Scheduled Dataflow Architecture:
Instruction Set Reference 2.0.0

May 22, 2006

The purpose of this document is to provide a self-contaiméerence that could be useful both for the design of the Sdbdd
Dataflow Architecture and the design of a compiler targetiimigarchitecture.

1 Conceptual Vision of the Machine

The Scheduled Dataflow Architecture consists of the foltmpiour main building blocks:
¢ thelnstruction and Frame Memory (Instruction add Data Cache)
e theGlobal Memory
o theGlobal Registers
o thePer Thread Register Contexts
o theExecution Processor (EPS)
e the Synchronization Processor (SPs)

e the Scheduling Unit

1.1 The Instruction and Frame Memory (Instruction Caches)

The Instruction and Frame Memory is a local memory of the rimchThe implemetation may use multiple Instruction cadioes
different clusters.

The continuation for SDF threads describe a local memorytHerthread called a Frame. A fixed sized memory is allocateal to
threa upon its creation. The inputs to the created threadtared in its Frame. One or more Frame caches can be used ciuah a
implemetnation to minimize contention for cache accesses.

1.2 The Global Memory

The global memory can be used for data that is shared amoagd$ir Multiple semantics can be applied to the global memory
Conventional memory access will represented by READ andM#Ristructions. I-structure sementics can be applied lhgu§ETCH

and ISTORE instructions. The I-Structure Memory guarasmthe synchronizatioamong data accesses by different processors. In a
future implementation, one may consider other semanticis as the J and L structure. Cache memory for the global datbeaised

to improve access time.

Global memory, regardless of the semantics being applisth@acessed using our R format. The address is defined wsinggisters.
One register contains the base address while the secomstilregpntains an offset. If RO (Register0) of the per thregster set, which

is permanently hardwired to zero) as offset, the addreserhedomes equivalent to an absolute address mode.

1.3 Global Registers

There are 32 global registers that can be accessed by SPand Bese registers will be labeled as G registers. The lglebister
set is mainly used as scratch space. There are instructicugpport the transfer data between global register seta@mithfead register
context. Simple arithmetic operations like addition, sabtion and etc.. are supported. Instructions involvingbgl registers are
prefixed with G (GADD, GSUB, ...).



1.4 Per Thread Register Contexts

SDF provides both Integer and Floating point registers &heactive or executing thread. Integer registers with secowill be labeled
as R registers while the floating point registers will be labas F registers. Instructions for the floating point regsswill include F as
prefix (FADD, FSUB, ...). Operation on R registers will notaive any prefix (ADD, SUB, ...). Register sets can be acakbgeboth
the SPs and EPs. In one implemetation, we use 32 floating @oih64 integer registers per context.

1.5 The Execution Processor (EP)

The Execution Processor includes:

e the Execution Pipeline (XP)

the Program Counter (PC)

the Running Context Pointer (RCP)

16 contexts (CTX00, CTXO01, ...), also accessible by SP

an Instruction cache

1.5.1 The Running Context
RCP always point to the running context. The running coritestides a set of register as specified in the Instructiors8etion.
Active contexts are those contexts that have been allodstestme execution thread but that have not been filled out adéth from
Frame Memory or that are completing the storing of data inéoRrame Memory.
The Execution Processor always has one running contextndeuof active contexts, and a number of unallocated camntext
1.5.2 The Execution Pipeline
The Execution Pipeline consists of four stages, which adered as follows:
e Instruction Fetch
e Decode and Operand Fetch (up to 2 operands may be fetched)
e Execute

e Write Back (up to 1 operands may be stored)

All operations involving operands (Operand Fetch and V\Biek) act exclusively on the Running Context registers im@-blocking
fashion. The Synchronization Processor takes care ofriigaaiid storing data from/to Operand (Frame) Cache/Memospesified in
the following SubSection.

The execution of a code block can start only once the SP hdediall the values that are needed by the frame associatethaitcode
block.

1.6 The Synchronization Processor (SP)

The Synchronization Processor takes care of loading amishgtoperands in the active contexts. The active contedatmllocated
contexts, except the running context, which contain optare stored to or retrieved from the Operand (Frame) Cadkeitory.
The SP contains also:

e an Operand (Frame) cache
e an I-Structure and general memory

The SP can access the register contexts in the EP. SP andd=eals to exchangePC,RCPE> (Thread-ID). Further details will be
explained in the thread management Section.



