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Abstract 

Traditional real-time systems are designed using preemp-
tive scheduling and worst-case execution time estimates 
to guarantee the execution of high priority tasks. There 
is, however, an interest in exploring non-preemptive 
scheduling models for real-time systems, particularly for 
soft real-time multimedia applications. In this paper we 
propose a new algorithm that uses multiple scheduling 
strategies.  Our goal in this research is to improve the 
success rate of the well-known Earliest Deadline First 
(EDF) approach even when the load on the system is 
very high. Our approach, known as group-EDF (gEDF) 
is based on (dynamic) grouping of tasks with deadlines 
that are very close to each other, and using Shortest Job 
First (SJF) technique to schedule tasks within the group. 
We will present results comparing gEDF and EDF using 
randomly generated tasks with varying execution times, 
release times, deadlines and tolerance to missing dead-
lines, under varying workloads. We believe that the 
grouping of tasks with similar deadlines and utilizing 
information other than deadlines (such as execution 
times, priorities or resource availability) for scheduling 
tasks within a group can lead to new and more efficient 
real-time scheduling algorithms.  
Keywords: Real-time scheduling, Earliest Deadline 
First (EDF), Shortest Job First (SJF), Best-Effort 
Scheduling, Approximate Computations. 
 
1.   Introduction 

The Earliest Deadline First (EDF) algorithm is the 
most widely used scheduling algorithm for real-time 
systems [1]. For a set of preemptive tasks (be they peri-
odic, aperiodic, or sporadic), EDF will find a schedule if 
a schedule is possible [2]. It is our contention that non-
preemptive scheduling is more efficient, particularly for 
soft real-time applications and applications designed for 
multithreaded systems, than the preemptive approach 
since the non-preemptive model reduces the overhead 
needed for switching among tasks (or threads) [3, 4]. 
The application of EDF for non-preemptive tasks is not 
as widely studied. EDF is optimal for sporadic non-
preemptive tasks, but EDF may not find an optimal 
schedule for periodic and aperiodic non-preemptive 
tasks; it has been shown that scheduling periodic and 
aperiodic non-preemptive tasks is NP-hard [5, 6, 7]. 
However, non-preemptive EDF techniques have pro-
duced near optimal schedules for periodic and aperiodic 

tasks, particularly when the system is lightly loaded. 
When the system is overloaded, however, it has been 
shown that EDF approach leads to dramatically poor 
performance (low success rates) [8]. In this paper, a 
system load or utilization is used to refer to the sum of 
the execution times of pending tasks as related to the 
time available to complete the tasks. The poor perform-
ance of EDF is due to the fact that, as tasks that are 
scheduled based on their deadlines miss their deadlines, 
other tasks waiting for their turn are likely to miss their 
deadlines also – this is sometimes known as the domino 
effect. It should also be remembered that Worst Case 
Execution Time (WCET) estimates for tasks are used in 
most real-time systems. We believe that in practice 
WCET estimates are very conservative and in a more 
aggressive scheduling based on average execution times 
for soft real-time systems using either EDF or hybrid 
algorithms can lead to higher performance.  

While investigating scheduling algorithms, we ana-
lyzed a variation of EDF that can improve the success 
ratio (that is, the number of tasks that have been suc-
cessfully scheduled to meet their deadlines), particularly 
in overloads. It can also decrease the average response 
time for tasks. We call our algorithm group EDF or 
gEDF where the tasks with “similar” deadlines are 
grouped together (i.e., deadlines that are very close to 
each other), and the Shortest Job First (SJF) algorithm 
is used for scheduling tasks within a group. It should be 
noted that our approach is different from adaptive 
schemes that switch between different scheduling 
strategies based on system load – gEDF is used both 
under overload and under-load conditions. The compu-
tational complexity of gEDF is the same as that of EDF. 
In this paper, we evaluate the performance of gEDF 
using randomly generated tasks with varying execution 
times, release times, deadlines and tolerance to missing 
deadlines, under varying loads.  

We believe that gEDF is particularly useful for soft 
real-time systems as well as applications known as 
“anytime algorithms” and “approximate algorithms”, 
where applications generate more accurate results or 
rewards with increased execution times [9, 10]. Exam-
ples of such applications include search algorithms, 
neural-net based learning in AI, FFT and block-
recursive filters used for audio and image processing. 
We model such applications using a tolerance parameter 
that describes by how much a task can miss its deadline, 

154



or by how much the task’s execution time can be trun-
cated when the deadline is approaching. 

