevator Car Agent

Elevator Subsystem

Request Elev.

Goto Floor

Open Door

Close Door

Minimize
Movement

Passenger

Minimize Turn Around
Time

Figure 3: a)Use Case Goal Diagram. b) Agent Domain Model c) Agent Sequence Diagram for the elevator
example.

the container of the agent’s beliefs, goals and plans and the
controller/coordinator [15, 8] for the agent. That is, the El-
evatorCarAgent instance coordinates the beliefs, goals and
plans.

Figure 3.c shows a Blackboard that is used by the Elevator-
CarAgent instances (for a multi-car elevator system) to com-
municate asynchronously. It is assumed that when a floor
button is pressed, the request is posted to the blackboard.
The agents asynchronously read (represented by the dashed
arrow line labeled by “x=read()”) the blackboard to retrieve
the requests and update the local belief “r: Requests”. It
is assumed that the reading is triggered by some event like
a timer going off or the elevator car approaching a floor.
The beliefChanged (self) methods of the two affected goals
are simultaneously invoked, where “self” refers to the call-
ing object, i.e., the collection of requests. Recall that be-
liefChanged (b: Belief) is an abstract method of Goal. Any
application specific goal type must implement this method.
This way our approach forces and allows an application engi-
neer to implement application specific responses to changes
in the environment. As shown in Figure 3.c, the goals first
request the Belief instance ElevCarState which stores the
car’s current floorNo, direction and load. The goals then
invoke their respective eval() methods to compute the util-
ity values. The goals then fire the goalValueChanged (self)
event to inform the agent that the utility values of its goals
have changed. The agent then gets the utility values from
the goals and pursues the higher utility goal. When the
selected goal is pursued, it generates a plan and executes
the plan, which delegates its task to a command object that
implements Thread.

The abstract function eval() of Goal must be implemented
by subclasses of Goal. For the elevator example, the follow-
ing Java pseudo code illustrates how the two goals evaluate
differently. It is assumed that an ArrayList r of size equals
to the number of floors is used to store the requests. If there
is no request from a floor then the status of the request is
“null”.

class MinimizeResponseTime extends Goal {
// ...
public double eval() {
if (elevCar is going up)
get requests above current floor
if (elevCar is going down)
get requests below current floor
if (elevCar is idle)
get all requests
process the above requests satisfying
oldest and same direction requests first
double u=longest waiting time/threshold;
if (u>1) return 1 else return u;
}

}

class MinimizeMovement extends Goal {
// ...
public double eval() {
if (elevCar is going up)
satisfy requests above
current floor in that order
if (elevCar is going down)
satisfy requests below

current floor in that order
if (elevCar is idle)
satisfy requests in either
side that require min movement
per request
double u=longest waiting time/threshold;
if (u>1) return 0 else return 1-u;
}

}

In step 5, we derive the design class diagram from the sys-
tem domain model and sequence diagrams and the Agent
Design Diagrams from the Agent Domain Models and Agent
Sequence Diagrams. In particular, the domain model pro-
vide information to define the structural aspect while the
sequence diagrams provide information for the behavioral
aspect. For agents, beliefs, goals and plans that have non-
trivial activity and/or behavior, the corresponding Agent
Activity Diagrams and Agent Statechart Diagrams are also
defined.

3.4 Discussion
In our framework, flexible relationships as well as inter-
actions among the agents are accomplished through FIPA
performatives, KQML performatives, or Blackboard. The
speech act performatives allow an agent to communicate
with another agent of her choice. In particular, to query
the capabilities of other agents and then request services.
Agents can create and/or subscribe to a common black-
board to form a group. It is also possible to define group
hierarchies through the use of blackboard messages. Role
dependent beliefs, goals and plans of an agent can be ac-
complished by generalization/specialization or inheritance.
That is, treating roles as derived agent types of a more gen-
eral agent type. Instances of the derived types can be used
to represent different roles of the agent (which is an instance
of the more general agent type).

4. RELATED WORK
In this section we will limit our review of research projects
in the area of agent oriented methodologies that are based
on UML and/or BDI like agents. For more details on other
methodologies we refer the reader to surveys in [23] and [10].

Rumbaugh et al’s Object Modeling Technique (OMT) was
adapted by Kinny et al [13] to translate the Belief, Goal,
Plan and Agent Models to formal models like BDI, our ap-
proach provides modeling and implementation with the ad-
vantage of using application specific design and implemen-
tation alternatives. This is achieved by the use of abstract
classes (Agent, Goal, Belief and Plan) and design patterns as
the underlying implementation model to provide the power
and flexibility to support all possible needs.