2 Instruction Set

2.1 Registers

The machine supports multiple contexts. Each context haatdger register pairs and 32 floating registers. Each teagid a pair
can be addressed separately. Integer register should haugleroom to accommodate all possible 3 basic types, whéehBoolean,
Integer, Character. And floating point register can accat®@2 single precision floating point value or 16 double igieo floating
point value. Register RO is hardwired to 0.

The machine must guarantee at least the following data sdfiegéhe previous types.

| TYPE | RANGE |
Boolean | TRUE,FALSE

Character| 0..255

Integer -2147483648 .. 2147483647231 .. 231 — 1)

Real 32-hbit single-precision or 64-bit double-precision (IEEE4 standard)

2.2 Notation
¢ RD indicates a destination register.

e RS indicates a source register.

| indicates an I-Structure; F indicates a Frame; C indicatesde-block; D indicates an 1/0O device

<l, indx> indicates the I-Structure entffindz]

<F, offsets> indicates the Frame data at offset 'offset’ in frame F

‘&’ means 'address of’ when placed before one of the previohjects

2.3 Instruction Formats

¢ R format (Register to Register operations)

[R] OpCode | RS1 [ RS2 | RD | RESERVED |
01 2 7 8 13 14 19 20 24 25 31

e RO format (Register to indexed Operand operations)
[RO| OpCode | RRorR | R | offset | RESERVED |
01 2 7 8 13 14 19 20 24 25 31

¢ RI format (Immediate value into Register Loading)

[RI] value/address |
01 2 31

We may dicard this format in the future. If we want move a langenber(32-bit) in to register, we may do it 16-bits each timeg
(PUTHI,PUTLO) or using shift operation.



2.4 Arithmetic Operators

Arithmetic operators are allowed to operate on each coiblgabasic type. It is up to the compiler to gurantee that arraipeis
applied to correct operands. On the other side it is up to tbieitacture to select the appropriate behavior of a cedperator, since
the type of the operands is known.

2.4.1 Integer Arithmetic Operators

ADD — Add two operands ‘
Usage:

ADD RS1, RS2, RD R[ ADD_O [RSI [RS2 [RD | RES. |
Description:

Performs addition and store result in destination.
Operation:

RD < (RS1 + RS2)

‘ SUB — Subtract two operands ‘
Usage:

SUB RS1, RS2, RD R[ SUB_O [RS1 [RS2 [RD [RES |
Description:

Performs subtraction and store result in destination.
Operation:

RD « (RS1- RS2)

‘ MUL — Multiply two operands ‘
Usage:

MUL RS1, RS2, RD R[ MIL_O0 [RS1 [RS2 [RD [RES |
Description:

Performs multiplication and store result in destination.
Operation:

RD « (RS1x RS2)

| DIV — Divide two operands |
Usage:

DIV RS1, RS2, RD R[ DIV.O [RS1 [RS2 [RD [RES. ]
Description:

Performs division and store result in destination.
Operation:

RD «— (RS1/RS2)
| MoD — Modulo of two operands |
Usage:

MOD RS1, RS2, RD R| MOD_O |RS1 [RS2 |RD |RES ]
Description:

Performs modulo and store result in destination.
Operation:

RD « mod(RS1, RS2)

NEG — Change sign to integer operand ‘
Usage:

NEG RS, RD R[ NEG.O [RS [RD [O [RES ]
Description:

Performs sign change and store result in destination.
Operation:




RD « -(RS)

MAX — Maximum between two operands ‘
Usage:

MAX RS1, RS2, RD R[ MAX_.0 [RS1 [RS2 [RD [RES |
Description:

Calcualte maximum and store result in destination.
Operation:

RD «+— max(RS1, RS2)

MIN — Minimum between two operands ‘
Usage:

MIN RS1, RS2, RD R[ MN_O [RS1 [RS2 [RD [RES. ]
Description:

Calcualte minimum and store result in destination.
Operation:

RD — min(RS1, RS2)
| ABS — Absolute value |
Usage:

ABS RS, RD R[ ABS.0 [RS [RD [O [RES ]
Description:

Calculate absolute value and store result in destination.
Operation:

RD «+ |RS
| SHL — Bitwiae Shift Left |
Usage:

SHL RS1, RS2, RD R[ SH._0 [RS1 [RS2 [RD [RES |
Description:

Performs bitwise shift left and store result in destination
Operation:

RD «+ (RS1<< RS2)
| SHR — Bitwise Shift Right |
Usage:

SHRRS1, RS2, RD R[ SHR-O [RS1 [RS2 [RD [RES. ]
Description:

Performs bitwise shift right and store result in destinatio
Operation:

RD « (RS1>> RS2)
| BAND — Bitwise AND of two operands |
Usage:

BAND RS1, RS2, RD R[ BAND_O[RS1 [RS2 [RD [RES. ]
Description:

Perform bitwise AND and store result in destination.
Operation:

RD « (RS1& RS2)
| XOR — Bitwise XOR of two operands |
Usage:

XOR RS1, RS2, RD R[ XOR_0 [RS1 [RS2 [RD [RES. |

Description:



Perform bitwise XOR and store result in destination.
Operation:
RD « (RS1A RS2)

| BOR — Bitwise OR of two operands |
Usage:

BOR RS1, RS2, RD R| BOR_.O [RS1 [RS2 [RD | RES |
Description:

Perform bitwise OR and store result in destination.
Operation:

RD «— (RS1| RS2)

‘ BNOT — Bitwise NOT of one operands

Usage:

BNOT RS, RD
Description:

Perform bitwise NOT and store result in destination.
Operation:

RD « ~(RS)

R[ BNOT_O[RS [RD [0 [RES |

AND — Logical AND of two operands

Usage:
AND RS1, RS2, RD
Description:

Performs logical AND and store result in destination.

Operation:
RD «— (RS1N RS2)

R[AND_O0 [RSI [RS2 [RD | RES. |

‘ OR — Logical OR of two operands

Usage:

OR RS1, RS2, RD
Description:

Performs logical OR and store result in destination.
Operation:

RD — (RS1U RS2)

R OR.0 |[RS1 [RS2 [RD | RES |

| NOT — Logical NOT

Usage:
NOT RS, RD
Description:

Performs logical NOT and store result in destination.

Operation:
RD < not(RS)

2.4.2 Floating Arithmetic Operators

R[NOT_0 [RS [RD [0 [RES |

FADD — Add two floating point operands ‘
Usage:

FADD FRS1, FRS2, FRD R[ FADD._ O] FRSL[ FRS2 [ FRD | RES. ]
Description:

Performs floating point addition and store result in desidma

Operation:



FRD « (FRS1 + FRS2)

FSUB — Subtract two floating point operands

Usage:

FSUB FRS1, FRS2, FRD
Description:

Performs floating pointsubtraction and store result inidagon.
Operation:

FRD « (FRS1— FRS2)

FSUB__0 |

FRSL |

FRS2 | FRD |

RES.

FMUL — Multiply two floating point operands

Usage:
FMUL FRS1, FRS2, FRD
Description:

Performs floating point multiplication and store result astination.

Operation:
FRD « (FRS1x FRS2)

FMUL__0 |

FRSL |

FRS2 | FRD |

RES.

FDIV — Divide two floating point operands

Usage:

FDIV FRS1, FRS2, FRD
Description:

Performs floating point division and store result in degiora
Operation:

FRD «— (FRS1/FRS2)

FDIV_0]

FRSL |

FRS2 | FRD |

RES.

| FLR — Floor value

Usage:

FLR FRS, FRD
Description:

Calculate floor value and store result in destination.
Operation:

FRD « |FRS|

FLR_0 |

FRS |

FRD

| 0

RES.

CEIL — Ceiling value

Usage:

CEIL FRS, FRD
Description:

Calculate ceiling value and store result in destination.
Operation:

FRD «+ [FRS]

CEIL__0]

FRS |

FRD

RES.

| FABS — Absolute value

Usage:
FABS FRS, FRD
Description:

Calculate floating point absolute value and store resulestidation.

Operation:
FRD «+ |FRY

FABS__0 |

FRS |

FRD

| 0

RES.

FNEG — Change sign to floating point operand

Usage:
FNEG FRS, FRD
Description:
Performs sign change and store result in destination.

FNEG_0 |

FRS |

FRD

RES.




