
Jump to first page

A Simple Non-Blocking
Multithread Architecture

Krishna Kavi
(with H.-S. Kim and A.R. Hurson)

Department of Electrical and Computer Engineering
The University of Alabama in Huntsville

kavi@ece.uah.edu

http://crash.eb.uah.edu/~kavi

Jump to first page

PDCS-99 (Kavi)

2

Blocking vs Non-Blocking Models

Non-Blocking Models:
A thread, once scheduled for execution
cannot be stopped or pre-empted until
the thread completes execution

 May need to create more threads

Blocking Models:
A thread can be stopped, blocked on a
resource, pre-empted by another thread
and subsequently resumed for execution

 May require more context switches

Jump to first page

PDCS-99 (Kavi)

3

A Non-Blocking Program Example

thread fib (cont int k, int n)
 { if (n<2)

 send_argument (k, n)
else{
 cont int x, y;
 spawn_next sum (k, ?x, ?y); /* create a successor thread
 spawn fib (x, n-1); /* fork a child thread
 spawn fib (y, n-2); /* fork a child thread
 }

thread sum (cont int k, int x, int y)
 send_argument (k, x+y);

 /* return results to parent’s successor

Successor
Relationships

Child
Relationships

Data
Dependencies

Jump to first page

PDCS-99 (Kavi)

4

What is a dataflow architecture?

+ -

*

/

+

X Y A B

(X2 - Y2) / (A + B)

Consider The Following Example

0: In 4L, 5L -- Read X

1: In 4R, 5R -- Read Y

2: In 6L -- Read A

3: In 6R -- Read B

4: + 7L -- (X+Y)

5: - 7R -- (X - Y)

6: + 8R -- (A + B)

7: * 8L -- (X+Y)*(X-Y)
 8: / , Out

0: Load R1, X

1: Load R2, Y

2: Load R3, A
3: Load R4, B
4: + R1, R2 , R5 (R5 = R1 + R2)
5: - R1, R2, R6 (R6 = R1 - R2)
 6: + R3, R4, R7 (R7 = R3 + R4)
7: * R5, R6, R8 (R8 = R5 * R6)
8: / R8, R7, R9 (R9 = R8 / R9)
9: Store R9

Dataflow Conventional

Jump to first page

PDCS-99 (Kavi)

5

Features of dataflow

Data Driven ----Instructions are enabled for execution when and only when
operands are made available by preceding instructions
(We are changing this as explained later)

No Variables -- only Data
Results are sent directly to instructions

Freedom From Side-Effects
Functional Execution
Fine-Grained parallelism

Each instruction is an independent context

In a conventional architecture, the availability of the operands is implied by
the sequencing of instructions

Jump to first page

PDCS-99 (Kavi)

6

Dataflow Multithreading

In pure dataflow, each instruction can be viewed as
an independent thread.
 An instruction is enabled only when its operands
 are made available by predecessor instructions

 The “context” or “continuation” of an instruction (thread)
 is used for forwarding operands to instructions.

 Consider Explicit Token Store Dataflow Model.

Jump to first page

PDCS-99 (Kavi)

7

Explicit Token Store Architecture (ETS)

+ -

*

/

X Y A B

(X2 - Y2) / (A + B)

0 1 2 3

+4 5 6

7

8

0: In, 8, 4L, 5L
 1: In, 7, 4R, 5R
2: In, 6, 6L
3: In, 5, 6R

4: +, 4, 7L

5: - , 3, 7R

6: +, 2, 8R
7: *, 1, 8L
8: /, 0, Out

Opcode Offset (R) Dest-1 and Port Dest-2 and Port

Consider the instruction format

Each instruction designates a memory
address where its operands will be
received and “matched” -- the offset R

Results are sent to destination instructions

as tokens.

PE# Context
FP

Instruction
IP

Data Valuepo
rt

Jump to first page

PDCS-99 (Kavi)

8

ETS Continued

ETS Code Blocks. -- A loop body or
a function is treated as a code block

Can be viewed as a
“coarser-grained” thread.

In actual implementations, a code-
block may consist of several non-
blocking threads

IP ADD 2

NEG

SUB

+1,+2L

- +6

3 +1

opcode r dests

Instruction Memory

ADD

SUBNEG

<FP.IP,2 .31 >
R<FP.IP,1 .24 >

L

FP

FP+2

4.24

Presence Bits

Frame Memory

Jump to first page

PDCS-99 (Kavi)

9

An implementation of ETS with Caches

Instruction
Fetch Unit

Instruction
&

FrameMe
mory

From Communication Network

Token
Queue

Execution Pipeline

To Communication Network

Instr. Cache

Operand Addr
decode

Operand Fetch Operand
Cache

Processing
Unit

Form
TokenUnit

Tag
Formation

I-Structure
Cache

I-Structure

Jump to first page

PDCS-99 (Kavi)

10

What are I-structures?