 
2.   Related Work 

The EDF algorithm schedules real-time tasks based 
on their deadlines. Because of its optimality for peri-
odic, aperiodic, and sporadic preemptive tasks, its opti-
mality for sporadic non-preemptive tasks, and its ac-
ceptable performance for periodic and aperiodic non-
preemptive tasks, EDF is widely used as a dynamic 
priority-driven scheduling scheme [5]. EDF has a much 
higher efficiency than many other scheduling algorithms 
including static Rate-Monotonic scheduling algorithm. 
For preemptive tasks, EDF is able to reach up to the 
maximum possible processor utilization when lightly 
loaded. Although finding an optimal schedule for peri-
odic and aperiodic non-preemptive tasks is NP-hard [6, 
7], our experiments show that EDF can achieve very 
good results even for non-preemptive tasks when the 
system is lightly loaded. However, when the processor 
is over-loaded (i.e., the combined requirements of pend-
ing tasks exceed the capabilities of the system) EDF 
performs poorly. Researchers have proposed several 
adaptive techniques for handling heavily loaded situa-
tions, but require the detection of the overload condi-
tion. 

A Best-effort algorithm [8] is proposed based on 
the assumption that the probability of a high value-
density task arriving is low. The value-density is de-
fined by V/C, where V is the value of a task and C is its 
worst-case execution time. Given a set of tasks with 
defined values for successfully completing, it can be 
shown that a sequence of tasks in decreasing order by 
value-density will produce maximum value as compared 
to any other scheduling technique. The Best-effort algo-
rithm admits tasks for scheduling based upon their 
value-densities and schedules them using the EDF pol-
icy. When higher value tasks are admitted, some lower 
value tasks may be deleted from the schedule or delayed 
until no other tasks with higher value exist. One key 
consideration for implementation of such a policy is the 
estimation of current workload, which is either very 
difficult or very inaccurate in most practical systems 
that utilize WCET estimations. WCET estimation re-
quires complex analysis of tasks [11, 12], and in most 
cases, they are significantly greater than average execu-
tion times of tasks. Thus the Best-effort algorithm that 
use WCET to estimate loads may lead to sub-optimal 
value realization.  

Other approaches for detecting overload and reject-
ing tasks were reported in [13, 14]. In the Guarantee 
scheme [13], the load on the processor is controlled by 
performing acceptance tests on new tasks entering the 
system. If the new task is found schedulable under 
worst-case assumption, it is accepted; otherwise, the 
arriving task is rejected. In the Robust scheme [14], the 

acceptance test is based on EDF; if overloaded, one or 
more tasks may be rejected based on their importance. 
Because the Guarantee and Robust algorithms also rely 
on computing the schedules of tasks, often based on 
worst-case estimates, they lead to poor utilization of 
resources. Best-effort, Guarantee, or Robust scheduling 
algorithms, which utilize worst case execution times, 
and hard deadlines are not good for soft real-time sys-
tems or applications that are generally referred to as 
“anytime” or “approximate” algorithms [10]. 

The combination of SJF and EDF, referred to as 
SCAN-EDF for disk scheduling, was proposed in  [15]. 
In the algorithm, SJF is only used to break a tie between 
tasks with identical deadlines. The work in [16, 17] is 
very closely related to our ideas of groups. They quan-
tize deadlines into deadline bins and place tasks into 
these bins. However, tasks within a bin (or group) are 
scheduled using FIFO. 

 
3.   Real-time System Model 

A job τi in real-time systems or a thread in multi-
threading processing is defined as τi = (ri, ei, Di, Pi); ri is 
its release time (or the time when it arrives in the sys-
tem); ei is either its predicted worst-case or average 
execution time; Di is its deadline. If modeling periodic 
jobs, Pi defines a task’s periodicity. Note that aperiodic 
jobs can be modeled by setting Pi to infinity, sporadic 
tasks by setting Pi to a variable. For the experiments, we 
generated a fixed number (N) of jobs. Each experiment 
terminated when the experimental time T expired. This 
permitted us to investigate the sensitivity of the various 
task parameters on the success rates of EDF and gEDF. 
Most of the parameters are based on exponential distri-
butions available in MATLAB.  

A group in the gEDF algorithm depends on a group 
range parameter Gr. τj belongs to the same group as τi if 
Di ≤ Dj ≤ (Di + Gr*Di), where 1 ≤ i, j ≤ N.  In other 
words, we group jobs with very close deadlines. We 
schedule groups based on EDF (all jobs in a group with 
an earlier deadline will be considered for scheduling 
before jobs in a group with later deadlines), but sched-
ule jobs within a group using SJF. Since SJF results in 
more (albeit shorter) jobs completing, intuitively gEDF 
should lead to higher success rate than pure EDF.   
       We use the following notations for various parame-
ters and computed values.  