Operation:
FRD « -(FRS)

2.5 Compare Operators

| LT — Less Than

Usage:

LT RS1, RS2, RD
Description:

Performs integer comparison and store result in destinatio
Operation:

RD «— (RS1< RS2)

LT__0

RS1

RS2

RD

RES.

| LE — Less than or Equal

Usage:

LE RS1, RS2, RD
Description:

Performs integer comparison and store result in destimatio
Operation:

RD — (RS1< RS2)

LE__O

RS1

RS2

RD

RES.

| EQ — EQual to

Usage:

EQ RS1, RS2, RD
Description:

Performs integer comparison and store result in destinatio
Operation:

RD «+ (RS1== RS2)

EQ.0

RS1

RS2

RD

RES.

| NE — Not Equal to

Usage:

NE RS1, RS2, RD
Description:

Performs integer comparison and store result in destimatio
Operation:

RD « (RS1+# RS2)

NE__O

RS1

RS2

RD

RES.

‘ GE — Greater than or Equal to

Usage:

GE RS1, RS2, RD
Description:

Performs integer comparison and store result in destimatio
Operation:

RD « (RS1> RS2)

GE__0

RS1

RS2

RD

RES.

| Gt — Greater Than

Usage:

GT RS1, RS2, RD
Description:

Performs integer comparison and store result in destimatio
Operation:

RD « (RS1> RS2)

GI__0

RS1

RS2

RD

RES.




| FLT — Less Than

Usage:

FLT FRS1, FRS2, FRD R| FLT__0 | FRS1|FRS2| FRD | RES.
Description:

Performs floating point comparison and store result in dastin.
Operation:

FRD «— (FRS1< FRS2)

FLE — Less than or Equal
Usage:

FLE FRS1, FRS2, FRD R[ FLE_O [FRSL]FRS2[ FRD | RES.
Description:

Performs floating point comparison and store result in dason.
Operation:

FRD «— (FRS1< FRS2)
| FEQ — EQual to
Usage:

FEQ FRS1, FRS2, FRD R[ FEQ.-O [FRSL]FRS2[ FRD | RES.
Description:

Performs floating point comparison and store result in dastin.
Operation:

FRD « (FRS1== FRS2)

FNE — Not Equal to
Usage:

FNE FRS1, FRS2, FRD R[ FNE_O [FRS1]FRS2[ FRD | RES.
Description:

Performs floating point comparison and store result in dason.
Operation:

FRD «— (FRS1# FRS2)

FGE — Greater than or Equal to
Usage:

FGE FRS1, FRS2, FRD R[ FGE.O0 [FRSL]FRS2[ FRD | RES.
Description:

Performs floating point comparison and store result in dason.
Operation:

FRD «— (FRS1> FRS2)
| FGT — Greater Than
Usage:

FGT FRS1, FRS2, FRD R[ FGT._0 [FRS1]FRS2[ FRD | RES.
Description:

Performs floating point comparison and store result in dason.

Operation:
FRD « (FRS1> FRS2)

2.6 Global Register Set Arithmetic Operators

‘ GADD — Add two global operands

Usage:



GADD GRS1, GRS2, GRD R| GADD_O] GRS1| GRS2[ GRD [ RES. |
Description:

Performs integer addition and store result in destination.
Operation:

GRD «+ (GRS1 + GRS2)

GSUB — Subtract two global operands ‘
Usage:

GSUB GRS1, GRS2, GRD R| GSUB_0| GRS1 [ GRS2| GRD | RES. |
Description:

Performs integer subtraction and store result in destinati
Operation:

GRD « (GRS1- GRS2)

GMUL — Multiply two global operands |
Usage:

GMUL GRS1, GRS2, GRD R[ GMUL_O] GRS1| GRS2 [ GRD [ RES. ]
Description:

Performs integer multiplication and store result in desdton.
Operation:

GRD « (GRS1x GRS2)

Note:
Adding global register set is according to the compiler erriequest, we do not promote this idea.

2.7 Type Conversion Operators

Type conversion operaters are needed to modify the typeeoddhtent of a register before applying a certain arithnagieration, in
order to perform the correct arithmetic function.

