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Abstract 

This paper presents the evaluation of a non-blocking, 
decoupled memory/execution, multithreaded 
architecture known as the Scheduled Dataflow (SDF). 
The major recent trend in digital signal processor (DSP) 
architecture is to use complex organizations to exploit 
instruction level parallelism (ILP). The two most 
common approaches for exploiting the ILP are 
Superscalars and Very Long Instruction Word (VLIW) 
architectures. On the other hand, our research explores a 
simple, yet powerful execution paradigm that is based 
on non-blocking threads, and decoupling of memory 
accesses from execution pipeline. This paper compares 
the execution cycles required for programs on SDF with 
the execution cycles required by programs on 
Superscalar and VLIW architectures.  
Key Words: Multithreaded architectures, Superscalars, 
VLIW, Decoupled Architectures. 

 
1. Introduction 

The major recent trend in digital signal processor 
(DSP) architecture is to use complex organizations to 
exploit instruction level parallelism (ILP). The two most 
common approaches for exploiting the ILP are 
Superscalars and Very Long Instruction Word (VLIW) 
architectures. Superscalars rely on hardware techniques 
to find independent instructions and issue them to 
independent functional units. VLIW, on the other hand 
relies on a compiler to schedule independent 
instructions statically. A different approach for 
improving processing performance, particularly to 
bridge the performance gap between processors and 
memory, is multithreading. There is a consensus that 
multithreading  achieves higher instruction issue rates 
on processors that contain multiple functional units 
[8,9,16],  We believe that the use of non-blocking 
threads is appropriate for improving the performance of 
Superscalar and VLIW architectures.  

Our architecture differs from other multithreaded 
models in two ways: i) our programming paradigm is 
based on non-blocking functional threads, which 
eliminates the need for runtime instruction scheduling, 
and ii) complete decoupling of all memory accesses 
from execution pipeline. The underlying functional non-
blocking model permits for clean separation of memory 
accesses from execution (which is very difficult to 
coordinate in other programming models). Since our 

achitecture performs no runtime instruction 
scheduling, our architecture requires less complex 
hardware and potentialy achieve energy savings -- it 
was stated that a significant power is expended by 
instruction issue logic of modern Superscalar 
architectures, and the power consumption increases 
quadratically with the size of the instruction issue 
width [12,18]. In this paper we present a comparison 
our architecture with conventional Superscalar 
architecture containing multiple functional units and 
aggressive Out-of-Order instruction issue logic using 
SimpleScalar Tool Set [3]. We have also compared 
the performance of our architecture with VLIW 
architectures using Texas Instruments TMS320C6000 
VLIW processor simulator tool-set[15], and the 
Trimaran infrastructure1. Since we target our 
processor architecture for real-time, embedded and 
DSP applications, we present our evaluations using 
benchmarks that reflect these applications (viz., 
Matrix Multiplication, FFT, a picture zooming 
applications).  

In Section 2 we present research that is most 
closely related to ours. In Section 3 we present our 
SDF architecture in detail. Section 4 discusses the 
methodology that we used in our evaluation and 
shows our numerical results for real programs. 

 
2. Related Research and Background 

Decoupling memory accesses from the execution 
pipeline to overcome an ever-increasing processor-
memory communication cost was first introduced in 
[13]. Decoupled ideas were recently used in a 
multithreaded architecture known as Rhamma [5]. 
Rhamma uses blocking threads requiring many more 
thread context switches than our non-blocking 
threads. Moreover, Rhamma does not group all Load 
instructions together into "pre-load" and all Store 
instructions together into "post-store" as done by 
SDF. Because of these differences, SDF outperforms 
Rhamma [6]. 

Dataflow architectures are the most recognized 
implementations of functional computational model 
[10,11]. Our architecture extends ETS [10,11] and 
Cilk models [4].  

