
An Efficient Non-Preemptive Real-Time Scheduling

Wenming Li, Krishna Kavi and Robert Akl
Department of Computer Science and Engineering

The University of North Texas
Denton, Texas 76203, USA

{wenming, kavi, rakl}@cse.unt.edu

Abstract

Traditional real-time systems are designed using preemp-
tive scheduling and worst-case execution time estimates
to guarantee the execution of high priority tasks. There
is, however, an interest in exploring non-preemptive
scheduling models for real-time systems, particularly for
soft real-time multimedia applications. In this paper we
propose a new algorithm that uses multiple scheduling
strategies. Our goal in this research is to improve the
success rate of the well-known Earliest Deadline First
(EDF) approach even when the load on the system is
very high. Our approach, known as group-EDF (gEDF)
is based on (dynamic) grouping of tasks with deadlines
that are very close to each other, and using Shortest Job
First (SJF) technique to schedule tasks within the group.
We will present results comparing gEDF and EDF using
randomly generated tasks with varying execution times,
release times, deadlines and tolerance to missing dead-
lines, under varying workloads. We believe that the
grouping of tasks with similar deadlines and utilizing
information other than deadlines (such as execution
times, priorities or resource availability) for scheduling
tasks within a group can lead to new and more efficient
real-time scheduling algorithms.
Keywords: Real-time scheduling, Earliest Deadline
First (EDF), Shortest Job First (SJF), Best-Effort
Scheduling, Approximate Computations.

1. Introduction

The Earliest Deadline First (EDF) algorithm is the
most widely used scheduling algorithm for real-time
systems [1]. For a set of preemptive tasks (be they peri-
odic, aperiodic, or sporadic), EDF will find a schedule if
a schedule is possible [2]. It is our contention that non-
preemptive scheduling is more efficient, particularly for
soft real-time applications and applications designed for
multithreaded systems, than the preemptive approach
since the non-preemptive model reduces the overhead
needed for switching among tasks (or threads) [3, 4].
The application of EDF for non-preemptive tasks is not
as widely studied. EDF is optimal for sporadic non-
preemptive tasks, but EDF may not find an optimal
schedule for periodic and aperiodic non-preemptive
tasks; it has been shown that scheduling periodic and
aperiodic non-preemptive tasks is NP-hard [5, 6, 7].
However, non-preemptive EDF techniques have pro-
duced near optimal schedules for periodic and aperiodic

tasks, particularly when the system is lightly loaded.
When the system is overloaded, however, it has been
shown that EDF approach leads to dramatically poor
performance (low success rates) [8]. In this paper, a
system load or utilization is used to refer to the sum of
the execution times of pending tasks as related to the
time available to complete the tasks. The poor perform-
ance of EDF is due to the fact that, as tasks that are
scheduled based on their deadlines miss their deadlines,
other tasks waiting for their turn are likely to miss their
deadlines also – this is sometimes known as the domino
effect. It should also be remembered that Worst Case
Execution Time (WCET) estimates for tasks are used in
most real-time systems. We believe that in practice
WCET estimates are very conservative and in a more
aggressive scheduling based on average execution times
for soft real-time systems using either EDF or hybrid
algorithms can lead to higher performance.

While investigating scheduling algorithms, we ana-
lyzed a variation of EDF that can improve the success
ratio (that is, the number of tasks that have been suc-
cessfully scheduled to meet their deadlines), particularly
in overloads. It can also decrease the average response
time for tasks. We call our algorithm group EDF or
gEDF where the tasks with “similar” deadlines are
grouped together (i.e., deadlines that are very close to
each other), and the Shortest Job First (SJF) algorithm
is used for scheduling tasks within a group. It should be
noted that our approach is different from adaptive
schemes that switch between different scheduling
strategies based on system load – gEDF is used both
under overload and under-load conditions. The compu-
tational complexity of gEDF is the same as that of EDF.
In this paper, we evaluate the performance of gEDF
using randomly generated tasks with varying execution
times, release times, deadlines and tolerance to missing
deadlines, under varying loads.

We believe that gEDF is particularly useful for soft
real-time systems as well as applications known as
“anytime algorithms” and “approximate algorithms”,
where applications generate more accurate results or
rewards with increased execution times [9, 10]. Exam-
ples of such applications include search algorithms,
neural-net based learning in AI, FFT and block-
recursive filters used for audio and image processing.
We model such applications using a tolerance parameter
that describes by how much a task can miss its deadline,

154

or by how much the task’s execution time can be trun-
cated when the deadline is approaching.

