A Study of Page Placement and Migration in
Heterogeneous Flat-Addressable Memories

ABSTRACT

The volume of data generated by research, commercial, in-
dustrial, communication, entertainment and other fields is
growing exponentially. There is a need for faster and very
large amounts of main memory for analyzing such volumes
of data in reasonable amounts of time. In addition, these
systems need to be as energy efficient as possible, since the
energy requirements of most high-performance computing
systems and data centers are becoming significant portions
of their operational budgets. This led to research into differ-
ent memory technologies such as 3D-stacked DRAM, im-
provements to DDR, and non-volatile memories like PCM,
and Flash memories. There have been some studies on how
these memory technologies can be used to address the need
for very large amount of main memory at reasonable cost
and energy budgets. Flat-addressable memories differ from
hierarchical view of the memory system: they are organized
as a single (flat) physical address space with two or more
types of memory devices, each with its own latencies and
bandwidth. In such memories the page placement and mi-
gration (or swapping) of pages across these different mem-
ory devices requires very careful analysis. Previous stud-
ies have explored simple migration policies in a system with
3D-DRAM and DDR4 as main memory. Our analysis shows
that for some workloads, static page placement with no page
migration outperforms policies that consider only page ac-
cess counts in deciding which pages to migrate. Addition-
ally, these policies may prove to be inefficient for memory
systems when PCM is included. In this paper we present and
evaluate several intelligent and efficient policies for migra-
tion of physical pages across the memory technologies. We
study our policies for two level (3D-DRAM + DDR4; and
3D-DRAM + PCM) and three level (3D-DRAM + DDR4 +
PCM) memory systems. We present both performance im-
provements and memory energy savings for our page migra-
tion policies. Compared to previous studies, we observe av-
erage speedups of 2.6% and energy savings of 65.9% for 3D-
DRAM + DDR4, average speedups of 10% and energy sav-
ings of 76.8% for 3D-DRAM + PCM, and average speedups
of 8% and energy savings of 68.5% for 3D-DRAM + DDR4
+ PCM.
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1. INTRODUCTION

The volume of data generated by research, commercial,
industrial, communication, entertainment and other fields is
growing exponentially. There is a need for faster and very
large amounts of main memory for analyzing such volumes
of data in reasonable amounts of time. In addition, these
memory systems need to be as energy efficient as possible,
since the energy requirements of high performance and data
centers are becoming significant portions of their operational
budgets.

DDR DRAM is the primary technology used as the main
memory in today’s computing systems. However, capacity,
power, latency and bandwidth requirements of emerging ap-
plications cannot be met by DDR memories. It has been re-
ported that today’s conventional DRAM main memory sys-
tems consume up to 40% of the total system power [1} [2].
The limited scalability and high cost-per-bit make the de-
sign of large-scale DRAM memory systems infeasible [3}
4]. In fact, no single memory technology is likely to meet
these needs [5]. Thus, we must search for new memory
technologies and architectural solutions that combine differ-
ent technologies into a single main memory to meet these
needs.

On the performance end, 3D-stacked DRAM (3D-DRAM)
provides high bandwidth and low latency at higher cost and
limited capacity [6l [7]. On the other hand, non-volatile
memories (NVM) are promising with lower cost-per-bit and
higher capacity but at reduced performance. The most promis-
ing non-volatile memories, in the foreseeable future, are NAND
flash memories and phase change memories (PCM) [§].
The flash based memories are nearly 1000 times slower than
DDR [9] and may not be suitable as main memories, al-
though some studies proposed using NAND flash as main
memories with DRAM caches of various sort [10]. PCM is
denser than DRAM, and even though it is slower than DDR
DRAM, it is still significantly faster than NAND flash mem-
ories. This led to studies using PCM as the main memory,
either to augment DDR or to replace DDR memories [/1,/11}
12} |13} 4}, 114, |15 |16, |17, 3|]. The recently announced 3D
XPoint non-volatile memory is already in the limelight with
the claim of being 1000 times faster than standard NAND
flash memory [|18]. Although details are not readily avail-
able, the community assumes that 3D XPoint is based on
PCM technology.

1.1 Motivation

Given these various technologies, it is appealing to con-



sider a memory system built using more than one type of
memory technology. There are many choices for construct-
ing such a heterogeneous main memory system. A flat ad-
dressable heterogeneous memory differs from a hierarchical
memory system. A hierarchy implies that the faster mem-
ory is closer to the CPU and the slower memories are farther
from the CPU, and data migrates on demand across these
memories, often keeping replicas. A flat-addressable hetero-
geneous memory is composed of two or more types of mem-
ory devices, each with its own latency and bandwidth char-
acteristics; and the entire memory is viewed as a single con-
tiguous physical address space, albeit with non-uniform ac-
cess times. It might be beneficial to migrate (or swap) pages
across the memory devices in order to decrease the memory
access time for frequently used data and improve the appli-
cations’ execution time. The page migration policies can be
enforced by the runtime system with simple hardware sup-
port such that application transparency is ensured [[19].

However, the page placement and migration (swapping)
of pages in flat heterogeneous memory systems require very
careful analyses. Previous study have explored simple mi-
gration policies at a page granularity in a system with 3D-
DRAM + DDR4 as the main memory [19]. Our analyses
show that for some workloads, static page placement with
no page migration outperforms policies that consider only
page access counts in deciding which pages to migrate. Ad-
ditionally, such simple migration policies may prove to be
inefficient for memory systems when PCM is included. In
this paper we present and evaluate several policies for migra-
tion of physical pages across multiple memory technologies
within a single flat address space.

