
Mutual Exclusion on Optical Buses

Krishna M. Kavi Dinesh. P. Mehta

Electrical and Computer Eng Dept Dept of Math and Computer Science

University of Alabama in Huntsville Colorado School of Mines

Huntsville, AL 35899 Golden, CO 80401

Abstract

This paper presents two algorithms for mutual
exclusion on optical bus architectures including the
folded one-dimensional bus, the one-dimensional ar-
ray with pipeleined buses (1D APPB), and the two-
dimensional array with pipelined buses (2D APPB).
The �rst algorithm guarantees mutual exclusion, while
the second guarantees both mutual exclusion and fair-
ness. Both algorithms exploit the predictability of
propagation delays in optical buses.

1 Introduction

Fiber optics based communication technologies
have been utilized in Wide Area Networks because
they o�er higher bandwidths and lower error probabil-
ity than other communication technologies. More re-
cently, optical properties such as unidirectional prop-
agation and predictable propagation delays have been
touted as bene�cial in building massively parallel pro-
cessing systems using optical buses for interconnection
among processing nodes. Time Division Multiplex-
ing (TDM) enables the implementation of pipelined
optical buses [1]. Alternatively, Wavelength Division
Multiplexing (WDM) can be used to create multiple
channels on which multiple messages can simultane-
ously be transmitted. The multiple channels can be
either statically or dynamically allocated to proces-
sors [2]. Utilizing the ability to transmit multiple
messages simultaneously on optical buses (in pipelined
fashion or using multiple channels), researchers have
described e�cient algorithms for parallel computing
based on the message-passing paradigm (See [3] for
an excellent survey). To the best of our knowledge,
the shared-memory paradigm for parallel computing
has not been investigated for its suitability on opti-
cally interconnected parallel processing systems. In
this paper we describe how mutual exclusion can be
implemented on pipelined optical buses. The problem
of mutual exclusion is critical to the shared-memory
paradigm of parallel computation since it arises when-
ever concurrent access to shared resources by several

sites is involved [4]. For correctness it is necessary to
guarantee that the shared resource is accessed by only
one site at a time (i.e., mutual exclusion). In addi-
tion to assuring mutual exclusion, techniques for mu-
tual exclusion in distributed systems must exhibit the
following characteristics: (1) Freedom from deadlocks:
Two or more sites should not endlessly wait for events
that will never occur. An event can be the arrival of a
message. (2) Freedom from starvation: A site should
not be forced to wait inde�nitely to acquire a shared
resource, while other sites are repeatedly acquiring the
resource. In other words, any site should be allowed
to request and acquire a shared resource in a �nite
amount of time. (3) Fairness: Fairness dictates that
requests must be executed in the order they are made,
or in the order they arrive in the system.

In this paper we will assume Time Division Multi-
plexing based optical wave guides that facilitate uni-
directional pipelined buses. Our work is based on two
related models for systems that utilize pipelined buses:
Linear array with a recon�gurable pipelined bus sys-
tem (LARPBS) [1, 5] and array with recon�gurable
buses (AROB) [6]. Many parallel algorithms were pro-
posed using these models. In LARPBS counting is not
allowed during a bus cycle. In fact, the LARPBS does
not allow any processing during a bus cycle, except for
setting switches at the beginning of a bus cycle. AROB
allows counting during a cycle. More detailed descrip-
tion of the functional behavior of such pipelined buses,
and how \coincident pulse" methods can be used to
achieve point-to-point, multicast and broadcast data
communications can be found in [5].

In this paper, we will make the following extensions
to the pipelined bus models: (1) Bus cycle: Most re-
searchers de�ne a bus cycle as the time needed for a
message to travel the entire length of the bus. For our
purposes, we de�ne a cycle as the amount time needed
for a message to travel one segment of the pipelined
bus (that is, the time to travel between two adjacent
sites). (2) Computation during a bus cycle: Atomicity
which is fundamental to the implementation of mutual

exclusion requires that computation be performed as
events occur. This implies that delay loops may be
required in pipelined optical bus segments to accom-
modate computations required by the techniques de-
scribed in this paper. In other words, we will assume
that during a cycle, an optical message travels one
segment of the bus, and a processing node performs
some computations when a message is received. Al-
ternately, we can require two phases: Communication
and Computation. During communication phase, pro-
cessors transmit (and receive) messages on the optical
pipelined bus. At most one message can be placed on
the bus by a processor. All messages move along the
bus synchronously. The communication phase is com-
plete only when (all) messages travel the entire length
of the bus assuring receipt by all processors. During
the computation phase, processors examine the mes-
sages received during the communication phase, and
perform computations as needed to achieve mutual ex-
clusion. The system operates with alternating com-
munication and computation phases. To simplify this
paper, we will assume that bus cycle includes compu-
tation. However, our techniques will also work in the
second case with alternating communication and com-
putation cycles. (3) Bus contention: Since we include
computation in a bus cycle, we permit asynchronous
and simultaneous requests from sites. In other words,
processors are NOT required to transmit messages
synchronously, and they can place a request at any
time. This can lead to bus contention as the mes-
sages move down the pipelined buses, if new message
requests are inserted by other sites. In this paper we
will assume that the buses are designed to eliminate
such collisions on the bus and a processor excludes
itself from placing a new message if that message col-
lides with a message that is already on the pipelined
bus. This assumption is not needed in the alternating
communication-computation phases model described
above.

