
Scheduled Dataflow Architecture:
Instruction Set Reference 2.0.0

May 22, 2006

The purpose of this document is to provide a self-contained reference that could be useful both for the design of the Scheduled
Dataflow Architecture and the design of a compiler targetingthis architecture.

1 Conceptual Vision of the Machine

The Scheduled Dataflow Architecture consists of the following four main building blocks:

• theInstruction and Frame Memory (Instruction add Data Cache)

• theGlobal Memory

• theGlobal Registers

• thePer Thread Register Contexts

• theExecution Processor (EPs)

• theSynchronization Processor (SPs)

• theScheduling Unit

1.1 The Instruction and Frame Memory (Instruction Caches)

The Instruction and Frame Memory is a local memory of the machine. The implemetation may use multiple Instruction cachesfor
different clusters.
The continuation for SDF threads describe a local memory forthe thread called a Frame. A fixed sized memory is allocated toa
threa upon its creation. The inputs to the created thread arestored in its Frame. One or more Frame caches can be used in an actual
implemetnation to minimize contention for cache accesses.

1.2 The Global Memory

The global memory can be used for data that is shared among threads. Multiple semantics can be applied to the global memory.
Conventional memory access will represented by READ and WRITE instructions. I-structure sementics can be applied by using IFETCH
and ISTORE instructions. The I-Structure Memory guarantees the synchronizationamong data accesses by different processors. In a
future implementation, one may consider other semantics such as the J and L structure. Cache memory for the global data con be used
to improve access time.
Global memory, regardless of the semantics being applied will be acessed using our R format. The address is defined using two registers.
One register contains the base address while the second register contains an offset. If R0 (Register0) of the per thred register set, which
is permanently hardwired to zero) as offset, the address mode becomes equivalent to an absolute address mode.

1.3 Global Registers

There are 32 global registers that can be accessed by SPs and EPs. These registers will be labeled as G registers. The global register
set is mainly used as scratch space. There are instructions to support the transfer data between global register set and per thread register
context. Simple arithmetic operations like addition, subtraction and etc.. are supported. Instructions involving global registers are
prefixed with G (GADD, GSUB, ...).

1

1.4 Per Thread Register Contexts

SDF provides both Integer and Floating point registers for each active or executing thread. Integer registers with a context will be labeled
as R registers while the floating point registers will be labeled as F registers. Instructions for the floating point registers will include F as
prefix (FADD, FSUB, ...). Operation on R registers will not involve any prefix (ADD, SUB, ...). Register sets can be accessed by both
the SPs and EPs. In one implemetation, we use 32 floating pointand 64 integer registers per context.

1.5 The Execution Processor (EP)

The Execution Processor includes:

• the Execution Pipeline (XP)

• the Program Counter (PC)

• the Running Context Pointer (RCP)

• 16 contexts (CTX00, CTX01, . . .), also accessible by SP

• an Instruction cache

1.5.1 The Running Context

RCP always point to the running context. The running contextincludes a set of register as specified in the Instruction SetSection.
Active contexts are those contexts that have been allocatedby some execution thread but that have not been filled out withdata from
Frame Memory or that are completing the storing of data into the Frame Memory.
The Execution Processor always has one running context, a number of active contexts, and a number of unallocated contexts.

1.5.2 The Execution Pipeline

The Execution Pipeline consists of four stages, which are ordered as follows:

• Instruction Fetch

• Decode and Operand Fetch (up to 2 operands may be fetched)

• Execute

• Write Back (up to 1 operands may be stored)

All operations involving operands (Operand Fetch and WriteBack) act exclusively on the Running Context registers in a non-blocking
fashion. The Synchronization Processor takes care of loading and storing data from/to Operand (Frame) Cache/Memory asspecified in
the following SubSection.
The execution of a code block can start only once the SP has loaded all the values that are needed by the frame associated with that code
block.