I-Structure Memory
Pending Requests for A(2)

Pending Request for A(k)

F

W

E
F

E

W

1

2

3

k
F: Full
E: Empty
W: Pending Request

Used to store Arrays (or
other data structures)

Single assignment is still
maintained

Instructions needed:
 Allocate (A, N)
 I-Store (A, I, Value)
 I-Fetch (A, I)

Jump to first page

PDCS-99 (Kavi)

11

A multiprocessor environment for ETS

Interconnection Network

I-structure memory modules

IS-1 IS-2 IS-m

Directory

 Cache
Module-1

 Cache
Module-n

 Cache
Module-2

PE-1 PE-nPE-2

Instruction
 Cache
 Module

Operand
 Cache
 Module

I-structure
 Cache
 Module

 Miss or Snoop
Table

Jump to first page

PDCS-99 (Kavi)

12

Synchronous execution of dataflow

ETS Executes Instructions Asynchronously-- may need 2 cycles per binary
instruction. Such architectures are called token-driven.

How can we execute dataflow instructions synchronously -- requiring only one
cycle per instruction? (That is, make them instruction-driven)

1. Do not execute instructions immediately when operands are available. Hold
both operands of a dataflow instruction until the instruction is scheduled.

2. Assure that when an instruction is scheduled, both operands are available.

Left Port Right PortP P
0
1
2

3

4

5

6
7

Operand Memory or Registers

Jump to first page

PDCS-99 (Kavi)

13

Scheduled Datalfow Architecture

n Each instruction is associated
with a pair of �source registers�.
Predecessor instructions store their
results in these registers.

n An instruction is not enabled
immediately when the two
source registers are loaded.
Instructions are scheduled similar
to conventional processors.
However, instructions retain
functional properties.

Instruction
Fetch

Instruction
&Frame
Memory

Instr.
Cache

Operand
Fetch

Operand
Cache

I-
Structure

Cache

I-Structure

Execute

Wrte Back

PC Context

Source PairOpcode First Dest Second Dest

Jump to first page

PDCS-99 (Kavi)

14

Digression: Decoupled memory access

Separate processor to handle all memory accesses

The earliest suggestion by J.E. Smith -- DAE architecture (1982)

More recent implementations include

RHAMMA -- from University of Karlsruhe

and PL/PS --- by us

Others have used two separate processors:

One processor for thread scheduling

One processor for thread execution

Jump to first page

PDCS-99 (Kavi)

15

Pre-Load/Post-Store (PL/PS) Processor

• A non-blocking multithreaded
processor

• Separate Memory and Execution
Pipelines

• A thread is enabled for execution
only after all data is loaded into
registers

• Storing of data is delayed until the
thread completes execution

• Branch instructions cause new
threads

M
em

or
y

Pi
pe

M
em

or
y

Pr
oc

es
so

r

Completed
Threads

Ex
ec

ut
e

Pr
oc

es
so

r

Communication with
other Processing Nodes

Enabled
Threads

Register
Contexts

L
oc

al
 M

em
or

y
(o

r
C

ac
he

)

Jump to first page

PDCS-99 (Kavi)

16

A simple example

LD F0, 0(R1) LD F0, 0(R1)
LD F6, -8(R1) LD F6, -8(R1)
MULTD F0, F0, F2 LD F4, 0(R2
MULTD F6, F6, F2 LD F8, -8(R2)
LD F4, 0(R2) MULTD F0, F0, F2
LD F8, -8(R2) MULTD F6, F6, F2
ADDD F0, F0, F4 SUBI R2, R2, 16
ADDD F6, F6, F8 SUBI R1, R1, 16
SUBI R2, R2, 16 ADDD F0, F0, F4
SUBI R1, R1, 16 ADDD F6, F6, F8
SD 8(R2), F0 SD 8(R2), F0
BNEZ R1, LOOP SD 0(R2), F6
SD 0(R2), F6

 Conventional New Architecture

Jump to first page

PDCS-99 (Kavi)

17

Features of PL/PS

• Multiple hardware contexts

• No pipeline bubbles due to cache misses

• Overlapped execution of threads

• Opportunities for better data placement and prefetching

• Fine-grained threads -- A limitation?

• Multiple hardware contexts add to hardware complexity

If 35% of instructions are memory access instructions, PL/PS can
achieve 35% increase in performance with sufficient thread parallelism
and completely mask memory access delays!

Jump to first page

PDCS-99 (Kavi)

18

Hybrid Architecutres

 Dataflow like scheduling at thread level
Threads are Coarse Grained

Threads are comprised of conventional control flow instruction

Execution
Unit

Synnchronization
Unit

Caches ready threads

Synchronization
Slots

Sync
#

reset
#

code Ptr

local vars

rtn data

caller fp

caller fp

Activation frame

Earth Hybrid Dataflow Architecture

Jump to first page

PDCS-99 (Kavi)

19

Back to dataflow architectures:
Scheduled Dataflow

n Brings dataflow closer to conventional RISC
architecture

n Utilizes Decoupled processors to eliminate pipeline
bubbles on cache misses -- combines Preload/post-
store with dataflow

n Eliminates WAR and WAW dependencies in pipelines
The result of using dataflow execution

n Uses Non-blocking Multithreaded model

Jump to first page

PDCS-99 (Kavi)

20

Scheduled Datalfow Architecture

n Each instruction is associated
with a pair of �source registers�.
Predecessor instructions store their
results in these registers.

n An instruction is not enabled
immediately when the two
source registers are loaded.
Instructions are scheduled similar
to conventional processors.
However, instructions retain
functional properties.