‘ TBL — Convert To Boolean Type ‘
Usage:

TBL RS, RD R[ TBL_.O [RS [RD [O [RES |
Description:

Performs conversion and store result in destination.
Operation:

RD < bool(RS)

TCH — Convert To Character Type ‘
Usage:

TCHRS,RD R[ TCH. 0O RS [RD [O [RES ]
Description:

Performs conversion and store result in destination.
Operation:

RD «— char(RS)

TRL — Convert To Real Type |
Usage:

TRLRS, FRD R[ TRL.O [RS [FRD [O [RES |
Description:

Performs conversion and store result in destination.
Operation:




FRD « real(RS)

TDB — Convert To Double Type

Usage:

TDB RS, DRD
Description:

Performs conversion and store result in destination.
Operation:

DRD « double(RS)

R[ TDB.O |RS [DRD |0

[ RES. |

TIN — Convert To Integer Type

Usage:

TIN FRS, RD

TIN DRS, RD
Description:

Performs conversion and store result in destination.
Operation:

RD — int(FRS or DRS)

2.8 Data Movement

R| TIN_O | FRS | RD 0

RES.

R| TIN_O | DRS | RD 0

RES.

‘ MOVE — Move data between interger registers

Usage:

MOVE RS, RD
Description:

Perform move and copy source to destination
Operation:

RD « (RS)

R[ MWVE.O[RS |[RD [0

[ RES. |

‘ FMOVE — Move data between floating registers

Usage:

FMOVE FRS, FRD
Description:

Perform move and copy source to destination
Operation:

FRD — FRS

R| FMOVE_Q FRS [FRD |0

| RES. |

GTL — Move data from global register to local register

Usage:

GTL GRS, RD
Description:

Perform move from global to local
Operation:

RD «— (GRS)

R[GIL_0 [GRS [RD_ |0

[ RES. |

‘ LTG — Move data from local register to global register

Usage:

LTG RS, GRD
Description:

Perform move from local to global
Operation:

GRD « (RS)

R LTG.0 [RS [GRD | O

[ RES. |




PUTR1 — Put immediate data into register R1 ‘
Usage:

PUTR1 value Put immediate value/address into R1 R | PUTRL | value |
Description:

Put immediate value/address into R1
Operation:

R1« value
Note:

This instruction is not meaningful. If we want to load veryga integer number, we can follow MIPS convetion LOAD lowatfh
and load upper half.

PUTR — Load sign-extended immediate data into register RD ‘
Usage:
PUTR value, RD Put sign-extended immediate valueintoRD ~ r | PUTR [ RD [value |
Description:
Put immediate value/address into RD
Operation:
RD « value
| LOAD — Load data from Frame
Usage:
LOAD RS1| RS2, RD Loads data from«RS1, RS2 into RD R| LOAD.O | RS1 | RS2 | RD RES. | +
LOAD RS | offst, RD Loads data fromxRS, offst> into RD rRo| LOAD.O | RD RS of f st| RES. | *
Description:
Loads frame-data into register(s)
Operation:
RD «— «RS1, RS2> (or F+— RS; RD«+ F[offst])
Note:

The maximum value of "offst’ is 3120 — 1). The instruction has no effect if the data is not preseet {i’'s non-blocking).

| STORE — Store data into Frame |
Usage:
STORE RS, RD1| RD2 Stores data from RS intacRD1, RD2> R| STOREO | RS RDL | RD2 | RES. | +
STORE RS, RD| offst Stores data from RS intaRD, offst> rRO| STOREO | RS RD of f st| RES. | *
Description:
Stores register value into single frame-destination.
Operation:
<RD1, RD2> «— RS (or F+— RD; F[offst] +— RS or F— RD)
Note:

The maximum value of "offst’ is 3120 — 1). The instruction has no effect if the data is not preseet {i’'s non-blocking).

2.9 [-Structure Management

‘ IALLOC — Allocate memory for an I-Structure ‘
Usage:
IALLOC RS, RD Allocates an I-Structure of RS entries R| IALLOOOJRS |[RD [0 [|RES |+
IALLOC value, RD Allocates an I-Structure of 'value’ entries tranBUTR1 value; IALLOC R1, RD
Description:
An |-Structure of the specified size is allocated. The I-&uite pointer is stored in RD.
Operation:
RD «— &l

I-Structure flags are initialized to E (Empty)

IFREE — Free the memory belonging to a given I-Structure




Usage:

IFREE RS Frees the specified I-Structure R| IFREEOJRS [0 [0 [|RES |=
IFREE addr Frees the specified I-Structure trarBUTR1 addr; IFREE R1
Description:
The I-Structure specified by RS is freed.
Operation:
IFETCH — Fetch an I-Structure entry
Usage:
IFETCH RS1, RS2, RD Fetches<RS1, RS2 R | FETCHO| RS1 RS2 RD RES. | +
IFETCH RS |index, RD Fetches<RS, index- ro| | FETCHO| RD RS i ndeX RES. | *
Description:

Given the I-Structure I, it loads the specified value into REx|, index>.flag is F (data present), else the request is queued, and the
flag is set to W (Waiting for data to come).
Operation:

RD « I[index].value IF I[index].flag ==

ISTORE — Store an |-Structure entry
Usage:
ISTORE RS, RD1| RD2 Stores intocRD1, RD2> R| ISTOREO| RS RDL | RD2 | RES. | +
ISTORE RS, RD | index Stores into<RD, index> rRO| | STOREO| RS RD i ndex RES.
Description:
Given the I-Structure I, it stores the value specified in RO set<|, index>.flag to F (data present).
Operation:

I[index].value— RS and lI[index].flag— F (thereafter, all pending requests are satisfied).

| READ — Fetch a memory entry
Usage:
READ RS1, RS2, RD Fetches<RS1, RS2 R READO RS1 RS2 RD RES. | +
READ RS | index, RD Fetches<RS, index- RO | READO RD RS i ndeX RES. | *
Description:
READ general memory.
Operation:
WRITE — Store a memory entry
Usage:
WRITE RS, RD1 | RD2 Stores into<cRD1, RD2> R| WRITEO | RS RD1 RD2 RES. | +
WRITE RS, RD | index Stores into<RD, index> rRO| | STOREO| RS RD i ndex RES.
Description:
Write general memory.
Operation:

2.10 Thread Support

‘ FORKSP — Schedule the execution of code on Synchronizationdtessor

Usage:
FORKSP RS, RD conditionally schedules the code at RD R| FORKSPO| RS RD RES. | +
FORKSP RD unconditionally schedules the code at RD R| FORKSPO| O RD RES. | +
FORKSP RS, addr conditionally schedules the code at addr traRSITR1 addr; FORKSP RS, R1
FORKSP addr unconditionally schedules the code at addr traPYTR1 addr; FORKSP R1

Description:

Schedule the execution of a certain thread on SP. When gréiserondition is true if its value is not zero.



Operation:

| FORKEP — Schedule the execution of code on Execution Process

Usage:

FORKEP RS, RD conditionally schedules the code at RD R

FORKEPO

RS

RD

RES. | +

FORKEP RD unconditionally schedules the code at RD R

FORKEPO

0

RD

RES. | +

FORKEP RS, addr conditionally schedules the code at addr
FORKEP addr unconditionally schedules the code at addr
Description:

Schedule the execution of a certain thread on EP. When grelkercondition is true if its value is not zero.

Operation:

traRsiTR1 addr; FORKEP RS, R1
traPYTR1 addr; FORKEP R1

| STOP — Terminate the current thread

Usage:

STOP R |

STOP_0 [ 0

| 0

|0 [RES ]

Description:
Stop the current thread and schedule another one. Thisrelsethe Running Context.
Operation:

2.11 /O Instructions

‘ INPUT — Input data from a device

Usage:

INPUT index, RD Inputs data from device number 'index’ RO |

I NPUT_0 | RD

| 0

| indeX RES. | *

Description:

Inputs data from the given device into destination
Operation:

RD < D[index]

OUTPUT — Output data to a device

Usage:

OUTPUT RS, index Outputs data to device number ’index’ RO |

OJTPUTO| RS

| 0

| inde{ RES. | *

Description:

Outputs data to the given device
Operation:

D[index] — RS

‘ FINPUT — Input floating point data from a device

Usage:

FINPUT index, FRD Inputs floating point data from device number 'ingex’

FINPUT.J FRD [0

| indeX RES. | *

Description:

Inputs data from the given device into destination
Operation:

FRD <« D[index]

FOUTPUT — Output floating data to a device

Usage:

FOUTPUT FRS, index Outputs floating data to device number ’index’ ro |

FOUTPUTQ FRS | 0

| inde RES. | *

Description:
Outputs data to the given device
Operation:



D[index] — FRS

2.12 System Calls

System calls are needed to invoke those opearations thedianet be implemented directly at architectural level. @rohitecture may
provide support for the implementation of system calls.