1.6 The Synchronization Processor (SP)

The Synchronization Processor takes care of loading and storing operands in the active contexts. The active contexts are all allocated
contexts, except the running context, which contain operand to be stored to or retrieved from the Operand (Frame) Cache+Memory.
The SP contains also:

• an Operand (Frame) cache

• an I-Structure and general memory

The SP can access the register contexts in the EP. SP and EP also need to exchange<PC,RCP> (Thread-ID). Further details will be
explained in the thread management Section.

2 Instruction Set

2.1 Registers

The machine supports multiple contexts. Each context has 32integer register pairs and 32 floating registers. Each register of a pair
can be addressed separately. Integer register should have enough room to accommodate all possible 3 basic types, which are: Boolean,
Integer, Character. And floating point register can accomodate 32 single precision floating point value or 16 double precision floating
point value. Register R0 is hardwired to 0.
The machine must guarantee at least the following data ranges for the previous types.

TYPE RANGE

Boolean TRUE,FALSE
Character 0..255
Integer -2147483648 .. 2147483647 (−231 .. 231 − 1)
Real 32-bit single-precision or 64-bit double-precision (IEEE754 standard))

2.2 Notation

• RD indicates a destination register.

• RS indicates a source register.

• I indicates an I-Structure; F indicates a Frame; C indicatesa code-block; D indicates an I/O device

• <I, indx> indicates the I-Structure entryI[indx]

• ≪F, offset≫ indicates the Frame data at offset ’offset’ in frame F

• ’&’ means ’address of’ when placed before one of the previousobjects

2.3 Instruction Formats

• R format (Register to Register operations)

R OpCode RS1 RS2 RD RESERVED
0 1 2 7 8 13 14 19 20 24 25 31

• RO format (Register to indexed Operand operations)

RO OpCode RR or R R offset RESERVED
0 1 2 7 8 13 14 19 20 24 25 31

• RI format (Immediate value into Register Loading)

RI value/address
0 1 2 31

We may dicard this format in the future. If we want move a largenumber(32-bit) in to register, we may do it 16-bits each timeusing
(PUTHI,PUTLO) or using shift operation.

2.4 Arithmetic Operators

Arithmetic operators are allowed to operate on each compatible basic type. It is up to the compiler to gurantee that an operator is
applied to correct operands. On the other side it is up to the architecture to select the appropriate behavior of a certainoperator, since
the type of the operands is known.

2.4.1 Integer Arithmetic Operators

ADD – Add two operands
Usage:

ADD RS1, RS2, RD R ADD 0 RS1 RS2 RD RES.

Description:
Performs addition and store result in destination.

Operation:
RD← (RS1 + RS2)

SUB – Subtract two operands
Usage:

SUB RS1, RS2, RD R SUB 0 RS1 RS2 RD RES.

Description:
Performs subtraction and store result in destination.

Operation:
RD← (RS1− RS2)

MUL – Multiply two operands
Usage:

MUL RS1, RS2, RD R MUL 0 RS1 RS2 RD RES.

Description:
Performs multiplication and store result in destination.

Operation:
RD← (RS1× RS2)

DIV – Divide two operands
Usage:

DIV RS1, RS2, RD R DIV 0 RS1 RS2 RD RES.

Description:
Performs division and store result in destination.

Operation:
RD← (RS1 / RS2)

MOD – Modulo of two operands
Usage:

MOD RS1, RS2, RD R MOD 0 RS1 RS2 RD RES.

Description:
Performs modulo and store result in destination.

Operation:
RD←mod(RS1, RS2)

NEG – Change sign to integer operand
Usage:

NEG RS, RD R NEG 0 RS RD 0 RES.

Description:
Performs sign change and store result in destination.

Operation:

RD← -(RS)

MAX – Maximum between two operands
Usage:

MAX RS1, RS2, RD R MAX 0 RS1 RS2 RD RES.

Description:
Calcualte maximum and store result in destination.

Operation:
RD←max(RS1, RS2)

MIN – Minimum between two operands
Usage:

MIN RS1, RS2, RD R MIN 0 RS1 RS2 RD RES.

Description:
Calcualte minimum and store result in destination.

Operation:
RD←min(RS1, RS2)

ABS – Absolute value
Usage:

ABS RS, RD R ABS 0 RS RD 0 RES.