UML based modeling approaches have taken the front stage
at International Workshops on Agent-Oriented Software En-
gineering (AOSE) [5] [24], The agent UML (AUML) ap-
proach proposed by Odell et al [19] introduces the Agent
Interaction Protocol (AIP) for agent communication and
constraints on messages. We have adopted their notations
for modeling unconditional, inclusive-or and exclusive-or in-
teractions as shown in Figure 3.c. Yim et al. [25] pro-
posed an architecture-centric design method based on OO

design methods, design patterns and software architecture.
They denote agent, agent messages, and other concepts us-
ing UML stereotypes. Bergenti and Poogi [1] treat agents
as communicating entities. Similar to Yim et al, this ap-
proach uses UML to model MAS and requires no extension
to UML. In addition, a Belief Model, a Goal Model and a
Plan Model were proposed to specify the beliefs, goals and
plans for agents. In contrast, we propose to extend UML
from ground-up by introducing the concept of an Agent.

Methodology for Engineering Systems of Software Agents
(MESSAGE/UML) proposed by Caire et al [3] describes an
analysis process that consists of various levels with more de-
tail added to the views at each level. The analysis model
consists of different “views”: 1) Organization view, consist-
ing of entities in the system like agents, organizations, roles
and relationships between them. 2) Goal/Task view, show-
ing goals, tasks, situations and dependencies amongst them
(this is similar to our Agent Domain Model). 3) Agent/Role
view, describing agents and their roles. 4) Interaction view,
describing the interactions amongst the agents/roles, the ini-
tiator of the interaction, the events that trigger the inter-
action. 5) Domain view, which is the same as a (System)
Domain Model in our framework. Our modeling approach is
use case centric and derives heavily from the Unified Process
[15].

The Tropos methodology [9] covers a wide range of software
development phases and emphasizes on requirements anal-
ysis. The methodology has a modeling language, which is
not based on UML. It consists of the following phases: 1)
the early requirements phase to identify goals, 2) the late
requirements phase to identify the requirements for the ac-
tors, 3) the architectural design phase to assign goals and
tasks to actors, 4) the detailed design phase to produce the
details of actors and their communication and coordination
protocols, and 5) the implementation phase. It is based on
BDI concepts and introduces new notations. Unlike our ap-
proach, Tropos does not provide a framework and suggests
that developers choose a framework for implementation.

5. CONCLUSIONS AND FUTURE WORK
We have described a framework and the necessary extensions
to UML to address the modeling and design of MAS includ-
ing modeling constructs like Agent, Belief, Goal, Plan, FIPA
Performative, KQML Performative, and Blackboard. Our
approach draws from the BDI formalism. Agents are peers
in the decision making process. The communication be-
tween agents is demonstrated by using a black board mech-
anism. Our approach allows the flexibility of using FIPA,
KQML or any other agent communication languages. Vari-
ous diagrams are introduced, based on UML notations. The
modeling process uses Agent Goal Diagram to relate an
agent’s goals with its environment, Use Case Goals Diagram
(UCGD) to associate use cases with goals, Agent Domain
Model to describe application specific beliefs, goals, plans
and their relationships. Our framework utilizes interfaces
and abstract classes to provide flexibility in implementing
application specific intelligent behaviors. The sequence di-
agrams from UML are used to portray interactions among
agents. To model the decision making process and interac-
tions within a agent, we proposed Agent Sequence Diagrams.

We are in the process to complete the implementation of the
IES (explained in 3.3) using the methodology discussed in
this paper. We plan to apply the framework to modeling
and design of intelligent agents for MavHome smart home
project[6]. The MavHome consists of a hierarchy of intelli-
gent agents that perceive the environment through sensors
and act upon the environment to maximize the comfort of
its inhabitants and minimize home maintenance costs.

As future work, we will design and implement a Computer
Aided Software Engineering (CASE) environment to provide
modeling, design and analysis support to large-scale multi-
agent systems development.

6. ACKNOWLEDGMENTS
The authors want to thank the anonymous reviewers for
their constructive comments.

7. REFERENCES
[1] F. Bergenti and A. Poggi.“Exploiting UML in the

design of Multi-Agent systems,” Proceeding of the
ECOOP Workshop on Engineering Societies in the
Agents World 2000 (ESAW 00), pp. 96-103,2000.

[2] G. Booch, J. Rumbaugh and I. Jacobson, “The Unified
Modeling Language User Guide,” Addison Wesley, 1998.