ρ: is the utilization of the system, ρ = Σei  / T. This is also 
called the load. 

γ: is the success ratio, γ = the number of jobs completed 
successfully / N. 

Tr: is the deadline tolerance for soft real-time systems. A 
job τ is schedulable and acceptable if τ finishes be-
fore the time (1 + Tr) * D, where Tr ≥ 0. 

µe: is used either as the average execution time or the 
worst case execution time, and defines the expected 
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value of the exponential distribution used for this 
purpose. 

µr: is used to generate arrival times of jobs, and is the ex-
pected value of the exponential distribution used for 
this purpose. 

µD: is the expected value of the random distribution used 
to generate task deadlines. 

ℜ: is the average response time of the jobs. 
∂:  is the response-time ratio, ∂ = ℜ / µe. 
ηγ: is the success-ratio performance factor, ηγ = γgEDF / 

γEDF. 
η∂: is the response-time performance factor, η∂ = ∂EDF / 

∂gEDF. 
 

4.   Numerical Results 
MATLAB was used to generate tasks and schedule 

the tasks using both EDF and gEDF. For each chosen 
set of parameters, we repeated each experiment 100 
times (generated N tasks using the random probability 
distributions and scheduled the generated tasks) and 
computed average success rates. In what follows, we 
report the results and analyze the sensitivity of gEDF to 
the various parameters used in the experiments. Note 
that we use the non-preemptive task model.  

 
4.1 Experiment 1 – Effect of Deadline Tolerance 

Figures 1-3 show that gEDF achieves higher suc-
cess rate than EDF, when the deadline tolerance is var-
ied to 20%, 50% and 100% (that is, a task can miss its 
deadline by 20%, 50% and 100%).  

 

 
Figure 1: Success rates when deadline tolerance is 0.2. 

 
For these experiments, we generated tasks by fixing 

expected execution rate and deadline parameters of the 
probability distributions, but varied arrival rate parame-
ters to change the system load. The group range for 
these experiments is fixed at Gr = 0.4. It should be 
noted that gEDF consistently performs as well as EDF 
under light loads (utilization is less than 1) but outper-
forms EDF under heavy loads (utilization is greater than 
1). Both EDF and gEDF achieve higher success rates 
when tasks are provided with greater deadline tolerance. 
The tolerance benefits gEDF more than EDF, particu-

larly under heavy loads. Thus, gEDF is better suited for 
soft real-time tasks.  
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Figure 2: Success rates when deadline tolerance is 0.5. 
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Figure 3: Success rates when deadline tolerance is 1.0. 
 
Figure 4 summarizes these results by showing the 

percent improvement in success ratios achieved by 
gEDF as compared to EDF.  
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Figure 4: Success-ratio Performance Factor. 
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4.2 Experiment 2 - Effect of Deadline on Success 
Rates  

In this experiment we explored the performance of 
EDF and gEDF when the deadlines are very tight (dead-
line = execution time) and when the deadlines are loose 
(deadline = 5 * execution time).  Note that we generated 
the deadlines using exponential distribution with mean 
values set to 1 and 5 times the mean execution time µe. 
We varied the soft real-time parameter (Tr, or tolerance 
to deadline) in these experiments also. The other pa-
rameters were kept the same as the previous experiment. 
As can be seen in Figures 5 and 6 any scheduling algo-
rithm will perform poorly for tight deadlines, except 
under extremely light loads. Even under very tight dead-
lines as in Figure 6, the deadline tolerance favors gEDF 
more than EDF. With looser deadlines as in Figures 7 
and 8, both EDF and gEDF achieve better performance. 
However, gEDF outperforms EDF consistently for all 
values of the deadline tolerance, Tr. 
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Figure 5: Tight deadline µD = 1 (Deadline = Execution Time) 

and Tr = 0. 
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Figure 6: Tight deadline µD = 1 (Deadline = Execution Time) 

and Tr = 1.0. 
 

 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF: Tr=0

gEDF: Tr=0

EDF: Tr=0.2

gEDF: Tr=0.2

 
Figure 7: Looser deadline µD = 5 (Deadline = 5* Execution 

Time) and Tr = 0 and 0.2. 
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Figure 8: Looser deadline µD = 5 (Deadline = 5* Execution 

Time) and Tr = 0.5 and 1.0. 
 