2. Related Work

The EDF algorithm schedules real-time tasks based
on their deadlines. Because of its optimality for peri-
odic, aperiodic, and sporadic preemptive tasks, its opti-
mality for sporadic non-preemptive tasks, and its ac-
ceptable performance for periodic and aperiodic non-
preemptive tasks, EDF is widely used as a dynamic
priority-driven scheduling scheme [5]. EDF has a much
higher efficiency than many other scheduling algorithms
including static Rate-Monotonic scheduling algorithm.
For preemptive tasks, EDF is able to reach up to the
maximum possible processor utilization when lightly
loaded. Although finding an optimal schedule for peri-
odic and aperiodic non-preemptive tasks is NP-hard [6,
7], our experiments show that EDF can achieve very
good results even for non-preemptive tasks when the
system is lightly loaded. However, when the processor
is over-loaded (i.e., the combined requirements of pend-
ing tasks exceed the capabilities of the system) EDF
performs poorly. Researchers have proposed several
adaptive techniques for handling heavily loaded situa-
tions, but require the detection of the overload condi-
tion.

A Best-effort algorithm [8] is proposed based on
the assumption that the probability of a high value-
density task arriving is low. The value-density is de-
fined by V/C, where V is the value of a task and C is its
worst-case execution time. Given a set of tasks with
defined values for successfully completing, it can be
shown that a sequence of tasks in decreasing order by
value-density will produce maximum value as compared
to any other scheduling technique. The Best-effort algo-
rithm admits tasks for scheduling based upon their
value-densities and schedules them using the EDF pol-
icy. When higher value tasks are admitted, some lower
value tasks may be deleted from the schedule or delayed
until no other tasks with higher value exist. One key
consideration for implementation of such a policy is the
estimation of current workload, which is either very
difficult or very inaccurate in most practical systems
that utilize WCET estimations. WCET estimation re-
quires complex analysis of tasks [11, 12], and in most
cases, they are significantly greater than average execu-
tion times of tasks. Thus the Best-effort algorithm that
use WCET to estimate loads may lead to sub-optimal
value realization.

Other approaches for detecting overload and reject-
ing tasks were reported in [13, 14]. In the Guarantee
scheme [13], the load on the processor is controlled by
performing acceptance tests on new tasks entering the
system. If the new task is found schedulable under
worst-case assumption, it is accepted; otherwise, the
arriving task is rejected. In the Robust scheme [14], the

acceptance test is based on EDF; if overloaded, one or
more tasks may be rejected based on their importance.
Because the Guarantee and Robust algorithms also rely
on computing the schedules of tasks, often based on
worst-case estimates, they lead to poor utilization of
resources. Best-effort, Guarantee, or Robust scheduling
algorithms, which utilize worst case execution times,
and hard deadlines are not good for soft real-time sys-
tems or applications that are generally referred to as
“anytime” or “approximate” algorithms [10].

The combination of SJF and EDF, referred to as
SCAN-EDF for disk scheduling, was proposed in [15].
In the algorithm, SJF is only used to break a tie between
tasks with identical deadlines. The work in [16, 17] is
very closely related to our ideas of groups. They quan-
tize deadlines into deadline bins and place tasks into
these bins. However, tasks within a bin (or group) are
scheduled using FIFO.

3. Real-time System Model

A job τi in real-time systems or a thread in multi-
threading processing is defined as τi = (ri, ei, Di, Pi); ri is
its release time (or the time when it arrives in the sys-
tem); ei is either its predicted worst-case or average
execution time; Di is its deadline. If modeling periodic
jobs, Pi defines a task’s periodicity. Note that aperiodic
jobs can be modeled by setting Pi to infinity, sporadic
tasks by setting Pi to a variable. For the experiments, we
generated a fixed number (N) of jobs. Each experiment
terminated when the experimental time T expired. This
permitted us to investigate the sensitivity of the various
task parameters on the success rates of EDF and gEDF.
Most of the parameters are based on exponential distri-
butions available in MATLAB.

A group in the gEDF algorithm depends on a group
range parameter Gr. τj belongs to the same group as τi if
Di ≤ Dj ≤ (Di + Gr*Di), where 1 ≤ i, j ≤ N. In other
words, we group jobs with very close deadlines. We
schedule groups based on EDF (all jobs in a group with
an earlier deadline will be considered for scheduling
before jobs in a group with later deadlines), but sched-
ule jobs within a group using SJF. Since SJF results in
more (albeit shorter) jobs completing, intuitively gEDF
should lead to higher success rate than pure EDF.
 We use the following notations for various parame-
ters and computed values.