 
                                                                 
1 http://www.trimaran.org 



3. The Scheduled Dataflow Processor (SDF) 
The basic processing element in our architecture 

consists of two units: Synchronization Pipeline (SP) and 
Execution Pipeline (EP).  SP is responsible for 
scheduling enabled threads on EP, pre-loading thread 
context (i.e., registers) with data from the thread’s 
(Frame) memory, and post-storing results from a 
completed thread’s registers into the (Frame) memories 
of destination threads. More detailed description of our 
architecture can be found [2,6,7]. 
3.1 Execution Pipeline 

Figure 1 shows the block diagram of the Execution 
Pipeline (EP). EP executes computations of a thread 
using only registers. Instruction fetch unit behaves like a 
traditional fetch unit, relying on a program counter to 
fetch the next instruction.  EP executes instructions 
sequentially with no dynamic instruction issue, nor out-
of-order instruction execution. As with any 
multithreaded system, SDF uses multiple register sets to 
support active threads; and the achievable thread-level 
parallelism depends on the number of hardware 
contexts.  
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Figure 1.  Execution Pipeline (EP). 
 

3.2 Synchronization Pipeline 
Figure 2 shows the organization of the memory 

pipeline of the Synchronization Processor (SP). Here 
we deal with pre-load and post-store instructions, as 
well as I-Fetch2 and I-Store for accessing array and 
structured data items. In addition to accessing memory, 
Synchronization Pipeline (SP) holds thread 
continuations awaiting inputs and allocates register 
contexts for enabled threads. In our architecture a thread 
is created using a FALLOC instruction which takes two 
arguments: an instruction pointer (IP), and a 
synchronization count (Synch Count) indicating the 
number of enabling inputs needed. FALLOC returns a 
frame pointer in a register after allocating a frame and 
storing IP and Synch Count in the first two locations of 
the allocated frame. The frame pointer returned by 
                                                                 
2  We use I-structure memory for arrays and structures. 
Information on I-structures can be found in most dataflow 
literature. Index computation is performed by EP while the 
actual access to I-structures is achieved by SP. Simple index 
calculations can be done by SP directly. 

FALLOC will be utilized to store data in the spawned 
thread’s frame memory.  
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Figure 2. Overall Organization of the SP 
 
An enabled thread (when the Synch Count 

becomes zero) is scheduled by allocating a register 
context to it.  Threads are created using FALLOC, 
and thread is moved betweenEP and SP using 
FORKEP and FORKSP. 

 
3.3. Instruction Set Architecture of SDF. 

We  first show how the instructions executed by 
EP would look-like using a simple example  (Figure 
3).  

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)  
Figure 3. A simple dataflow graph. 

 
Each node of the graph will be translated into a SDF 
instruction. The two source operands destined for a 
dyadic SDF instruction are stored in a pair of registers 
associated with that instruction.   
 
ADD      RR2, R11, R13    / A+B,  Result in R11 and R13 
ADD      RR4, R10            / compute X+Y,  Result in R10 
SUB       RR4,  R12           / compute X – Y, Result in R12 
MULT   RR10, R14          / (X+Y)*(A+B), Result in R14 
DIV       RR12, R15          /(X-Y)/(A+B), Result in R15 
 

The use of separate pairs of registers with each 
instruction is akin to the reservation stations (using 
Tomosulo’s approach) or dynamic renaming of 
registers as utilized by most modern Superscalar 
architectures . The register assignment for 
instructions is done statically by the compiler and 
requires no hardware support to. Assuming that the 
inputs A, B, X and Y to the graph of Figure 3 are 
available in R2, R3, R4 and R5, respectively (this is 
achieved during pre-load), the five instructions shown 



above will be executed sequentially  and perform the 
necessary computations. Note that the source operands 
are specified as a pair of registers using "RR", for 
example, ADD RR2, R11, R13 adds R2 and R3, and 
stores the result in R11 and R13. Our instructions still 
retain the functional nature – there are no write-after-
read and write-after-write dependencies with our 
instructions. 

In our architecture, SP pre-loads data in a thread’s 
register set before scheduling the thread on EP (and EP 
never accesses memory). Assume that the code block of 
Figure 3 (viewed as a thread) receives the four inputs 
(A, B, X, Y) from other threads; these inputs will be 
saved in the frame until the thread is enabled for 
execution. When enabled, a register context is allocated 
to the thread and the input data for the thread from its 
frame memory is “pre-loaded” into its registers. 
Assuming that the inputs for the thread are stored in its 
frame (RFP) at offsets 2, 3, 4 and 5, the first four 
LOAD instructions shown below pre-load the thread’s 
data into registers R2, R3, R4, R5 of the register set 
allocated for the thread.  