Instruction
Fetch

Instruction
&Frame
Memory

Instr.
Cache

Operand
Fetch

Operand
Cache

I-
Structure

Cache

I-Structure

Execute

Wrte Back

PC Context

Source PairOpcode First Dest Second Dest

Jump to first page

PDCS-99 (Kavi)

21

Decoupled processors for Scheduled Datafllow

Instruction
Fetch Instr.Cache

Operand
 Fetch Register

Files

Execute

Write Back

PC

Synch
Processor pipe

Operand
Cache

I-Strct
Cache

Execute Processor Synchronization Processor

Preloaded Threads

Post Store Threads

Context

Jump to first page

PDCS-99 (Kavi)

22

Synchronization Processor Design

Registers

Fetch

Decode

Memory
Access

Execute

Write Back

Instruction
Cache

Date Cache
(Frame Cache)

I-Structure
Cache

Synchronization Processor Pipeline

Ifetch and Istore Split-Phase,
FORKEP exected during this stage

Ifetch, Istore non-
blocking are execute
here.

Load/Store
Exeuted here

PC

Reg. Context

Jump to first page

PDCS-99 (Kavi)

23

Synchronization Processor Design

Post-Store Threads

Enabled Threads

Waiting Threads

Pre-Loaded Threads

SP Pipeline Scheduler
Available
Frames

Reg Context IP

FP Reg Context IP

FP IP Synch Count

Priority
Control

Jump to first page

PDCS-99 (Kavi)

24

Preliminary performance comparisons

• Monte Carlo simulations using simple models for,
Scheduled Dataflow, ETS, conventional RISC processors
and Hybrid dataflow/control-flow architectures.

• Some of the parameters are based on published data (%
load/stores, avg memory latency, cache miss rates, context
switching overhead).

• Some parameters are based on simple programs coded in
our architecture (e.g., matrix multiply, livermore loops).

• Some parameters are based on guesswork.

Jump to first page

PDCS-99 (Kavi)

25

Thread Granularity

CA: Conventional Architecture
DA: ETS like Dataflow
HA: Earth Like Hybrid
NBMA: Scheduled Dataflow

Except for very fine grained
threads,Scheduled Dataflow
outperform other architectures
Moderate granularity
(8-16 instructions) is
sufficient.

ETS is always fine-grained

Earth (HA) does not decouple
memory accesses

Jump to first page

PDCS-99 (Kavi)

26

Effect Of Thread Level Parallelism

CA: Conventional Architecture
DA: ETS like Dataflow
HA: Earth Like Hybrid
NBMA: Scheduled Dataflow

More parallelism in Scheduled Dataflow means more
opportunities for overlap between Synchronization
processor and Execution Processor

Jump to first page

PDCS-99 (Kavi)

27

Thread Granularity Vs Thread Parallelism

CA: Conventional Architecture
DA: ETS like Dataflow
HA: Earth Like Hybrid
NBMA: Scheduled Dataflow

For the same total workload, best performance is achieved when
there is a balance between thread granularity and thread parallelism.

ETS --always fine grained
Scheduled dataflow performs well for moderate granularity

Jump to first page

PDCS-99 (Kavi)

28

Effect Of Memory Access Time

CA: Conventional Architecture
DA: ETS like Dataflow
HA: Earth Like Hybrid
NBMA: Scheduled Dataflow

Tm includes cache misses and miss
penalties.

Scheduled dataflow (and Hybrid)
tolerate longer memory access
times better.

R=N=10

Jump to first page

PDCS-99 (Kavi)

29

Utilization Of EP and SP

Except when very fine grained threads, Synchronization
Processor is not a bottleneck.

For moderate sized threads, there is a balanced
utilization of the two processors

N=10, Ts = 8
R=10, Ts = 8

Jump to first page

PDCS-99 (Kavi)

30

Conclusions

n Combined dataflow architecture with conventional control-
flow like scheduling and decoupled memory accesses

n The performance gains are primarily due to
u Scheduling of instructions (unlike ETS)

u Overlapped Memory/Execute processing
u Non-Blocking and fine grained threads
u Pre-load/Post-Store Decoupling

F Permits for data placement and prefetching

n Eliminates complex instruction scheduling hardware
u For register renaming, detecting WAR/WAW

dependencies, Branch prediction

n Fine-grained parallelism need not be expensive
n Modest number of register contexts (or thread parallelism)

is sufficient

Jump to first page

PDCS-99 (Kavi)

31

Current status and future research

• A detailed instruction simulator is being designed

• Converting Compiler backends to generate code for SDF

•Using MIDC compiler from Colorado State Univ

• Should be able to evaluate the architecture more thoroughly

using large benchmarks
Not just SPEC, but special purpose and
embedded applications

• Investigate compiler optimizations

Data placement/prefetch

Predictive preloading

• Estimate hardware savings