ρ: is the utilization of the system, ρ = Σei / T. This is also
called the load.

γ: is the success ratio, γ = the number of jobs completed
successfully / N.

Tr: is the deadline tolerance for soft real-time systems. A
job τ is schedulable and acceptable if τ finishes be-
fore the time (1 + Tr) * D, where Tr ≥ 0.

µe: is used either as the average execution time or the
worst case execution time, and defines the expected

155

value of the exponential distribution used for this
purpose.

µr: is used to generate arrival times of jobs, and is the ex-
pected value of the exponential distribution used for
this purpose.

µD: is the expected value of the random distribution used
to generate task deadlines.

ℜ: is the average response time of the jobs.
∂: is the response-time ratio, ∂ = ℜ / µe.
ηγ: is the success-ratio performance factor, ηγ = γgEDF /

γEDF.
η∂: is the response-time performance factor, η∂ = ∂EDF /

∂gEDF.

4. Numerical Results
MATLAB was used to generate tasks and schedule

the tasks using both EDF and gEDF. For each chosen
set of parameters, we repeated each experiment 100
times (generated N tasks using the random probability
distributions and scheduled the generated tasks) and
computed average success rates. In what follows, we
report the results and analyze the sensitivity of gEDF to
the various parameters used in the experiments. Note
that we use the non-preemptive task model.

4.1 Experiment 1 – Effect of Deadline Tolerance

Figures 1-3 show that gEDF achieves higher suc-
cess rate than EDF, when the deadline tolerance is var-
ied to 20%, 50% and 100% (that is, a task can miss its
deadline by 20%, 50% and 100%).

Figure 1: Success rates when deadline tolerance is 0.2.

For these experiments, we generated tasks by fixing

expected execution rate and deadline parameters of the
probability distributions, but varied arrival rate parame-
ters to change the system load. The group range for
these experiments is fixed at Gr = 0.4. It should be
noted that gEDF consistently performs as well as EDF
under light loads (utilization is less than 1) but outper-
forms EDF under heavy loads (utilization is greater than
1). Both EDF and gEDF achieve higher success rates
when tasks are provided with greater deadline tolerance.
The tolerance benefits gEDF more than EDF, particu-

larly under heavy loads. Thus, gEDF is better suited for
soft real-time tasks.

0.50

0.60

0.70

0.80

0.90

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF

gEDF

Figure 2: Success rates when deadline tolerance is 0.5.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF

gEDF

Figure 3: Success rates when deadline tolerance is 1.0.

Figure 4 summarizes these results by showing the

percent improvement in success ratios achieved by
gEDF as compared to EDF.

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u

c
c
e

s
s
-r

a
ti
o

 P
e

rf
o

rm
a

n
c
e

F
a
c
to

r

Tr=0.2

Tr=0.5

Tr=1.0

Figure 4: Success-ratio Performance Factor.

156

4.2 Experiment 2 - Effect of Deadline on Success
Rates

In this experiment we explored the performance of
EDF and gEDF when the deadlines are very tight (dead-
line = execution time) and when the deadlines are loose
(deadline = 5 * execution time). Note that we generated
the deadlines using exponential distribution with mean
values set to 1 and 5 times the mean execution time µe.
We varied the soft real-time parameter (Tr, or tolerance
to deadline) in these experiments also. The other pa-
rameters were kept the same as the previous experiment.
As can be seen in Figures 5 and 6 any scheduling algo-
rithm will perform poorly for tight deadlines, except
under extremely light loads. Even under very tight dead-
lines as in Figure 6, the deadline tolerance favors gEDF
more than EDF. With looser deadlines as in Figures 7
and 8, both EDF and gEDF achieve better performance.
However, gEDF outperforms EDF consistently for all
values of the deadline tolerance, Tr.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF: Tr=0

gEDF: Tr=0

Figure 5: Tight deadline µD = 1 (Deadline = Execution Time)

and Tr = 0.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF: Tr=1.0

gEDF: Tr=1.0

Figure 6: Tight deadline µD = 1 (Deadline = Execution Time)

and Tr = 1.0.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF: Tr=0

gEDF: Tr=0

EDF: Tr=0.2

gEDF: Tr=0.2

Figure 7: Looser deadline µD = 5 (Deadline = 5* Execution

Time) and Tr = 0 and 0.2.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

EDF: Tr=0.5

gEDF: Tr=0.5

EDF: Tr=1.0

gEDF: Tr=1.0

Figure 8: Looser deadline µD = 5 (Deadline = 5* Execution

Time) and Tr = 0.5 and 1.0.