Description:
Calculate absolute value and store result in destination.

Operation:
RD← |RS|

SHL – Bitwiae Shift Left
Usage:

SHL RS1, RS2, RD R SHL 0 RS1 RS2 RD RES.

Description:
Performs bitwise shift left and store result in destination.

Operation:
RD← (RS1<< RS2)

SHR – Bitwise Shift Right
Usage:

SHR RS1, RS2, RD R SHR 0 RS1 RS2 RD RES.

Description:
Performs bitwise shift right and store result in destination.

Operation:
RD← (RS1>> RS2)

BAND – Bitwise AND of two operands
Usage:

BAND RS1, RS2, RD R BAND 0 RS1 RS2 RD RES.

Description:
Perform bitwise AND and store result in destination.

Operation:
RD← (RS1& RS2)

XOR – Bitwise XOR of two operands
Usage:

XOR RS1, RS2, RD R XOR 0 RS1 RS2 RD RES.

Description:

Perform bitwise XOR and store result in destination.
Operation:

RD← (RS1∧ RS2)

BOR – Bitwise OR of two operands
Usage:

BOR RS1, RS2, RD R BOR 0 RS1 RS2 RD RES.

Description:
Perform bitwise OR and store result in destination.

Operation:
RD← (RS1| RS2)

BNOT – Bitwise NOT of one operands
Usage:

BNOT RS, RD R BNOT 0 RS RD 0 RES.

Description:
Perform bitwise NOT and store result in destination.

Operation:
RD←∼(RS)

AND – Logical AND of two operands
Usage:

AND RS1, RS2, RD R AND 0 RS1 RS2 RD RES.

Description:
Performs logical AND and store result in destination.

Operation:
RD← (RS1∩ RS2)

OR – Logical OR of two operands
Usage:

OR RS1, RS2, RD R OR 0 RS1 RS2 RD RES.

Description:
Performs logical OR and store result in destination.

Operation:
RD← (RS1∪ RS2)

NOT – Logical NOT
Usage:

NOT RS, RD R NOT 0 RS RD 0 RES.

Description:
Performs logical NOT and store result in destination.

Operation:
RD← not(RS)

2.4.2 Floating Arithmetic Operators

FADD – Add two floating point operands
Usage:

FADD FRS1, FRS2, FRD R FADD 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point addition and store result in destination.

Operation:

FRD← (FRS1 + FRS2)

FSUB – Subtract two floating point operands
Usage:

FSUB FRS1, FRS2, FRD R FSUB 0 FRS1 FRS2 FRD RES.

Description:
Performs floating pointsubtraction and store result in destination.

Operation:
FRD← (FRS1− FRS2)

FMUL – Multiply two floating point operands
Usage:

FMUL FRS1, FRS2, FRD R FMUL 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point multiplication and store result in destination.

Operation:
FRD← (FRS1× FRS2)

FDIV – Divide two floating point operands
Usage:

FDIV FRS1, FRS2, FRD R FDIV 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point division and store result in destination.

Operation:
FRD← (FRS1 / FRS2)

FLR – Floor value
Usage:

FLR FRS, FRD R FLR 0 FRS FRD 0 RES.

Description:
Calculate floor value and store result in destination.

Operation:
FRD←⌊FRS⌋

CEIL – Ceiling value
Usage:

CEIL FRS, FRD R CEIL 0 FRS FRD 0 RES.

Description:
Calculate ceiling value and store result in destination.

Operation:
FRD←⌈FRS⌉

FABS – Absolute value
Usage:

FABS FRS, FRD R FABS 0 FRS FRD 0 RES.

Description:
Calculate floating point absolute value and store result in destination.

Operation:
FRD← |FRS|

FNEG – Change sign to floating point operand
Usage:

FNEG FRS, FRD R FNEG 0 FRS FRD 0 RES.

Description:
Performs sign change and store result in destination.