‘ SC — Launch the specified System Call
Usage:
SC #scid RS RO SC.__0 RS 0 sc.id| RES. | +
SC #scid RRS RO SC.__1 RRS | O sc.id| RES. | +
SC #scid RS, RD RO SC.__0 RS RD sc.id| RES. | +
SC #scid RRS, RD RO SC._1 RRS RD sc.id| RES. | +
SC #scid addr, RD trans: PUTR1 addr; SC #scid R1,RS
Description:
Invoke the System Call 's’ with RS (RRS) as input parameters and, eventually RD &guiyparameters
Operation:
2.12.1 Frame Management
SC #FALLOC - System Call: Associate a frame to a code-block ‘
Usage:
SC #FALLOC RRS, RD Returns in RD the address of the frame RO| SC__0 |[RRS [RD [FalLad RES. |+
Description:

A frame F is allocated and its address stored in RD for the -dxodek whose address has been specified in RS1 and whose
synchronization count is specifed in RS2.
Operation:

EP: allocates a frame; requests SP to run the frame indt#iz routine; RD— &F.

SP: executes the frame initialization routine.
Note:

There’s no stall in EP.

SC #FFREE — System Call: Free the frame associated with currdg code-block ‘
Usage:

SC #FFREE RS Free the frame pointed by RS RO| SC__0 [RS |0 |[Frrree| RES. | *
Description:
Operation:

SC #FREALLOG- System Call: Set the value of current code-blok synchronization-count ‘
Usage:

SC #FRALLOC RS rRO| SC_.0 [RS O | FFRee | RES. | *
Description:

Set the value of current code-block synchronization-ctmnthat specified in RS
Operation:

Sync-Count of k— RS




3 Pragmas

The pragmas are directives to the compiler that are usefdetttify features of the code.
e VERSION string specifies the version number of current program
e CODE string specifies the name of the code block
e THREAD string specifies the beginning of a thread

e END specifies the end of a code block

4 Frame Usage Conventions

A Frame is a (local) chunk of memory, which holds all the dakeclv are addressed by a certain code-block. The followimyeotions
apply to the a frame.

5 Thread Management Conventions

(to be written) . ..

6 Possible Instruction Set Extensions

From IF1 graph analysis, it appears that could be usufulttodiuce:

Support for Trascendental Operators

Support for Reduce Operators

Support for Vector Operators

Support for Double operand type (sign, 52-bit mantissahit &xponent(64-bit double-precision IEEE754))



Appendix A — Compatibility with previous notations

Register notation
e RO, R2,...were previously used to indicate RRO, RR2, ...

Frame Management

e MKTAG RD, RS, offst instruction is not necessary any more, since:
LOAD RS |offst, RD
prepares automatically the pointer to frame erttRS, offsts>.

e FALLOC addr, RD instruction is translated into:
PUTR1 addr
SC #FALLOC R1, RD
This has the advantage of allowing to specify any possibieess within memory.

e FFREE RSinstruction is transalted into:
SC #FFREE RS

e FREALLOC value instruction is transalted into:
PUTR1 value
SC #FRALLOCR1
This has the advantage of allowing to specify any possiligedaetween 0 an2*°.

Data Movement

e STOREI value, RS, offstinstruction is transalted into:
PUTR1 value
STORE R1, RS, offst
This has the advantage of allowing to specify any possidigadaetween 0 ang?°.

e LAOD2 RS |offst, RRD (or LAOD RS |offst, RD1 |RD2) instruction has been removed.

Thread Support
e BR, FORK.P andSWITCH.P instructions are replaced BWYORKEP

e FORK.S, andSWITCH.S instruction are replaced lyORKSP

Pragmas

e SYNC pragmas is not needed since the synchronization countdffiggewvhen FALLOC system call is invoked.



Appendix B — List of Op-Codes

OpCode | Rformat | RO format | RIformat
X

¢
FORKSPO
FORKEPO
IALLOCO
IFREE.O
IFETCHO
ISTOREO
READO
WRITEO
LOAD_0
STOREO
STORE1
MOVE_0
STOR.0
ADD__0
SUB__0
MUL__0
DIV__.0
MOD__0
AND__0
OR.__0
NOT__.0
SHL._.0
SHR_0
BOR._.0
BNOT__.0
BAND__0
BXOR__.0
NEG._.0
MAX__0

XX X X X X X

FLE._.0
FEQ..0
FNE.__0
FGE._.0

>

v}

o

1

o
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

X X X X

BOR__0 X
68 [ 36 [ 9 [1
The TLS (thread levelspeculation) instructions are noeadget.