Figures 9 and 10 highlight the effect of deadlines

on both EDF and gEDF, respectively.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

D=1

D=2

D=5

D=10

D=15

Figure 9: Success ratio of EDF when µD = 1, 2, 5, 10, and 15.

157

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

D=1

D=2

D=5

D=10

D=15

Figure 10: Success ratio of gEDF when µD = 1, 2, 5, 10, 15.

To more clearly evaluate how these approaches perform
when the deadlines are very tight and loose, we set the
deadlines to be 1, 2, 5, 10 and 15 times the execution
time of a task. We set µr = µe/ρ, µe = 40, Tr = 0.2, (for
gEDF Gr = 0.4). When µD = 1 and 2, the success ratios
of EDF and gEDF have no apparent difference. How-
ever, when µD becomes reasonably large, such as 5, 10,
and 15, the success ratio of gEDF is better than that of
EDF.

4.3 Experiment 3 - Effect of Group Range

In this experiment, we vary the group range pa-
rameter Gr for grouping tasks into a single group. Note
in the following figures we do not include EDF data
since EDF does not use groups. We set µD = 5 (Deadline
= 5* Execution Time) and maintain the same values for
other parameters as in the previous experiments. We set
the deadline tolerance parameter Tr to 0.1 (10% toler-
ance in missing deadlines) in Figure 11, and to 0.5 (50%
tolerance in missing deadlines) in Figure 12.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

Gr:0.1

Gr:0.2

Gr:0.5

Gr:1.0

Figure 10: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

S
u
c
c
e
s
s
 R

a
ti
o

Gr:0.1

Gr:0.2

Gr:0.5

Gr:1.0

Figure 11: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5).

The data shows that by increasing the size of a
group, gEDF achieves higher success rate. In the limit,
by setting the group range parameter to a large value,
gEDF behaves more like SJF. There is a threshold value
for the group size for achieving optimal success rate and
the threshold depends on the execution time, deadline
and deadline tolerance parameters. For the experiments,
we used a single exponential distribution for generating
all task execution times. However, if we were to use a
mix of tasks created using exponential distributions with
different mean values, thus creating tasks with widely
varying execution times, the group range parameter will
have more pronounced effect on the success rates.

4.4 Experiment 4 – Effect of Deadline Tolerance on
Response Time

 Thus far we have shown that gEDF results in
higher success rates than EDF, particularly when the
system is overloaded. Next, we will compare the aver-
age response times achieved using gEDF with EDF. We
set µr = µe/ρ, µe = 40, µD = 5, Gr = 0.4.

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

EDF

gEDF

Figure 13: Response time when deadline tolerance Tr = 0.

158

Figures 13, 14 and 15 show that gEDF can yield
faster response times than EDF when soft real-time
tolerance parameter Tr changes from 0 to 0.5 to 1.0,
respectively.

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

EDF

gEDF

Figure 14: Response time when deadline tolerance Tr = 0.5.

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

EDF

gEDF

Figure 15: Response time when deadline tolerance Tr = 1.0.

4.5 Experiment 5 - The Effect of Deadline on
Response Time

We set µr = µe/ρ, µe = 40, Gr = 0.4, Tr = 0.1. Fig-
ures 16 and 17 show the change in response time of
EDF and gEDF when µD changes to 1, 2, 5, and 10.
Like the success ratios of EDF and gEDF, when µD is
very small such as 1 and 2, there is no difference be-
tween EDF and gEDF. However, when µD is larger then
gEDF results in faster response times.

5. Conclusions and Future Work

In this paper, we presented a new real-time schedul-
ing algorithm that combines Shortest Job First schedul-
ing with Earliest Deadline First scheduling. We grouped
tasks that have deadlines that are very close to each
other, and scheduled jobs within a group using SJF
scheduling. We have shown that group EDF results in
higher success rates (that is, the number of jobs that

have completed successfully before their deadline) as
well as in faster response times.

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

D=1

D=2

D=5

D=10

Figure 16: Response time of EDF when µD = 1, 2, 5, and 10.

0

50

100

150

200

250

300

350

400

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

Utilization

R
e
s
p
o
n
s
e
 T

im
e

D=1

D=2

D=5

D=10

Figure 17: Response time of gEDF when µD = 1, 2, 5, and 10.