 
     LOAD  RFP| 2,    R2       / load A into R2 
      LOAD  RFP| 3,    R3      / load B into R3 
      LOAD  RFP| 4,    R4      / load X into R4 
      LOAD  RFP| 5,    R5      / load Y into R5 
      LOAD RFP| 6,    R6       /FP for returning 1st result 
      LOAD RFP| 7,     R7      /frame offset for 1st result 
      LOAD RFP| 8,     R8      /FP for returning 2nd result 
      LOAD RFP| 9,     R9     / frame offset for 2nd result 

 
After the pre-load, the thread is scheduled for 

execution on EP. The EP then uses only its registers 
during the execution of the thread body (code shown 
previously). Let us assume that the results generated by 
MULT and DIV in our code example (i.e., R14 and 
R15) are needed by two other threads. The frame 
pointers and frame-offsets for the destination threads are 
made available to the current thread in registers R6, R7, 
R8 and R9 as shown in the pre-load code above (the last 
4 LOAD instructions). Note that the frame pointers are 
returned by FALLOC instructions as described 
previously, and these pointers can be passed to other 
threads. 
     STORE    R14,   R6|R7                    / store first result   
     STORE    R15,  R8|R9                     / store second result  

 
These STORE instructions transfer (or post-store) 

the results of the current thread (i.e., from MULT in 
R14 and DIV in R15) to frames pointed to by R6 and 
R8 at frame-offsets contained in R7 and R9. SP 
executes STORE instructions after a thread completes 
its execution at EP.  

 
4. Evaluation of Scheduled Dataflow (SDF) 

In this paper, we characterize our architecture 
based on execution cycles for actual programs using 
our instruction level simulator. At present the 
simulator assumes a perfect cache (viz., all memory 
accesses take one cycle). However, we examined the 
expected cache behavior using traces from program 
examination [2]. Our results indicate that SDF 
produces cache miss behaviors similar to those for 
Superscalar systems.  Previously we reported a 
comparison of our architecture with a single 
threaded RISC architecture using DLX simulator 
[7]. In this paper we will compare our SDF with 
Superscalar architectures with multiple functional 
units and Out-of-Order instruction issue logic as 
facilitated by the SimpleScalar Tool Set [3]). We 
will also present comparisons of SDF with VLIW 
architectures as facilitated by Texas Instruments 
TMS320C6000 VLIW processor simulator tool-set  
[15], and the Trimaran3 infrastructure. Since we 
target our architecture for embedded and DSP 
applications, we chose Matrix Multiply, FFT and a 
picture zooming program [14]. We chose these 
applications since they exhibit different 
characteristics. Matrix multiply can be written to 
exploit both thread level and instruction level 
parallelism; FFT exhibits higher degrees of thread 
level parallelism with increasing data sizes; and 
Zoom [14] consists of 3 nested loops and substantial 
amount of instruction level parallelism in the middle 
loop (but only small degrees of thread level 
parallelism).  

 
4.1. SDF vs. Superscalar  

In the first experiment, we compared the 
execution performance of SDF with a Superscalar 
processor by varying the number of functional units 
(we varied the number of Integer and Floating point 
units in Superscalar, and varied the number of SPs 
and EPs in SDF). For comparisons purposes we set 
the number of functional units in Superscalar 
(#Integer ALUs + #Floating Point ALUs)4 equal the 
number of SPs and EPs (#SPs + #EPs). Table 1 
shows the parameters we used for Superscalar. We 
have used the compiler provided with SimpleScalar 
toolset to generate highly optimized code for the 
benchmarks. 

It is our contention that conventional Superscalar 
systems do not scale well with increasing number of 
functional units and the scalability is limited by the 

                                                                 
3 http://www.trimaran.org 
4 It is not our intention to state that integer units equate to 
SP’s or floating-point units are the same as EPs. For our 
initial comparisons, we are hoping that this first order 
approximation will be fair in terms of functional units.  



instruction fetch/decode window size and the RUU size. 
As stated previously, the power consumed by the 
instruction issue logic increases quadratically with the 
window width [12,18]. SDF relies on thread level 
parallelism, and the decoupling of memory accesses 
from execution. SDF performance can scale better with 
a proper balance of workload among SPs and EPs. For 
the Superscalar, we show execution cycles for both In-
Order (shown as I-O in Tables 2-4) and Out-of-Order 
(shown as O-O in tables 2-4) instruction issue. In all 
systems, we set all instruction cycles to 1, and assume 
perfect cache. 