Figures 9 and 10 highlight the effect of deadlines 

on both EDF and gEDF, respectively.  
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Figure 9: Success ratio of EDF when µD = 1, 2, 5, 10, and 15. 
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Figure 10: Success ratio of gEDF when µD = 1, 2, 5, 10, 15. 

 
To more clearly evaluate how these approaches perform 
when the deadlines are very tight and loose, we set the 
deadlines to be 1, 2, 5, 10 and 15 times the execution 
time of a task. We set µr = µe/ρ, µe = 40, Tr = 0.2, (for 
gEDF Gr = 0.4). When µD = 1 and 2, the success ratios 
of EDF and gEDF have no apparent difference.  How-
ever, when µD becomes reasonably large, such as 5, 10, 
and 15, the success ratio of gEDF is better than that of 
EDF. 
 
4.3 Experiment 3 - Effect of Group Range 

In this experiment, we vary the group range pa-
rameter Gr for grouping tasks into a single group. Note 
in the following figures we do not include EDF data 
since EDF does not use groups. We set µD = 5 (Deadline 
= 5* Execution Time) and maintain the same values for 
other parameters as in the previous experiments. We set 
the deadline tolerance parameter Tr to 0.1 (10% toler-
ance in missing deadlines) in Figure 11, and to 0.5 (50% 
tolerance in missing deadlines) in Figure 12.  
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Figure 10: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1). 
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Figure 11: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5). 
 

The data shows that by increasing the size of a 
group, gEDF achieves higher success rate. In the limit, 
by setting the group range parameter to a large value, 
gEDF behaves more like SJF. There is a threshold value 
for the group size for achieving optimal success rate and 
the threshold depends on the execution time, deadline 
and deadline tolerance parameters. For the experiments, 
we used a single exponential distribution for generating 
all task execution times. However, if we were to use a 
mix of tasks created using exponential distributions with 
different mean values, thus creating tasks with widely 
varying execution times, the group range parameter will 
have more pronounced effect on the success rates. 

 
4.4 Experiment 4 – Effect of Deadline Tolerance on 
Response Time 

 Thus far we have shown that gEDF results in 
higher success rates than EDF, particularly when the 
system is overloaded. Next, we will compare the aver-
age response times achieved using gEDF with EDF. We 
set µr = µe/ρ, µe = 40, µD = 5, Gr = 0.4.  
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Figure 13:  Response time when deadline tolerance Tr = 0. 
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Figures 13, 14 and 15 show that gEDF can yield 
faster response times than EDF when soft real-time 
tolerance parameter Tr changes from 0 to 0.5 to 1.0, 
respectively. 
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Figure 14: Response time when deadline tolerance Tr = 0.5. 
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Figure 15: Response time when deadline tolerance Tr = 1.0. 

 
4.5 Experiment 5 - The Effect of Deadline on 
Response Time 

We set µr = µe/ρ, µe = 40, Gr = 0.4, Tr = 0.1. Fig-
ures 16 and 17 show the change in response time of 
EDF and gEDF when µD changes to 1, 2, 5, and 10.  
Like the success ratios of EDF and gEDF, when µD is 
very small such as 1 and 2, there is no difference be-
tween EDF and gEDF. However, when µD is larger then 
gEDF results in faster response times.  

 
5.   Conclusions and Future Work 

In this paper, we presented a new real-time schedul-
ing algorithm that combines Shortest Job First schedul-
ing with Earliest Deadline First scheduling. We grouped 
tasks that have deadlines that are very close to each 
other, and scheduled jobs within a group using SJF 
scheduling. We have shown that group EDF results in 
higher success rates (that is, the number of jobs that 

have completed successfully before their deadline) as 
well as in faster response times. 
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Figure 16: Response time of EDF when µD = 1, 2, 5, and 10. 

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

D=1

D=2

D=5

D=10

 
Figure 17: Response time of gEDF when µD = 1, 2, 5, and 10. 

 
It has been known that while EDF produces an opti-

mum schedule (if one is available) for systems using 
preemptive scheduling. EDF is not as widely used for 
non-preemptive systems. We believe that for soft real-
time systems that utilize multithreaded processors, non-
preemptive scheduling is more efficient. Although EDF 
produces practically acceptable performance even for 
non-preemptive systems when the system is under-
loaded, EDF performs very poorly when the system is 
heavily loaded. Our gEDF algorithm performs as well 
as EDF when a system is under-loaded, but outperforms 
EDF when the system is overloaded. gEDF also per-
forms better than EDF for soft real-time systems, where 
a task is allowed to miss its deadline.   

In future work, we plan to explore the impact of a va-
riety of parameters on the performance gEDF, and 
evaluate gEDF for real workloads.  
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