We study migration policies for two level (3D-DRAM +
DDR4; and 3D-DRAM + PCM) and three level (3D-DRAM
+ DDR4 + PCM) memory systems. We present both per-
formance improvements and energy savings for our policies.
We use both single and multi-programmed workloads drawn
from SPEC 2006. More specifically:

e We propose and evaluate intelligent page migration poli-
cies which take into account the post-migration usage
of pages (i.e., will a page remain hot after migration or
becomes cold soon after migration) as well as the rela-
tive differences in the latencies and bandwidths of the
memory devices (i.e., how hot a PCM or DDR page
should be relative to a page in 3D-DRM before swap-
ping the pages) in determining which pages should be
migrated. We show that these policies result in perfor-
mance gains and reduce energy consumed by applica-
tions.

e We catalog the key sources of overhead associated with
page migration. We propose and evaluate policies which
place a limit on the total number of pages transferred
at each epoch in order to balance the page migration
overheads against performance gains.

e We also explore locking last-level cache (LLC) lines
for heavily accessed data items as an additional opti-
mization and as an alternative to page migration.

e We compare our policies with the Hot Page Policy pub-
lished in [19]], as well as to a heterogeneous memory

system that does not migrate pages. In addition, we
compare our results to systems with sufficiently large
3D-DRAM only and DDR4 only memories.

In a nutshell, compared to previous studies, we observe
average speedups of 2.6% and energy savings of 65.9% for
3D-DRAM + DDR4, average speedups of 10% and energy
savings of 76.8% for 3D-DRAM + PCM, and average speedups
of 8% and energy savings of 68.5% for 3D-DRAM + DDR4
+ PCM.

Our intention is not to show the benefits of PCM (when
used as part of main memory) in reducing the number of
hard page-faults, but rather to study the performance im-
provement achieved when PCMs are used as part of a multi-
level main memory system. Therefore, we assume that the
total capacity of a multilevel system is sufficient to contain
the memory footprints of the benchmarks studied.

2. BACKGROUND AND RELATED STUDY

2.1 Introduction to Memory Technologies and

Baseline Architecture of Heterogeneous Mem-

ory Systems

3D-stacked DRAM (3D-DRAM) is a new memory tech-
nology that uses die-stacking technology. 3D-DRAM has
lower access latency, higher bandwidth and lower access en-
ergy per-bit as compared to today’s DDR4 [20| [6]. Mir-
cron’s Hybrid Memory Cube (HMC) comes with 4GB ca-
pacity and bandwidth of 320GB/sec and HMCs can be chained
together using high speed links [7]]. Also, JEDEC standard
stacked High Bandwidth Memory (HBM) [21]] can provide
a bandwidth of 128GB/s per stack.

Phase change memory (PCM) is a non-volatile mem-
ory (NVM) that relies on the state or phase of material that
changes its phases from amorphous to solid. Each PCM cell
may hold one bit (single-level cell, SLC) or represent mul-
tiple bits (multi-level cell, MLC). This choice leads to dif-
ferences in latencies, energy and bandwidths of PCMs [3].
PCM may exhibit higher write latency (4x-32x) and higher
read (1.2x-2x) and write energies (4x-140x) than DDR4 [22|
3]. PCM has limited write endurance of 10° to 108 cycles.
On the other hand, PCM can be 4 times denser than DDR4
depending on the implementation [13]] and hence will pro-
vide larger capacity and lower cost-per-bit [3]. Addressing
limitations in terms of write latencies, endurance and energy
is an ongoing research area (see for example [23} 24} |13||17}
25]).

Recently, Intel and Micron jointly announced the 3D XPoint,

which is a non-volatile memory, and claims to be 1000 times
faster than NAND flash memories and 10 times denser than
DDR memories [[18]. It has been mentioned that 3D XPoint
stores data by the change of the memory cell material itself.

E] Our study should be applicable to this new device since

we explore a wide range of design space for NVMs in our
research.

Heterogeneous Memory Architecture (HMA) system
[19] is the basis for our study. Only 3D-DRAM + DDR4

IThe research community believes that the memory cells will be
some version of PCM and therefore latency and bandwidth prob-
lems could still persist.



was used in that architecture. We extend the HMA system
by adding PCM memories. Both studies assume a single
contiguous physical address space spanning different mem-
ory devices and assume necessary hardware and software to
access appropriate device for a given data request.

As in the previous study [19], we also assume that pro-
gram execution is divided into fixed intervals or epochs of
0.1 seconds. The number of accesses to a page (i.e. num-
ber of LLC misses) is recorded per epoch by hardware and
stored within page table entries (PTE). The memory refer-
ence count serves as an indicator of how frequently each
page is accessed in a given epoch, and if the count exceeds
a threshold (say 32) the page is considered hot. In the Hot
Page Policy [19], after each epoch, hot pages are sorted (if
necessary) based on their access counts, and top hot pages
(based on available space in the 3D-DRAM) are migrated
from DDR4 to 3D-DRAM. Thus program execution is halted
during the migration and may cause performance penalties
which may be overcome by faster access time to hot pages.
Additional polices such as FTHP, which maximizes the num-
ber of pages migrated, and FTHP-HB, FTHP-FB, which min-
imize the hardware for tracking access counts, were reported
in [19].

We extend the HMA study by evaluating their page mi-
gration policies for homogeneous multicore environments
(instead of heterogeneous multicore systems). We propose
and evaluate several new policies that take into account the
post-migration usage of pages, limit the number of pages
migrated at each epoch, and change the hotness threshold
based on the device where a page currently resides. In ad-
dition we compare the policies with no page migration. We
also investigate locking LL.C lines of hot pages as a possible
optimization and as an alternative to page migration. Cache
Locking is a technique that has been used commonly to lock
cache lines to improve timing predictability of Real Time
Systems [26, [27]. Here we employ this technique from a
different perspective, i.e. to reduce memory traffic between
LLC and main memory system.