Table 1: Superscalar Parameters For Tables 2-4 
Superscalar Parameter Value 
Number of Functional 
Units 

Varied 

Instruction Issue Width 64 
Instruction Decode Width 64 
RUU 64 
LSQ 64 
Branch Prediction Bimodal with 2048 entries 

In Table 2 we show the data for Matrix Multiply. 
As can be noted, when we add more SPs and EPs 
(correspondingly more Integer and Floating Point 
functional units in Superscalar), SDF outperforms 
Superscalar architecture, even when compared to 
complex out-of-order scheduling used by Superscalars 
(shown in bold in Table 2). For both systems, we 
unrolled the innermost loop 5 times; for SDF, we 
spawned 10 threads to execute in parallel. SDF’s 
performance overtakes the Superscalar architecture with 
3SPs and 3EPs. This is because, SDF can exploit the 
functional units with available thread level parallelism 

and decoupled memory accesses. The effect of 
decoupling memory accesses can be observed from 
table -- adding more SPs improves the performance 
more significantly than when EPs are added. SDF 
performance can be further improved by using more 
than 10 active threads (or register contexts). The 
scalability of SDF can more easily be seen from 
Figure 5. The X-axis shows the number of functional 
units (#SP+#EP for SDF; #Integer ALUs + #FP 
ALUs for Superscalar). The figure shows the 
execution times for 150*150 matrix multiplication. 
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Figure 5. Scalability  of SDF (Matrix Multiply 

The next table (Table 3) shows the results for FFT.  
For small data sizes, SDF performs worse than the 
Out-of-Order Superscalar execution, due to a lack of 
significant thread-level parallelism. As the data size 
increases, SDF exploits available thread-level 
parallelism and outperforms Out-of-Order 
Superscalar for FFT (for  data sizes are greater than 
256)

Table 2. Comparing SDF with Superscalars (Matrix Multiply) 
  Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF 

Data Size  2INT ALU 2SP 2INT ALU 2SP 3INT ALU 3SP 3INT ALU 3SP 
  1FP ALU 1EP 2FP ALU 2EP 2FP ALU 2EP 3FP ALU 3EP 

50*50 I-O 1890104  1890104  1867200  1867200  
 O-O 712396 1504297 712396 860782 706877 756707 706877 574242 

100*100 I-O 14824104  14824104  14633700  14633700  
 O-O 5532202 11843442 5532202 6660012 5511587 5941602 5511587 4440772 

150*150 I-O 49763150  49763150  49110246  49110246  

 O-O 18514510 39762487 18514510 22227742 18468811 1992491 18468409 14819482 

  Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF 
Data Size  4Int ALU 4SP 4Int ALU 4SP 5Int ALU 5SP 5Int ALU 5SP 

  3FP ALU 3EP 4FP ALU 4EP 4FP ALU 4EP 5FP ALU 5EP 
50*50 I-O 1867200  1867200  1867200  1867200  

 O-O 680321 507197 680321 430957 680321 381247 680321 345027 
100*100 I-O 14633700  14633700  14633700  14633700  

 O-O 5306381 3970682 5306381 3330992 5306380 2982702 5306380 2665472 
150*150 I-O 49110246  49110246  49110246  49110246  

 O-O 17782453 13308457 17782453 11115592 17782453 9990607 17782453 8894002 
 



Table 3. Comparing SDF with Superscalars (FFT) 
  Superscalar SDF Superscalar SDF Superscalar SDF Superscalar SDF 

Data Size  2INT Alu 2SP 2INT Alu 2SP 3INT Alu 3SP 3INT Alu 3SP 
  1FP Alu 1EP 2FP Alu 2EP 2FP Alu 2EP 3FP Alu 3EP 