Operation:
FRD← -(FRS)

2.5 Compare Operators

LT – Less Than
Usage:

LT RS1, RS2, RD R LT 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1< RS2)

LE – Less than or Equal
Usage:

LE RS1, RS2, RD R LE 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1≤ RS2)

EQ – EQual to
Usage:

EQ RS1, RS2, RD R EQ 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1== RS2)

NE – Not Equal to
Usage:

NE RS1, RS2, RD R NE 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1 6= RS2)

GE – Greater than or Equal to
Usage:

GE RS1, RS2, RD R GE 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1≥ RS2)

GT – Greater Than
Usage:

GT RS1, RS2, RD R GT 0 RS1 RS2 RD RES.

Description:
Performs integer comparison and store result in destination.

Operation:
RD← (RS1> RS2)

FLT – Less Than
Usage:

FLT FRS1, FRS2, FRD R FLT 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS1< FRS2)

FLE – Less than or Equal
Usage:

FLE FRS1, FRS2, FRD R FLE 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS1≤ FRS2)

FEQ – EQual to
Usage:

FEQ FRS1, FRS2, FRD R FEQ 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS1== FRS2)

FNE – Not Equal to
Usage:

FNE FRS1, FRS2, FRD R FNE 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS16= FRS2)

FGE – Greater than or Equal to
Usage:

FGE FRS1, FRS2, FRD R FGE 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS1≥ FRS2)

FGT – Greater Than
Usage:

FGT FRS1, FRS2, FRD R FGT 0 FRS1 FRS2 FRD RES.

Description:
Performs floating point comparison and store result in destination.

Operation:
FRD← (FRS1> FRS2)

2.6 Global Register Set Arithmetic Operators

GADD – Add two global operands
Usage:

GADD GRS1, GRS2, GRD R GADD 0 GRS1 GRS2 GRD RES.

Description:
Performs integer addition and store result in destination.

Operation:
GRD← (GRS1 + GRS2)

GSUB – Subtract two global operands
Usage:

GSUB GRS1, GRS2, GRD R GSUB 0 GRS1 GRS2 GRD RES.

Description:
Performs integer subtraction and store result in destination.

Operation:
GRD← (GRS1− GRS2)

GMUL – Multiply two global operands
Usage:

GMUL GRS1, GRS2, GRD R GMUL 0 GRS1 GRS2 GRD RES.

Description:
Performs integer multiplication and store result in destination.

Operation:
GRD← (GRS1× GRS2)

Note:
Adding global register set is according to the compiler writer request, we do not promote this idea.

2.7 Type Conversion Operators

Type conversion operaters are needed to modify the type of the content of a register before applying a certain arithmeticoperation, in
order to perform the correct arithmetic function.

TBL – Convert To Boolean Type
Usage:

TBL RS, RD R TBL 0 RS RD 0 RES.

Description:
Performs conversion and store result in destination.

Operation:
RD← bool(RS)

TCH – Convert To Character Type
Usage:

TCH RS, RD R TCH 0 RS RD 0 RES.

Description:
Performs conversion and store result in destination.

Operation:
RD← char(RS)

TRL – Convert To Real Type
Usage:

TRL RS, FRD R TRL 0 RS FRD 0 RES.

Description:
Performs conversion and store result in destination.

Operation:

FRD← real(RS)

TDB – Convert To Double Type
Usage:

TDB RS, DRD R TDB 0 RS DRD 0 RES.

Description:
Performs conversion and store result in destination.

Operation:
DRD← double(RS)

TIN – Convert To Integer Type
Usage:

TIN FRS, RD R TIN 0 FRS RD 0 RES.

TIN DRS, RD R TIN 0 DRS RD 0 RES.

Description:
Performs conversion and store result in destination.

Operation:
RD← int(FRS or DRS)

2.8 Data Movement

MOVE – Move data between interger registers
Usage:

MOVE RS, RD R MOVE 0 RS RD 0 RES.

Description:
Perform move and copy source to destination

Operation:
RD← (RS)

FMOVE – Move data between floating registers
Usage:

FMOVE FRS, FRD R FMOVE 0 FRS FRD 0 RES.

Description:
Perform move and copy source to destination

Operation:
FRD← FRS

GTL – Move data from global register to local register
Usage:

GTL GRS, RD R GTL 0 GRS RD 0 RES.