It has been known that while EDF produces an opti-

mum schedule (if one is available) for systems using
preemptive scheduling. EDF is not as widely used for
non-preemptive systems. We believe that for soft real-
time systems that utilize multithreaded processors, non-
preemptive scheduling is more efficient. Although EDF
produces practically acceptable performance even for
non-preemptive systems when the system is under-
loaded, EDF performs very poorly when the system is
heavily loaded. Our gEDF algorithm performs as well
as EDF when a system is under-loaded, but outperforms
EDF when the system is overloaded. gEDF also per-
forms better than EDF for soft real-time systems, where
a task is allowed to miss its deadline.

In future work, we plan to explore the impact of a va-
riety of parameters on the performance gEDF, and
evaluate gEDF for real workloads.

159

6. References

[1] F. Balarin, L. Lavagno, P. Murthy, and A. S. Vincen-

telli, “Scheduling for Embedded Real-Time Systems”,
IEEE Design & Test of Computer, January-March,
1998.

[2] C. L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment”, Journal of the ACM, Vol. 20, No. 1, pp. 46-61.

[3] R. Jain, C. J. Hughes, and S. V. Adve, “Soft Real-
Time Scheduling on Simultaneous Multithreaded
Processors”, In Proceedings of the 23rd IEEE Interna-
tional Real-Time Systems Symposium, December
2002.

[4] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled
Dataflow: Execution Paradigm, Architecture, and Per-
formance Evaluation”, IEEE Transactions on Comput-
ers, Vol. 50, No. 8, August 2001.

[5] K. Jeffay and C. U. Martel, “On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks”, Proceed-
ings of the 12th IEEE Real-Time Systems Symposium,
San Antonio, Texas, December 1991, IEEE Computer
Society Press, pp. 129-139.

[6] M. R. Garey, D. S. Johnson, “Computer and Intracta-
bility, a Guide to the Theory of NP-Completeness”, W.
H. Freeman Company, San Francisco, 1979.

[7] L. Georges, P. Muehlethaler, N. Rivierre, “A Few
Results on Non-Preemptive Real-time Scheduling”,
INRIA Research Report nRR3926, 2000.

[8] C. D. Locke, “Best-effort Decision Making for Real-
Time Scheduling”, CMU-CS-86-134 (PhD Thesis),
Computer Science Department, Carnegie-Mellon Uni-
versity, 1986.

[9] J. K. Dey, J. Kurose, and D. Towsley, “Online
Processor Scheduling for a Class of IRIS (Increasing
Reward with Increasing Service) Real-Time Tasks”,
Tech. Rep. 93-09, Department of Computer Science,
University of Massachusetts, Amherst, Jan 1993.

[10] S. Zilberstein, “Using Anytime Algorithms in Intelli-
gent Systems”, AI Magazine, fall 1996, pp.71-83.

[11] R. Heckmann, M. Langenbach, S. Thesing, and R.
Wilhelm, “The Influence of Processor Architecture on
the Design and the Results of WCET Tools”, Proceed-
ings of IEEE July 2003, Special Issue on Real-time
Systems.

[12] G. Bernat, A. Collin, and S. M. Petters, “WCET
Analysis of Probabilistic Hard Real-Time Systems”,
IEEE Real-Time Systems Symposium 2002, 279-288.

[13] G. Buttazzo, M. Spuri, and F. Sensini, Scuola Normale
Superiore, Pisa, Italy, “Value vs. Deadline Scheduling
in Overload Conditions”, 16th IEEE Real-Time Sys-
tems Symposium (RTSS’95) December 05-07, 1995.

[14] S. K. Baruah and J. R. Haritsa, “Scheduling for Over-
load in Real-Time Systems”, IEEE Transactions on
Computers, Vol. 46, No. 9, September 1997.

[15] A. L. N. Reddy and J. Wyllie, “Disk Scheduling in
Multimedia I/O system”, In Proceedings of ACM
multimedia’93, Anaheim, CA, 225-234, August 1993.

[16] B. D. Doytchinov, J. P. Lehoczky, and S. E. Shreve,
“Real-Time Queues in Heavy Traffic with Earliest-

Deadline-First Queue Discipline”, Annals of Applied
Probability, No. 11, 2001.

[17] J. P. Hansen, H. Zhu, J. Lehoczky, and R. Rajkumar,
“Quantized EDF Scheduling in a Stochastic Environ-
ment”, Proceedings of the International Parallel and
Distributed Processing Symposium, 2002.

160