8 I-O 20418  20418  19933  19933  
 O-O 9377 10045 9377 9526 8645 8556 8202 8528 

16 I-O 36038  36038  35394  35394  
 O-O 15737 24303 15737 22927 14550 20385 13997 20337 

32 I-O 78794  78794  77695  77695  
 O-O 32902 57444 32902 54012 30515 47740 29621 47608 

64 I-O 201547  201547  199069  199069  
 O-O 81519 133139 81519 124915 75952 110003 73937 109731 

128 I-O 577851  577851  570906  5770906  
 O-O 228095 303518 228095 284382 214191 249774 208285 249070 

256 I-O 1816758  1816758  1794386  1794386  
 O-O 703548 682417 703548 638705 664954 559665 644899 558353 

512 I-O 6165028  6165028  6086525  6086525  
 O-O 2350656 1516660 2350656 1418356 2235095 12409448 2161717 1238580 

 
Once again, SDF performance scales better with added 
functional units than that of a Superscalar. Thus for 
larger data sizes, SDF can more effectively utilize 
functional units than Superscalar systems that rely only 
on ILP from a single threaded programming model. 
SDF employs two levels of parallelism- thread level 
parallelism, and the overlapped execution of memory 
accesses with the execution of arithmetic instructions. 
The fact that the performance improves when more 
SPs are added indicates that the decoupling of memory 
accesses can benefit from more memory pipelines 

(contained in SP’s). Thus, the data shows the benefits 
of both multithreading (as demonstrated by the ability 
to exploit greater thread-level parallelism with larger 
data sizes) and decoupled memory accesses (as shown 
by improved performance with added SPs). 
Table 4 shows the data for Zoom. Once again, the 
performance of SDF scales better than Superscalar. 
With 3 SPs and 2 EPs, SDF outperforms even the Out-
of-Order Superscalar system, shown in bold in Table 
4. 

 

Table 4. Comparing SDF with Superscalars (Zoom) 
  SS SDF SS SDF SS SDF SS SDF SS SDF 

Data  1INT 1SP 2 INT 2SP 2 INT 2SP 3 INT 3SP 3 INT 3SP 
Size  1FP 1EP 1 FP 1EP 2 FP 2EP 2 FP 2EP 3 FP 3EP 
50 I-O 528100  499976  499976  499573  499573  
 O-O 416625 464765 221253 314032 221253 230072 170235 163907 170235 153542 

100 I-O 2094969  1994236  1994236  1993829  1993829  
 O-O 1660478 1855370 877150 1254357 877150 915057 696002 655907 696002 611707 

150 I-O 4989542  7486216  7486216  4785812  4785812  
 O-O 3994462 4171875 2108470 2821032 2108470 2061057 1693042 1476057 1693042 1374402 

200 I-O 8387641  7986709  7986709  7986302  7986302  
 O-O 6613286 7414280 3503558 5014057 3503558 3661977 2779131 2624357 2779131 2441917 

Data  SS SDF SS SDF SS SDF SS SDF SS SDF 
Size  4 INT 4SP 4 INT 4SP 5 INT 5SP 5 INT 5SP 6 INT 6SP 

  3 FP 3EP 4 FP 4EP 4 FP 4EP 5 FP 5EP 5 FP 5EP 
50 I-O 499573  499573  499573  499573  499573  
 O-O 165210 115887 165210 115452 160151 92892 160151 92837 160151 77912 

100 I-O 1993827  1993827  1993827  1993827  1993827  
 O-O 656328 460317 656328 459667 646252 368747 646252 368417 646252 308777 

150 I-O 4785811  4785811  4785811  4785811  4785811  
 O-O 1638111 1033277 1638111 1032567 1615054 827232 1615054 826827 1615054 693567 

200 I-O 7986300  7986300  7986300  7986300  7986300  
 O-O 2624712 1834797 2624712 1833337 2587702 1468757 2587702 1468057 2587702 1229557 



 
4.2. SDF vs. VLIW 

The Texas Instrument’s TMS320C6000 family of 
DSP processors uses very long instruction word 
(VLIW) architecture. The newest member of the 
TMS320C6000 family, the ‘C647X, brings the highest 
level of performance for processing data by utilizing 8 
functional units, two register files, divided into two 
data paths. Each data path consists of a Multiplier, an 
Adder, a Load/Store units and one unit for managing 
control-flow (branch and compare instructions). We 
used a simulator and accompanying tools (including 
optimizing compiler and profiling tool). We have set 
instruction execution and memory access cycles to 
match in SDF and TMS320C64X. For SDF we utilize 
8 functional units (4SPs and 4EPs)5. We have started 
working with Trimaran6 tools. In this paper we will 
compare SDF with Trimaran using default 
configurations and optimizations (using a total of 9 
functional units, a maximum unrolling of 32 iterations, 
and several other complex optimizations).  