Description:
Perform move from global to local

Operation:
RD← (GRS)

LTG – Move data from local register to global register
Usage:

LTG RS, GRD R LTG 0 RS GRD 0 RES.

Description:
Perform move from local to global

Operation:
GRD← (RS)

PUTR1 – Put immediate data into register R1
Usage:

PUTR1 value Put immediate value/address into R1 RI PUTR1 value

Description:
Put immediate value/address into R1

Operation:
R1← value

Note:
This instruction is not meaningful. If we want to load very large integer number, we can follow MIPS convetion LOAD lower half

and load upper half.

PUTR – Load sign-extended immediate data into register RD
Usage:

PUTR value, RD Put sign-extended immediate value into RD RI PUTR RD value

Description:
Put immediate value/address into RD

Operation:
RD← value

LOAD – Load data from Frame
Usage:

LOAD RS1 | RS2, RD Loads data from≪RS1, RS2≫ into RD R LOAD 0 RS1 RS2 RD RES. +

LOAD RS | offst, RD Loads data from≪RS, offst≫ into RD RO LOAD 0 RD RS offst RES. *
Description:

Loads frame-data into register(s)
Operation:

RD←≪RS1, RS2≫ (or F←RS; RD← F[offst])
Note:

The maximum value of ’offst’ is 31 (25 − 1). The instruction has no effect if the data is not present (i.e. it’s non-blocking).

STORE – Store data into Frame
Usage:

STORE RS, RD1| RD2 Stores data from RS into≪RD1, RD2≫ R STORE 0 RS RD1 RD2 RES. +

STORE RS, RD| offst Stores data from RS into≪RD, offst≫ RO STORE 0 RS RD offst RES. *
Description:

Stores register value into single frame-destination.
Operation:
≪RD1, RD2≫← RS (or F←RD; F[offst]←RS or F← RD)

Note:
The maximum value of ’offst’ is 31 (25 − 1). The instruction has no effect if the data is not present (i.e. it’s non-blocking).

2.9 I-Structure Management

IALLOC – Allocate memory for an I-Structure
Usage:

IALLOC RS, RD Allocates an I-Structure of RS entries R IALLOC0 RS RD 0 RES. +

IALLOC value, RD Allocates an I-Structure of ’value’ entries trans:PUTR1 value; IALLOC R1, RD
Description:

An I-Structure of the specified size is allocated. The I-Structure pointer is stored in RD.
Operation:

RD← &I
I-Structure flags are initialized to E (Empty)

IFREE – Free the memory belonging to a given I-Structure

Usage:
IFREE RS Frees the specified I-Structure R IFREE 0 RS 0 0 RES. *
IFREE addr Frees the specified I-Structure trans:PUTR1 addr; IFREE R1

Description:
The I-Structure specified by RS is freed.

Operation:
-

IFETCH – Fetch an I-Structure entry
Usage:

IFETCH RS1, RS2, RD Fetches<RS1, RS2> R IFETCH0 RS1 RS2 RD RES. +

IFETCH RS | index, RD Fetches<RS, index> RO IFETCH0 RD RS index RES. *
Description:

Given the I-Structure I, it loads the specified value into RD if <I, index>.flag is F (data present), else the request is queued, and the
flag is set to W (Waiting for data to come).
Operation:

RD← I[index].value IF I[index].flag == F

ISTORE – Store an I-Structure entry
Usage:

ISTORE RS, RD1 | RD2 Stores into<RD1, RD2> R ISTORE0 RS RD1 RD2 RES. +

ISTORE RS, RD | index Stores into<RD, index> RO ISTORE0 RS RD index RES.

Description:
Given the I-Structure I, it stores the value specified in RD and set<I, index>.flag to F (data present).

Operation:
I[index].value←RS and I[index].flag← F (thereafter, all pending requests are satisfied).