2.2 Other Related Work

Heterogeneous main memory systems can be broadly cat-
egorized in two classes depending on the allotment of phys-
ical address space. One category can be viewed as hybrid
memory, where each of the different memory technologies
used in the system main memory are assigned to a single
physical address space. Different studies have shown that
with intelligent page/data allocation and migration techniques,

hybrid memory systems comprising of different types of DRAM

[28]], 3D-DRAM+DDR |29 [19], and DRAM + PCM [l1]
11} |12 may provide overall performance gains and energy
savings compared to conventional homogeneous main mem-
ory systems. The other category can be called hierarchical
memory, where one or more technologies used in the main
memory systems serve as cache/buffer for the other mem-
ory devices used in the heterogeneous system. The memory
devices used as buffer/cache are not visible in the physical
address space [13} 14, |14} /15, [16].

3. PAGE MIGRATION IN HETEROGENEOUS

MEMORY

As previously indicated, emerging workloads including
HPC and Big Data applications are requiring ever increasing
amounts of main memory. Some of these applications do
not benefit from large caches and memory hierarchies [30].
Large memory capacities cannot be satisfied solely by using
DDR4 while being effective in terms of access latencies and
within given power budgets. We feel that no single memory
technology can address latency, bandwidth, capacity, and en-
ergy requirements of emerging applications. New memory
technologies are becoming available that may present solu-
tions in addressing these needs. They include 3D-stacked
DRAM with favorable latencies [29, [31]] and higher band-
width (five to tewleve) [21l[7]] as compared to conventional
DRAM, and PCM with higher densities [8|] while being
faster than flash memories. PCM may also have compara-
ble read latencies to DDR memory but suffers from high
write latencies (4x-32x higher than DRAM read latency) and
high write energy [3]]. PCM supports lower bandwidth than
DDR4 (particularly write bandwidth) [3| 22]. This gener-
ated interest in using a combination of these memory devices
together as a heterogeneous main memory. These memory
devices are organized to represent a single (or flat) contigu-
ous physical address space, albeit with non-uniform memory
accesses.

3.1 Page migration issues

To improve access latencies of flat-addressable heteroge-
neous memories, it may be beneficial to migrate heavily ac-
cessed (hot) pages to faster memories such as the 3D-DRAM.
The transfer incurs overhead both in terms of execution time
and energy. The key challenge is to identify which pages
should be migrated to the faster memory. The decision pro-
cess should try to minimize the migration overheads (both in
terms of time and energy) and maximize applications’ per-
formance. That is the focus of our research presented here.

Tracking page usage To determine which pages are hot,
we count the number of access to pages (resulting from misses
in LLC) over a given interval (or epoch). A threshold on the
number of accesses is used to categorize pages as hot or cold.
In [19] the threshold is set to 32 for a two memory memory
system with 3D-DRAM + DDR4. The access counts are as-
sociated with pages, and may be stored with PTE entries, as
proposed in [[19}/12].

Page migration mechanism and overheads. In current
implementation of memory systems, the migration of a page
also changes its physical address, requiring changes to TLB
and possibly invalidating cache memory entries (since they
are physically tagged). Another issue to consider is the ac-

tual migration mechanism (how the pages are swapped/migrated):

use a separate DMA channel, or use CPU (by executing ker-
nel code) to read and write data of the page being migrated
[1. In the latter case, the entire cache hierarchy may be
impacted, while in the former case, only the data from the
swapped pages will be affected. In order to migrate a page,
data needs to be read from one memory device and written
to another one. This introduces substantial amount of en-
ergy consumption for the migration itself. The total time it
takes to migrate the pages will be bound by the lower avail-



able bandwidth, while the energy consumption will depend
on the total number of pages migrated and the access energy
of the memories in the system. Additional overheads such as
TLB shootdown, interrupt times, OS memory management,
etc. also contribute to the total execution time. However, the
main overhead contributor is the data migration itself. We
quantify and discuss the overheads in Section 5.

Post-migration usage of pages. Another issue that af-
fects the performance of any page migration policy is the
post-migration usage of the pages. A page may become cold
(not heavily accessed) immediately after being migrated to
a faster memory. The result is that the benefits of faster
memory accesses are outweighed by the cost of page mi-
gration (due to afformentioned overheads). We will see that
for some multi-programmed workloads this is the case, since
many migrated pages soon become cold. Thus, a more intel-
ligent placement policy, which takes into account the proba-
bility of the transferred page remaining hot is needed.

Page usage versus device latencies. While transferring
the pages from high latency, low bandwidth memory (such
as PCM), the time it takes to migrate a page can be high. If
we use a fixed hotness threshold, e.g. 32 accesses, for classi-
fying a page being hot (accessed 32 times) will not suffice to
hide the migration overhead. It is necessary to take into ac-
count the relative differences in the latencies and bandwidth
of the memory devices, particularly when the differences are
large. For example, it may not be worthwhile transferring a
hot page from a slower memory to a faster memory unless
the number of accesses of the kot page in the slower memory
is two times greater than that of a page being displaced from
the faster memory.

Limiting the number of pages migrated per epoch. The
page transfer overheads may outweigh the benefits of migra-
tion when very large number of pages are transferred at each
epoch, particularly in terms of energy overheads. Our stud-
ies have shown that in some cases the energy due to page
transfers may account for nearly 50% of the total energy
consumed by an application (see Section 5). Therefore, the
number of pages migrated at each epoch should be limited in
order to balance the migration overhead against performance
benefits.

3.2 Page migration policies

Here we describe the various page migration policies that
are evaluated in our study. These include newly proposed
policies which attempt to overcome the aforementioned over-
heads.

NO_TRANSFER. We use this policy as our baseline. This
policy assumes that the heterogenous memory is populated
linearly, starting with faster memory and moving to slower
memories once the capacity of the faster memory is exceded.
Once assigned pages are not migrated across the devices.
Meswani et. al. [[19] did not evaluate such a heterogeneous
memory system and we feel that it is a significant omission.
Our analyses show that for some benchmarks, the perfor-
mance is better when pages are statically allocated to the

memory devices, and pages are not migrated, when com-
pared to the BASIC_TRANSFER policy described below.
Some SPEC2006 benchmarks tend to access mostly memory
pages that were allocated earlier in the program execution
and less frequently pages allocated later in the execution. In
such cases, it is likely that heavily accessed pages are go-
ing to be assigned to faster memories and less frequently
accessed pages to slower memories; and thus migration of
pages may not be very beneficial.