[3] Giovanni Caire, Francisco Leal, Paulo Chainho,
Richard Evans, Francisco Garijo, Jorge, Gomez, Juan
Pavon, Paul Kearney, Jamie Stark, Philippe Massonet,
“Agent oriented analysis using MESSAGE/UML,” Proc.
of 2nd International Workshop on Agent Oriented
Software Engineering, pp. 101-108, Montreal Canada,
August 2001.

[4] L. Chiariglione, “FIPA 97 Specification,”
http://leonardo.telecomitalialab.com/fipa/spec/fipa97/
fipa97.htm.

[5] Paolo Ciancarini and Michael Wooldridge (eds.),
“Agent Oriented Software Engineering,” Proc. First
International Conference on Agent Oriented Software
Engineering, Springer, 2000.

[6] Diane Cook,
http://ranger.uta.edu/smarthome/links.html.

[7] T.Finn,Y.Labrou and J.Mayfield, “KQML as an agent
communication language,” in Software Agents, edited by
J.Bradshaw, MIT Press, Cambridge, 1977.

[8] E. Gamma, et al. “Design Patterns: Elements of
Reusable Object-Oriented Software,” Addison-Wesley,
1995.

[9] Fausto Giunchiglia, John Mylopoulos and Anna Perini,
“The Tropos software development methodology:
process, models and diagrams,” Proc. of International
Conf. on Autonomous Agents and Multiagent Systems:
Part 1, 2002, Bologna, Italy, 2002.

[10] C. Iglesias, M. Garijo, and J. C. Gonzales. “A survey
of agent-oriented methodologies”. In Intelligent Agents
V: Proceedings of the ATAL’98, volume 1555 of LNAI.
Springer, 1999.

[11] N.R.Jennings,K.Sycara and M.Wooldridge, “A
roadmap of agent research and development,” in
Autonomous Agents and Multi-Agent Systems ,Kluwer
Academic Publishers.

[12] Krishna Kavi, Mohamed Aborizka and David Kung,
“A framework for designing, modeling and analyzing
agent based software systems,” in Proc. of 5th
International Conference on Algorithms & Architectures
for Parallel Processing, October 23-25, 2002, Beijing,
China.

[13] David Kinny and Michael Georgeff, “Modeling and
Design of Multi-Agent Systems,” In Proc. of the 3rd Int.
Workshop on Intelligent Agents: Agent Theories,
Architectures, and Languages, ATAL’96, pages 1–20,
Budapest, Hungary, Aug. 1997.

[14] D. Kung, “Conceptual modeling in the context of
software development,” IEEE Trans. on Software Eng.
Vol. 15, No. 10, pp. 1176 - 1187, (Oct. 1989).

[15] Craig Larman, “Applying UML and Patterns,”
Prentice Hall, 2001.

[16] M. Ljunberg and A. Jucas, “The OASIS air traffic
management system”, Proc. of the 2nd Pacific Rim
International Conference on AI, Seoul, Korea, 1992.

[17] P. Maes, “Agents that reduce work and information
overload”, Communications of the ACM, 37(7), pp.
31-40.

[18] A.Murphy, G.Picco and G. C.Roman, “LIME: A
middleware for physical and logical mobility,”
Proceeding of the 21 st International Conference on
Distributed Computing Systems (ICDCS),April,2001,pp
524-533.

[19] James Odell, H. Van Dyke Parunak and Bernhard
Bauer, “Extending UML for Agents,” AOIS Workshop
at AAAI 2000.

[20] A. Rao and M. Georgeff, “Modeling rational agents
within a BDI architecture,” Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, MA, 1991,
pp. 473-484.

[21] A. Rao and M. Georgeff, “BDI agents: From theory to
practice,” Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, pp. 312-319.

[22] “1st International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems,” Orlando, Florida,
USA, in conjunction with ICSE 2002, May 19, 2002,

[23] Tveit, A. “A Survey of Agent-Oriented Software
Engineering”. NTNU Computer Science Graduate
Student Conference, Norwegian University of Science
and technology, 2001.

[24] M. Wooldridge, G. Weib and P. Ciancarini (eds.),
“Agent Oriented Software Engineering II,” Proc. Second
International Workshop, Montreal, Canada, May 29,
2001, Springer 2001.

[25] H. Yim, K. Cho, K. Jongwoo and S. Park,
“Architecture-Centric Object-Oriented Design Method
for Multi-Agent Systems,” in Proc. of the Fourth
International Conference on Multi-Agent Systems
(ICMAS-2000), 2000.