READ – Fetch a memory entry
Usage:

READ RS1, RS2, RD Fetches<RS1, RS2> R READ0 RS1 RS2 RD RES. +

READ RS | index, RD Fetches<RS, index> RO READ0 RD RS index RES. *
Description:

READ general memory.
Operation:

WRITE – Store a memory entry
Usage:

WRITE RS, RD1 | RD2 Stores into<RD1, RD2> R WRITE0 RS RD1 RD2 RES. +

WRITE RS, RD | index Stores into<RD, index> RO ISTORE0 RS RD index RES.

Description:
Write general memory.

Operation:

2.10 Thread Support

FORKSP – Schedule the execution of code on Synchronization Processor
Usage:

FORKSP RS, RD conditionally schedules the code at RD R FORKSP0 RS RD RES. +

FORKSP RD unconditionally schedules the code at RD R FORKSP0 0 RD RES. +

FORKSP RS, addr conditionally schedules the code at addr trans:PUTR1 addr; FORKSP RS, R1
FORKSP addr unconditionally schedules the code at addr trans:PUTR1 addr; FORKSP R1

Description:
Schedule the execution of a certain thread on SP. When present, the condition is true if its value is not zero.

Operation:
-

FORKEP – Schedule the execution of code on Execution Processor
Usage:

FORKEP RS, RD conditionally schedules the code at RD R FORKEP0 RS RD RES. +

FORKEP RD unconditionally schedules the code at RD R FORKEP0 0 RD RES. +

FORKEP RS, addr conditionally schedules the code at addr trans:PUTR1 addr; FORKEP RS, R1
FORKEP addr unconditionally schedules the code at addr trans:PUTR1 addr; FORKEP R1

Description:
Schedule the execution of a certain thread on EP. When present, the condition is true if its value is not zero.

Operation:
-

STOP – Terminate the current thread
Usage:

STOP R STOP 0 0 0 0 RES.

Description:
Stop the current thread and schedule another one. This also frees the Running Context.

Operation:
-

2.11 I/O Instructions

INPUT – Input data from a device
Usage:

INPUT index, RD Inputs data from device number ’index’ RO INPUT 0 RD 0 index RES. *
Description:

Inputs data from the given device into destination
Operation:

RD←D[index]

OUTPUT – Output data to a device
Usage:

OUTPUT RS, index Outputs data to device number ’index’ RO OUTPUT0 RS 0 index RES. *
Description:

Outputs data to the given device
Operation:

D[index]←RS

FINPUT – Input floating point data from a device
Usage:

FINPUT index, FRD Inputs floating point data from device number ’index’RO FINPUT 0 FRD 0 index RES. *
Description:

Inputs data from the given device into destination
Operation:

FRD←D[index]

FOUTPUT – Output floating data to a device
Usage:

FOUTPUT FRS, index Outputs floating data to device number ’index’ RO FOUTPUT0 FRS 0 index RES. *
Description:

Outputs data to the given device
Operation:

D[index]← FRS

2.12 System Calls

System calls are needed to invoke those opearations that arecannot be implemented directly at architectural level. Thearchitecture may
provide support for the implementation of system calls.

SC – Launch the specified System Call
Usage:

SC #scid RS RO SC 0 RS 0 sc id RES. +

SC #scid RRS RO SC 1 RRS 0 sc id RES. +

SC #scid RS, RD RO SC 0 RS RD sc id RES. +

SC #scid RRS, RD RO SC 1 RRS RD sc id RES. +

SC #scid addr, RD trans: PUTR1 addr; SC #scid R1,RS
Description:

Invoke the System Call ’scid’ with RS (RRS) as input parameters and, eventually RD as output parameters
Operation:

2.12.1 Frame Management

SC #FALLOC – System Call: Associate a frame to a code-block
Usage:

SC #FALLOC RRS, RD Returns in RD the address of the frame RO SC 0 RRS RD FALLOC RES. *
Description:

A frame F is allocated and its address stored in RD for the code-block whose address has been specified in RS1 and whose
synchronization count is specifed in RS2.
Operation:

EP: allocates a frame; requests SP to run the frame initialization routine; RD← &F.
SP: executes the frame initialization routine.

Note:
There’s no stall in EP.