BASIC_TRANSFER. It is the same as the Hot Page Pol-
icy in the HMA system [19]. Any page with more accesses
than the defined threshold in a single epoch is considered
hot. The threshold is set to 32 accesses in the HMA study
after a sensitivity analysis, and we also use the same thresh-
old. The hot pages are sorted based solely on the access
counts and the top N hot pages are transferred to the fastest
memory (3D-DRAM), where N is the total number of phys-
ical frames in the 3D-DRAM.

PRIORITY. We propose this policy in order to minimize
the impact of migrating pages which are not likely to remain
hot after the migration. In order to implement this policy,
we need to acquire information about a page after migration;
that is, will the page remain hot in the epoch(s) following the
migration. This information can be used when considering
a page for migration at a later time. We use a moved bit to
see if a page was migrated in the previous ecpoch. Two ad-
ditional bits are used to keep a count of the number times
a page remained hot after previous migrations. The count
is incremented if the moved bit is set and the page is hot
in the current epoch. This implies that the migration was
usefull since the page remained kot after its migration. The
count is decremented if the moved bit is set and the page
is not hot in the current epoch. The count ranges between
0-3, where O indicates that the page is not likely to be hot
after migration and 3 indicates that the page is very likely
going to remain hot after migration. This count is used to
prioritize hot pages selected for migration (hence the name
PRIORITY). Our results show that this policy performs bet-
ter than the BASIC_TRANSFER policy. The moved bit and
2-bit count can be kept with PTEs or in separate data struc-
ture associated with pages.

Table 1: PRIORITY+ set different hotness thresholds
for different memory devices. The thresholds depend on
how many accesses are needed to a page in order to hide
the migration overhead. NV_1x-8x are different config-
urations of Non-Volatile memories (find more detail in
Sect. 4.2.1).

Memory Type | NV_1x | NV_2x | NV_4x | NV_8x
Latency (ns) 60 120 240 480
RBW (GB/s) | 12.8 6.4 3.2 1.6

W BW (GB/s) | 3.2 1.6 0.8 0.4
Accesses 80 40 32 29

PRIORITY+. sets hotness thresholds for different mem-
ories. The thresholds depend on how many accesses are



needed to a page in order to hide the migration overhead.
This policy takes into account the relative differences in la-
tencies and bandwidths of the devices involved and scales
the hotness threshold for pages residing in different memo-
ries. On top of the PRIORITY policy, we also consider the
overhead of page migration, which differs for different mem-
ory configurations, and we calculate the number of accesses
to that page which are needed to cover the overhead. For ex-
ample, a page which is considered for migration from PCM
needs 80 accesses in order to hide its overhead, whereas a
page migrated from DDR4 needs only 20 accesses. There-
fore, the policy enforces different hotness thresholds for dif-
ferent devices (and not a fixed value of 32 as in the BA-
SIC_TRANSFER policy). A page is considered hot only if
it exceeds the threshold set for the device where the page is
currently located. The hotness thresholds can be set at the
system startup, and do not have to change over time. Table/[T]
shows example values for thresholds. NV_1x-NV_8x means
different NVMs with different read/write latencies and band-
widths relative to those of DDR’s. These are different con-
figurations of NVMs those we have analysed in our study
(more detail in Sect. 4.2.1). The thresholds correspond to
the number of accesses needed to hide the migration over-
head which primarily depends on the memory parameters
(latency and bandwidth). The hotness thresholds can be set
at the system startup, and do not have to change over time.

3.3 PAGE MIGRATION LIMIT

Hard limit on the number of pages migrated. Selecting a
subset of all hot pages for transfer minimizes the overheads
and reduces energy consumed by the application. We can
use a fixed limit on the number of pages migrated per epoch
instead of allowing as many pages as the capacity of 3D-
DRAM to migrate at each epoch. This improves scalability,
especially from the energy point of view, because the total
number of pages which can be migrated per epoch does not
change with the 3D-DRAM size.

TLB migration limit. Unlike the previous case, we limit
the number of hot pages transferred at each epoch to only
those pages that currently have valid TLB entries (and also
satisfy our priority criteria regarding their future usefulness).
We feel that this further improves the effectiveness of migra-
tion policies because pages with valid TLB entries indicate
their recency of accesses. In this study, we assume a per-
core TLB with 512 entries for a total of 2048 entries in a
4-core system. Since each transfer involves 2 pages (one
page moving to 3D-DRAM, displacing a 3D-DRAM page),
we transfer at most 4096 pages at each epoch. Our exper-
iments show that in most cases, approximately 1000 pages
are transferred at each epoch using this policy.

3.4 LOCKING LLC LINES

Hot pages are frequently accessed in the main memory
because they are evicted from the cache hierarchy. We can
reduce the total number of memory accesses to these pages,
and also improve their access latency, by locking the data
from hot pages in the LLC. This may potentially improve
the total execution time because the number of memory ref-
erences will be reduced. Further, it may not be necessary to

transfer pages from slower memories if their data is locked
in the LLC. However, the locking cache lines may cause
conflicts for the unlocked lines, increasing cache misses for
other pages (potentially making them /ot in future epochs).
We explore this option as an additional improvement to the
placement policies outlined above as well as an alternative
to page migration.

4. METHODOLOGY

We ran our experiments using an open-source trace-driven
cache simulator on top of which we developed a heteroge-
neous flat-addressable memory module in order to simulate
accesses to the main memory. Below we describe our exper-
imental setup in more details.