Table 5 shows the data for Matrix Multiplication. 
TMS 'C6000 performs rather poorly because the 
optimized version relies on unrolling of only 5 
iterations (unlike Trimaran, which uses 32 iterations). 
SDF achieves better performance than TMS 'C6000 
because we rely on thread level parallelism -- the data 
in Table 5 uses 10 active threads. Trimaran 
outperforms SDF because of the Herculean 
optimization efforts made by the compiler. SDF's 
performance can be improved by performing some 
similar optimizations and/or increasing the number of 
active threads. Trimaran exploits greater ILP since it 
examines 32 loop iterations (and this can be noticed 
with larger data sizes where Trimaran can sustain 
higher issue rates). 

Table 5.  SDF vs VLIW (Matrix Multiplication) 
   Matrix Multi   

Data SDF Trimaran TMS 'C6000 SDF/Trimaran DF/TMS C'6000 

Size   optimized   

50*50 430957 331910 1033698 1.29841523 0.416908033 
100*100 3330992 2323760 16199926 1.43344924 0.205617729 
150*150 11115592 4959204 86942144 2.24140648 0.127850447 

The next table (Table 6) shows the results of 
comparing SDF with TMS 'C6000 and Trimaran for 
FFT benchmark. Similar to the data in Table 3, SDF 
outperforms Trimaran VLIW system for large data 
sizes (greater than 256). As shown previously in Table 
3, SDF scales better with more functional units. Thus 
for larger data sizes, SDF can more effectively utilize 
                                                                 
5 We concede that this may not be fair, since the processing 
units in SDF (SP and EP) are homogeneous, while the 
functional units in VLIW are not.  

6See http://www.trimaran.org 

functional units than either Superscalar or VLIW 
systems that rely only on ILP from a single threaded 
programming model. 

Table 7 shows the comparisons of SDF with the 
two VLIW systems under investigation (TMS C'6000 
and Trimaran) for Zoom. SDF consistently 
outperforms both systems . SDF performance gains 
improve slightly for larger data sizes. 

 
5. Conclusions 

Our goal is the search for a viable architecture that 
can efficiently support fine-grained threads and 
decouple memory accesses from execution pipeline. 
To this end, we presented a non-blocking 
multithreaded architecture, called SDF. In this paper 
we presented a performance comparison of SDF with 
Superscalar and VLIW architectures. The results are 
very encouraging. Our data shows that SDF scales 
better than conventional Superscalar systems when 
more functional units are added. The data presented 
shows the performance gains due to the decoupling of 
memory accesses - SDF shows more dramatic 
performance improvements when more SPs are added, 
compared to the improvements when more EPs are 
added. 

While decoupled access/execute implementations 
are possible within the scope of conventional 
architectures, multithreading (particulalry non-
blocking) model presents greater opportunities for 
exploiting the separation of memory accesses from 
execution pipeline. In our model, threads exchange 
data only through the frame memories of threads 
(array data is provided through I-structure memory).  
The use of frame memories for thread data permits for 
a clean decoupling of memory accesses into pre-loads 
and post-stores.  This can lead to greater data localities. 
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Table 6 Comparing SDF with VLIW (FFT) 
Data SDF Trimaran TMS 'C6000 SDF/Trimaran SDF/TMS 'C6000 
Size      

8 8148 4622 26717 1.762873215 0.304974361 
16 19323 12391 73456 1.559438302 0.263055435 
32 45028 31665 213933 1.422011685 0.210477112 
64 103491 81375 619241 1.271778802 0.167125562 
128 234766 214685 2040729 1.093537043 0.115040263 
256 525457 595211 6943638 0.882807945 0.075674596 
512 1163956 1768441  0.658181981  

 
Table 7. Comparing SDF with VLIW (Zoom) 

Data SDF Trimaran TMS C'6000 SDF/Trimaran SDF/TMS 'C6000 

Size  Optimized Optimized   

50*50*4 115452 157770 144201 0.7317741 0.800632451 
100*100*4 459667 630520 641625 0.72902842 0.716410676 
150*150*4 1032567 1418270 1480525 0.72804685 0.697433005 
200*200*4 1833337 2521020 2959430 0.72722033 0.619489902 

250*250*4 2862857 3938770 4729593 0.72684036 0.605307264 
 . 
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