SC #FFREE – System Call: Free the frame associated with current code-block
Usage:

SC #FFREE RS Free the frame pointed by RS RO SC 0 RS 0 FFREE RES. *
Description:

-
Operation:

-

SC #FREALLOC– System Call: Set the value of current code-block synchronization-count
Usage:

SC #FRALLOC RS RO SC 0 RS 0 FFREE RES. *
Description:

Set the value of current code-block synchronization-countto what specified in RS
Operation:

Sync-Count of F←RS

3 Pragmas

The pragmas are directives to the compiler that are useful toidentify features of the code.

• VERSION string specifies the version number of current program

• CODE string specifies the name of the code block

• THREAD string specifies the beginning of a thread

• END specifies the end of a code block

4 Frame Usage Conventions

A Frame is a (local) chunk of memory, which holds all the data which are addressed by a certain code-block. The following conventions
apply to the a frame.

. . .

5 Thread Management Conventions

(to be written) . . .

6 Possible Instruction Set Extensions

From IF1 graph analysis, it appears that could be usuful to introduce:

• Support for Trascendental Operators

• Support for Reduce Operators

• Support for Vector Operators

• Support for Double operand type (sign, 52-bit mantissa, 11-bit exponent(64-bit double-precision IEEE754))

Appendix A – Compatibility with previous notations

Register notation

• R0, R2, . . . were previously used to indicate RR0, RR2, . . .

Frame Management

• MKTAG RD, RS, offst instruction is not necessary any more, since:
LOAD RS |offst, RD
prepares automatically the pointer to frame entry≪RS, offst≫.

• FALLOC addr, RD instruction is translated into:
PUTR1 addr
SC #FALLOC R1, RD
This has the advantage of allowing to specify any possible address within memory.

• FFREE RS instruction is transalted into:
SC #FFREE RS

• FREALLOC value instruction is transalted into:
PUTR1 value
SC #FRALLOC R1
This has the advantage of allowing to specify any possible value between 0 and230.

Data Movement

• STOREI value, RS, offstinstruction is transalted into:
PUTR1 value
STORE R1, RS, offst
This has the advantage of allowing to specify any possible value between 0 and230.

• LAOD2 RS |offst, RRD (or LAOD RS |offst, RD1 |RD2) instruction has been removed.

Thread Support

• BR, FORK.P andSWITCH.P instructions are replaced byFORKEP

• FORK.S, andSWITCH.S instruction are replaced byFORKSP

Pragmas

• SYNC pragmas is not needed since the synchronization count is specified when FALLOC system call is invoked.

Appendix B – List of Op-Codes
OpCode R format RO format RI format

φ X
FORKSP0 X
FORKEP0 X
IALLOC0 X
IFREE 0 X
IFETCH0 X X
ISTORE0 X X
READ0 X X
WRITE0 X X
LOAD 0 X X
STORE0 X X
STORE1 X X
MOVE 0 X
STOP 0 X
ADD 0 X
SUB 0 X
MUL 0 X
DIV 0 X
MOD 0 X
AND 0 X
OR 0 X
NOT 0 X
SHL 0 X
SHR 0 X
BOR 0 X
BNOT 0 X
BAND 0 X
BXOR 0 X
NEG 0 X
MAX 0 X
MIN 0 X
ABS 0 X
EXP 0 X
LT 0 X
LE 0 X
EQ 0 X
NE 0 X
GE 0 X
GT 0 X
FLT 0 X
FLE 0 X
FEQ 0 X
FNE 0 X
FGE 0 X
FGT 0 X
FADD 0 X
FSUB 0 X
FMUL 0 X
FDIV 0 X
CEIL 0 x
FLR 0 X
FABS 0 X
GADD 0 X
GSUB 0 X
GMUL 0 X
GTL 0 X
LTG 0 X
TBL 0 X
TCH 0 X
TRL 0 X
TDB 0 X
TIN 0 X
SC 0 X
SC 1 X
INPUT 0 X
OUTPUT0 X
BOR 0 X

68 36 9 1
The TLS (thread levelspeculation) instructions are not added yet.