4.1 Trace Generation

We generated the execution traces from a server with two
Intel Xeon-E2640 processors and 32GB of physical mem-
ory. We used the Pin tool [32] to generate the execution
traces. We collected traces for 12 SPEC CPU2006 bench-
marks, where 6 benchmarks are capacity limited and 6 are la-

tency limited [29]]. We simulated single and multi-programmed
workloads. Table[2]shows the benchmarks and multi-programmed

mixes used in our evaluations.

Table 2: Benchmarks and Memory Footprint

Benchmark Memory Footprint (MB)
bwaves 930
omnetpp 162
cactusADM 628
soplex 522
gcc 64
xalancbmk 116
GemsFDTD 831
zeusmp 504
Ibm 412
mcf 1679
libquantum 98
milc 569
SMALL (2xgcc, 2xlibq) 317
MEDIUM (omnetpp, xalanc, 433
gcc, libquantum)
LARGE (Ibm, milc, 2001
soplex, zeusmp)
VERY_LARGE (mcf, bwaves, 4062
GemsFDTD, cactusADM)

4.2 Memory System Simulator

We developed a heterogeneous memory system simula-
tor on top of an open-source trace-driven multi-core cache
simulator [33]]. We chose this tool because it was easy to
configure to meet our needs. We verified the claims of the
simulator’s accuracy and compared it to real hardware. We
model a cache hierarchy with 32KB L1-1/D, 256KB L2, and
a shared 8MB L3. The memory simulator models a hetero-
geneous single flat-addressable physical memory with dif-
ferent memory devices, their latency, energy and bandwidth
parameters are listed in Table 3]



We assume a 4-core CPU with a 2GHz clock and a typi-
cal 3-level cache hierarchy. We set the hotness threshold to
32 accesses during an epoch (unless changed by the PRIOR-
ITY+ policy), which is set to 0.1s.

We assume that our memory is sufficient to contain the
entire footprint of applications. Since the memory footprints
of the benchmarks vary, specifically for multi-programmed
benchmarks (see Table[2)), we scale the total memory capac-
ity to fit the needs of the benchmarks. We scale the mem-
ory sizes depending on their total memory footprints such
that all benchmarks exert pressure on all memory devices
(i.e, 3D-DRAM, DDR4 and PCM). For two-level memory
systems we assume 1:4 ratio for the capacities of the faster
and slower memories (3D-DRAM + DDR4 or 3D-DRAM +
PCM), and for a three-level system we assume a 1:4:8 ratio
for capacities of the memory devices (3D-DRAM + DDR +
PCM).

Table 3: Memory performance and energy parameters.
We use 3D-DRAM parameters with references to [29,31)
7,34,(35] , DDR4 parameters [13,36] and PCM (NV_1x)
parameters with reference to [22].

Acc. latency | Acc. Energy | BW
3D-DRAM | 40 ns 8.5 pj/bit 160 GB/s
DDR4 60 ns 35 pj/bit 25.6 GB/s
PCM Read | 1x DDR 1.2x DDR 1/2x DDR
(NV_1x)

PCM Write | 4x DDR 4x DDR 1/8x DDR
(NV_1x)

4.2.1 Memory performance and energy parameters

For our simulation purposes we used the memory param-
eters listed in Table[3] f] We calculate the energy consumed
using the statistics gathered from the simulation and the pa-
rameters listed in Table 3] We use PCM as a representative
NVM device. We vary the access latencies to PCM rela-
tive to DDR4 latencies. In our NV_1x configuration, which
is the optimal NVM configuration we assume, PCM read
access latency is 1x and write latency is 4x than those of
DDR4. We also assume that for the NV_1x configuration,
PCM read bandwidth is two times lower than DDR4 read
bandwidth and PCM write bandwidth is eight times lower
than that of a DDR4 [22]]. We also evaluated other config-
urations: NV_2x, NV_4x, NV_8x, where the PCM (read)
latencies are 2, 4 and 8 times slower than that of a DDR4,
the write latencies and bandwidth are adjusted proportion-
ately. We take this approach partly because published liter-
ature differs in their assumptions regarding PCM latencies
[4} 3L 22] and partly to represent other types of NVMsﬂ For
the purpose of this paper, we linearly scale down PCM band-
widths when using higher latencies, but we also assume that
writes will be buffered and do not cause delays in the criti-
cal path of execution, unless limited by the write bandwidth.
We assume PCM uses write cancellation and write pausing
techniques [24] such that the interference of write traffic
with read traffic is minimized.

2The NV_Ix vonfiguration may closely resemble 3D XPoint pa-
rameters.

Table 4: Page migration overheads

Per page cache flush time | 4 us

Whole cache flush time 550 us
TLB shootdown time 4 us
Memory transfer time First block access latency +
per page transfer time limited by
the lower BW memory
Energy We calculated per block access

energy for each read and write

4.2.2 Estimating overheads

The time taken to flush a page from the cache hierarchy
was estimated by measuring the total time it takes to flush a
cache line from the cache hierarchy by issuing CLFLUSH
x86 instruction to each of the 64 cache lines (for a 4KB
page). The overhead for flushing the entire cache is esti-
mated by executing WBINVD x86 instruction. Since the
measured time includes only the time it takes to write back
and invalidate the internal caches (approximately 250 us),
we add additional time needed for write-backs from LLC
to main memory. In the worst-case the entire SMB from
LLC need to be written back to main memory. We estimated
300us for writing back to DDR4, thus the total for entire
cache flush is estimated at 550us. If the write back from
LLC is to some other memory device (3D or PCM), we use
appropriate write-back overheads. Table [4] shows the over-
heads used for page migration in our experiments.
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Figure 1: Total memory traffic in GB for a 3-level mem-
ory system composed of 3D-DRAM + DDR4 + PCM. The
total traffic is averaged across the multi-programmed
workloads for each of the policies. Notice that PRIOR-
ITY+ policy has 1% less traffic to PCM than PRIORITY.

S. EXPERIMENTS AND RESULTS

In this section, we analyze the performance and energy
impact of the different page migration policies for differ-
ent memory configurations. Below we summarize the poli-
cies and the labels we use for the policies in our figures.
NO_TRANSFER (NT). We use this policy as the baseline
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Figure 2: Total memory traffic in GB for a 3-level mem-
ory system composed of 3D-DRAM + PCM. The total
traffic is averaged across the multi-programmed work-
loads for each of the policies.

for comparisons. Pages are not migrated during program
execution. BASIC_TRANSFER (BT). It is same as the
Hot Page Policy. PRIORITY_NL (P_NL). This is the PRI-
ORITY policy as described in Section 3 without any limits
on the number of pages migrated. PRIORITY_4K, TLB
(P_4K, P_TLB). Here we evaluate the PRIORITY policy
with a limit on the number of pages migrated at each epoch.
We evaluate other limits on the number of pages migrated
per epoch, ranging between 4K-16K pages, as well as the
case where we transfer only the hot pages which have valid
TLB entries. We present only data for 4K and TLB lim-
its since they page limit with 8K and 16K always behaved
worse than 4K limit, so we omit 8K and 16K result. PRIOR-
ITY+HK, TLB (P+_4K, P+_TLB). We evaluate the PRI-
ORITY+ policy as described in Section 3 with a 4K and
TLB limit. Here the hotness threshold is varied based on the
device where the page currently resides. LOCKING LLC
LINES. We evaluate this option as an additional improve-
ment to the placement policies outlined above as well as an
alternative to page migration. We discuss the experiment re-
sults but omit figures due to limited space available.

We first discuss the improved memory accesses to 3D-
DRAM and reduction in memory accesses to the slower mem-
ories (DDR4, PCM). We also show the number of pages

transferred during a program execution. We present the speedups

and energy savings as a consequence of improved accesses
to 3D-DRAM and reduced number of pages transferred. We
first show the results for the three level memory organiza-
tion (3D-DRAM + DDR4 + PCM) for single and multi-
programmed workloads. Second, we show results for two
level memories (3D-DRAM + DDR4, 3D-DRAM + PCM)
where we omit the figures for single-programmed workloads
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Figure 3: Total memory traffic in GB for a 3-level mem-
ory system composed of 3D-DRAM + DDR4. The total
traffic is averaged across the multi-programmed work-
loads for each of the policies. Here PRIORITY and PRI-
ORITY+ behave exactly the same because there is no
threshold scaling for DDR4.

ries are used, which are 2, 4 or 8 times slower than DDR4
(i.e NV_2x, NV_4x and NV_8x configurations).

Improved memory accesses. The main goal of any page
migration policy is to maximize the number of accesses to
the fastest memory (3D-DRAM) and minimize the number
of accesses to slower memories (DDR4, PCM). Figures 1
through 3 show the total traffic (in GB) to fast and slower
memories for the different memory configurations. The traf-
fic is averaged across all benchmarks for a given memory
configuration. Note that our policies result in more accesses
to the faster (3D-DRAM) memory and fewer accesses to the
slower memory when compared to the BASIC_TRANSFER
as well as NO_TRANSFER policy. Figure[I|shows the mem-
ory traffic for 3D+DDR+PCM configuration. We observe
that our PRIORITY with 4K limit results in 3.3 times more

accesses to the fast memory when compared to NO_TRANSFER
and 12.8% more accesses when compared to BASIC_TRANSFER.

Our PRIORITY+ with TLB limit policy reduces accesses to
the slowest memory (PCM in this case) by 22.6% when com-
pared to NO_TRANSFER and 6% when compared to BA-
SIC_TRANSFER. Interestingly, although PRIORTY+ with
TLB limit results in least amount of traffic to PCM, it does
not maximize traffic to 3D-DRAM. This is due to the fact
that PRIORITY with 4K limit migrates more pages to 3D-
DRAM but since it is not latency aware it will not migrate
the most useful PCM pages. Figure [2] shows memory traf-
fic for two-level 3D+PCM configuration. PRIORTY+ with
4K limit behaves best in this case. We see 3.4 times more
traffic to 3D-DRAM when compared to NO_TRANSFER
and 21% more when compared to BASIC_TRANSFER. We

(but summarize results). In addition to using the NO_TRANSFER also observe 62% less traffic to PCM when compared to

policy as a baseline, we compare the migration policies with
systems that contain only 3D-DRAM and only DDR4. Fi-
nally, we show the results when slower non-volatile memo-

NO_TRANSFER, and 28% less when compared to BASIC_TRANSFER.

This is important because more access to 3D-DRAM leads
to faster execution times. The PRIORITY+ appears better
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Figure 4: Total number of pages transferred in a 3-level
memory system. The number of pages transferred goes
down by an order of magnitude in most cases which
translates to huge energy savings.

than other policies because it is latency/bandwidth aware
(in setting hotness threshold). Figure [3| shows the memory
traffic for two-level 3D-DRAM+DDR4 configuration. We
see 3.4 times more traffic to 3D-DRAM when compared to
NO_TRANSFER 18.8% compared to BASIC_TRANSFER
for our PRIORITY with 4K limit and PRIORITY+ with 4K
limit ( this is because the hotness threshold DDR4 is fixed
at 32). Memory traffic to DDR4 is reduced 60% when com-

pared to NO_TRANSFER and 25% compared to BASIC_TRANSFER

Number of pages transferred. Another key characteristic
of a migration policy is the total number of pages migrated
during a program execution. The fewer pages we transfer the
higher the energy savings (and also overhead time savings).
However, if we do not transfer as many useful pages as pos-
sible, we may lose some potential performance gains. Figure
H] shows the total number of pages transferred (for the whole
program execution) for the benchmarks in our experiments.

It can be seen that our policies transfer an order of mag-
nitude fewer (10 times fewer) pages when compared to the
BASIC_TRANSFER policy, leading to reduced overheads.
As we will see shortly, the increased traffic to faster mem-
ory (3D-DRAM) and the reduced number of pages migrated
directly correspond to improved performance and large en-
ergy savings with our policies, when compared to the BA-
SIC_TRANSFER policy [19].

5.1 Speedup and energy savings

3D-DRAM + DDR4 + PCM. Here we report results for
a three level system that uses 3D-DRAM, DDR4 and PCM
together as main memory. As stated previously, we vary the
capacities of these devices based on applications’ memory
requirements and use a 1:4:8 ratio for the capacities of the
three memory devices. Even though we ran all 12 bench-
marks for single-programmed workloads, we show results
for three latency bound (libquantum, milc, soplex) and three
capacity bound (cactusADM, lbm, mcf) benchmarks in or-
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Figure 5: Speedup over NO_TRANSFER for single-
programmed workloads in a 3D+DDR4+PCM system.
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Figure 6: Energy savings over NO_TRANSFER for
single-programmed workloads in a 3D+DDR4+PCM
system.

der to make the figures more legible. Figure [5]shows the av-
erage speedup as compared to NO_TRANSFER for the sin-
gle programmed workloads. The capacity bounded bench-
marks do not benefit from page migration. This is due to
the fact that many pages after migration become cold We
see minor improvement for PRIORITY with TLB and PRI-
ORITY+ with TLB limit (up to 2%) over NO_TRANSFER.
On the other hand, the latency bound benchmarks benefit
more from the migration, specifically libquantum, where we
observe 11% speedup over NO_MIGRATION policy and
2% speedup over BASIC_TRANSFER policy. The ideal-
istic case, where sufficiently 3D-DRAM is the only mem-
ory in the system, is only up to 5% faster than the capac-
ity bounded workloads (cactusADM, 1bm, mcf) and up to
10% faster for latency bounded workloads (libquantum, Ibm,
mcf). This is because the single-programmed workloads do
not create enough memory traffic to actually observe the
benefits of having a 3D-DRAM only memory. It is impor-
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Figure 7: Speedup over NO_TRANSFER for multi-
programmed workloads in a 3D+DDR4+PCM system.
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Figure 8: Energy savings over NO_TRANSFER for
multi-programmed workloads in a 3D+DDR4+PCM sys-
tem.

tant to notice that NO_TRANSFER always compares bet-
ter than the system with sufficiently large DDR4 memory
even with just small amounts of 3D-DRAM in the memory
system. Therefore, it is important to compare the policies
against the NO_TRANSFER policy and not just against the
DDR4 only, because any system with small amounts of 3D-
DRAM would outperform the system with DDR4 only.

Figure [6] shows the energy savings with our policies when

compared to NO_TRANSFER. In every case, except for libquan-

tum, BASIC_TRANSFER consumes more energy than the
NO_TRANSFER policy. This is also true for PRIORITY
policy with no limit on the number of pages migrated. How-
ever, with PRIORITY and PRIORITY plus, both with 4K
limit on number of pages transferred, we can save up to
50% energy when compared to NO_TRANSFER (libquan-
tum) and in some cases up to 230% when compared to BA-
SIC_TRANSFER (milc). The idealistic 3D-DRAM only sys-
tem consumes the least amount of energy due to low access

30 -
25 F
20 F

15 [

10 F

[%]

very_large

A —..
small medium

Relative speedup comared to NO_TRANSFER

10 F

<15 &

=BT E=P_NL EmP 4K [mmP_TLB
P+ 4K EmEP+ TLB =@=3D-DRAM-k -DDR4

Figure 9: Speedup over NO_TRANSFER for multi-
programmed workloads in a 3D+PCM system.

energy per-bit. DDR4 consumes less energy than the het-
erogenous system because of the PCMs high write access
energy (in our case 4x that of DDR4). This could be min-
imized with optimizations such as having DDR as a buffer
for PCM writes and not as part of the addressable physical
memory [[13}15].

Figure [/| shows the speedup over NO_TRANSFER pol-
icy for multi-programmed workloads. For the small and
medium workloads, the benchmarks are mostly latency bound

so we observe performance improvement over NO_TRANSFER

policy. For the large and very large workloads, which are

mostly capacity bound, we can see that the BASIC_TRANSFER

policy behaves worse than NO_TRANSFER. Our PRIOR-

ITY and PRIORITY+ with page migration limits perform

better than NO_TRANSFER. However, for the large work-

load NO_TRANSFER consumes the least amount of energy.

The workloads come within 10%-20% of the performance

exhibited by the 3D-DRAM only system. Figure [§] shows

the energy savings over NO_TRANSFER policy. We can

see that BASIC TRANSFER always consumes more energy

than NO TRANSFER, while priority based policies with page
migration limits show energy savings over both policies. The

energy consumption is much higher for larger workloads be-

cause of the large number of pages being migrated during the

lifetime of program execution. On average, NO_TRANSFER
policy is 2.3% faster than the BASIC_TRANSFER policy

and consumes 30% less energy. Our PRIORITY with TLB

limit policy, on average shows 8% speedup compared the

BASIC_TRANSFER and 5.7% compared to NO_TRANSFER,
and consumes 67% less energy than BASIC_TRANSFER

and 16% less energy than NO_TRANSFER.

3D-DRAM + PCM. Here we evaluate a two level system

that uses 3D-DRAM and PCM. Figure [9] shows the relative

speedup for the policies as compared to NO_TRANSFER.

Figure shows the energy savings. On average, the NO

TRANSFER policy requires 2.3% more execution time than

the BASIC TRANSFER policy, but it consumes 1.1% less

energy. When compared to BASIC_TRANSFER, larger scale
workloads with PRIORITY+ and 4KB limit exhibits signif-
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Figure 10: Energy savings over NO_TRANSFER for
multi-programmed workloads in a 3D+PCM system.

icant performance improvements, up to 15% (large) and en-
ergy savings of up to 100% (large and very large). Our PRI-
ORITY+ policy that limits the number pages transferred to
4K, on average, results in a performance gain of 9.3% com-
pared to the BASIC_TRANSFER policy and also results in
56.9% energy savings.

3D-DRAM + DDR4. Figure[IT|shows the relative speedup
for the policies as compared to NO_TRANSFER. Figure [I2]
shows the energy savings. On average, the NO_TRANSFER
policty requires 9% more execution time than the BASIC
TRANSFER policy, but consumes 33% less energy. On av-
erage, our best policy that uses priority and limits the num-
ber of pages transferred to 4096 (that is, PRIORITY_4K),
requires 2.7% less execution time and consumes 65% less
energy when compared to the BASIC_TRANSFER policy.
Compared to the NO_TRANSFER policy, on average, our
PRIORITY_4K policy achieves 11.8% speedup and consumes
30% less energy.

For the two level sysem with 3D-DRAM plus DDR4, the
BASIC_TRANSFER policy, on average, peforms better than
the NO_TRANSFER policy (in terms of execution). How-
ever, in some cases the NO_TRANSFER policy performs
better than the BASIC_TRANSFER policy by a small frac-
tion. This is due to the fact that the BASIC_TRANSFER
policy transfers a large number of pages and therefore in-
curs excessive overhead, outweighing the performance gains
from transferring pages to faster memory (specifically true
for large and very large workload). The NO_TRANSFER
policy always consumes less energy than the BASIC _TRANS-
FER policy because there is no energy wasted for page mi-
gration. Actually this applies to any page migration policy
that does not balance the number of pages transferred rela-
tive to the energy overheads versus improved performance
due to transfers. The policies that limit the number of pages

transferred at each epoch perform better than the NO_TRANSFER

policy, because the overhead due to transfers is outweighed
by improved performance.

User vs. Overhead time. For our optimal policies (PRI-
ORITY and PRIORITY+) the total overhead time is rela-
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Figure 11: Speedup over NO_TRANSFER for multi-
programmed workloads in a 3D+DDR4 system.15pt
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Figure 12: Energy savings over NO_TRANSFER for
multi-programmed workloads in a 3D+DDR4 system.
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Figure 14: Sensitivity analysis for slower NVMs.

tively small compared to total execution time (0.5%-3% of
total execution time). BASIC_TRANSFER policy incurs
as much as 12% of the total execution times for overhead
and thus our policies are significantly better than the BA-
SIC_TRANSFER policy. The majority of the overhead is
due to the page migration itself and only a small fraction of
total time overhead is due to cache flushing on page migra-
tion (less than 10% of total overhead time). The minimal
overhead time raises questions whether or not it is worth ex-
ploring possibilities of overlapping the page migration with
regular program execution.

User vs. Overhead Energy. Figure[I3] shows the user
and overhead energy averaged across all benchmarks for the
3 different memory systems.The reduction in user energy is
small, 2-3% on average and can be as high as 30% in some
cases (for 3D+PCM, using PRIORITY_4K policy). The re-
duction in total overhead energy can be up to 95%. This

11

especially true for systems with PCM as part of main mem-
ory because PCM consumes high write energy per-bit; since
for the policies with a page migration limit we write less fre-
quently to PCM during page migration.

Slower NVMs. Figure [14] shows heterogeneous systems
with slower non-volatile memories that are two times (NV_2x)
and four times (NV_4x) slower than DDR4. For NV_2x, we
see no real advantage keeping DDR4 in the memory system
since the non-volatile memories are only two times slower.
However when using even slower NVMs (NV_4x), DDR4
can be beneficial in a heterogeneous systems. As the la-
tencies of PCMs improve, we may rely on 3D-DRAM and
PCMs only.

Locking LLC lines. Locking LLC lines did not show any
performance or energy improvement for all of the policies.
On average we get performance degradation of 2% and en-
ergy losses of 5% as compared to the cases without lock-
ing. Also, NO_TRANSFER with locking LLC lines did not
show improvement which leads us to conclusion that it is not
worth using this policy as an alternative to page migration.

6. CONCLUSION

The capacities of main memories needed by HPC and
emerging applications are increasing exponentially. Such
large capacities cannot be satisfied solely by DDR4 mem-
ories, while meeting latency and energy budgets. Thus there
is an interest in heterogeneous memory systems that are built
using multiple memory technologies with varying latencies,
bandwidths and power requirements. The heterogeneous mem-
ory presents a single flat physical address (and not a hierar-
chical memory system). Yet it may be beneficial to migrate
pages to faster memories in order to improve execution per-
formance. However, the page migration incurs execution
and energy overheads. In this paper we evaluated several
different page migration policies that carefully trade-off mi-
gration overheads against performance gains. We evaluated
our policies for two level systems with 3D-DRAM + DDR4
or 3D-DRAM + PCM as well as three level systems that
use 3D-DRAM + DDR4 + PCM. We compared our poli-
cies with a previously published study that uses only page
access counts, with fixed page hotness thresholds to decide
which pages should be kept transferred to faster memories
(i.e., BASIC_TRANSFER policy). We also compare our
policies with heterogeneous memories that do not migrate
pages.

One policy we explored tracks the usefulness of a page
after it was migrated to faster memories in making decisions
about future migrations of that page. We also explored the
policies that limit the number of pages transferred at each
epoch, and transferring only pages with valid entries in TLB.
Our experiments show that these policies perform better than
the BASIC_TRANSFER policy as they limit overheads and
only migrate pages that are likely to be accessed after migra-
tion.

Although it is not clear which non-volatile memory tech-
nology is used in the recently announced 3D Xpoint mem-
ory, we feel our results are applicable to heterogeneous mem-
ories that include this new technology, since we varied the
ratios of latencies of PCM relative to DDR4.

We also observe that knowledge about an application’s



page access behavior can be used to statically place pages
and eliminate the need for page migration. In addition, we
conclude that locking LLC lines is not worth using as an al-
ternative to page migration.
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