2 Optical Bus Architectures

2.1 The Folded One-Dimensional Bus

The folded one-dimensional bus model[7, 8] is
shown in Figure 1. It consists of a sequence of n
equidistant processors connected by a folded bus. A
processor is connected to both the upper and lower
segments of the bus. A processor transmits messages
on the upper segment of a bus and receives messages
from the lower segment. In Figure 1, a message origi-
nates on the upper segment and travels in the direction
of the arrow. Assume that it takes 1 unit of time for
a message to travel from one processor to its neigh-

P1 P2 Pn�1P0

Figure 1: Folded Unidirectional Bus Architecture

P1 P2 Pn�1P0

Figure 2: Unfolded Unidirectional Bus Architecture

bor. This architecture permits a pipeline of messages
to simultaneously coexist on an optical bus. There-
fore, processors P0 and P1 can place messages on the
bus at the same instant of time. An arbitrary proces-
sor Pi receives P0's message exactly 1 time unit after
it receives P1's message. In general, a message from
processor Pi to Pj takes dij = 2n�1� i�j time units.
As stated earlier, it is assumed that the optical trans-
mission hardware on the upper segment is capable of
conditionally transmitting a message so that this will
not cause a collision. This will prevent Pi from trans-
mitting at time t if processor Pi�1 transmitted at time
t� 1.

2.2 The One-Dimensional Array with
Pipelined Buses (1D APPB)

The 1D APPB is shown in Figure 2. This is similar
to the folded bus above. Here processors can trans-
mit and receive on either segment. For example, a
message from P0 to P2 would be sent on the upper
segment, while a message from P2 to P0 would be sent
on the lower segment. Once again, we assume that
processors have the capability to conditionally trans-
mit a message so that there are no bus collisions. In
this model, a message from Pi to Pj takes dij = ji� jj
time units.

3 Mutual Exclusion Algorithms

Consider a multiprocessing environment where pro-
cessors are in contention for a particular resource (e.g.,
a particular word in memory). When this happens, we
would like to ensure that at most one processor has ac-
cess to the resource at any given instant. We achieve

this below by assigning a unique integer to each con-
tending processor that indicates the order in which
it must access that resource. This integer will be re-
ferred to as the processor's \turn". This contention
phase is followed by an access phase where each pro-
cessor actually accesses the resource in the prescribed
order. When a processor has completed its access, it
broadcasts a message to this e�ect to the other pro-
cessors and the next processor proceeds to access the
resource. The key to implementing this philosophy
is to correctly design the algorithm that is to be em-
ployed during the contention phase so that di�erent
contending processors are guaranteed to be assigned
di�erent turns.

A processor Pi �rst communicates its request for a
given resource to all of the other processors. When
processor Pj receives Pi's request, it immediately
places a hold on any future requests that it might have
for that resource until Pi's turn is con�rmed. The dif-
�culty arises when Pj places its request for the same
resource before it receives Pi's request. The purpose
of a mutual exclusion algorithm is to ensure that this
situation is resolved in a consistent fashion. We next
present two mutual exclusion algorithms for optical
bus architectures. These algorithms are presented in
an interconnection architecture-independent fashion.

3.1 A Window-Based Algorithm

De�ne the diameter D of a network to be the
longest delay (or time taken for a message to travel)
between any pair of processors in the network; i.e.,
D = maxij;i6=j dij , where dij is the delay (as de�ned
in Sections 2.1 and 2.2) between Pi and Pj . Note that
the diameter depends on the speci�c optical bus archi-
tecture that is being considered. Next, we de�ne the
window of vulnerability for each processor to be twice
the diameter of the network; i.e., 2D.

We begin by outlining some assumptions and prin-
ciples on which our algorithms are based.

1. Rule 1: A resource request is a message that con-
tains the id of the processor making the request
and the resource being requested.

2. Rule 2: When a processor makes a request for
a resource, it may not make additional requests
until the window of vulnerability for its request
has elapsed.

3. Rule 3: A processor Pj that receives a request for
a resource from Pi delays making a future request
for that resource until Pj 's window of vulnerabil-
ity has expired.

4. Rule 4: When requests from several processors
overlap in time, processor priorities are used to
resolve the requests. Without loss of generality,
we assme that a lower numbered processor has
higher priority (i.e., P0 has the highest priority).

Our mutual exclusion algorithm requires certain ac-
tions to be taken by a processor when it receives a
resource-request message and when it wishes to send
a resource-request. Algorithm Receive Request (Fig-
ure 3) below describes the actions to be taken by a
processor i when it receives a request for a resource at
time t. For convenience, we consider the current time
step (t) and the processor's ID (i) to be arguments to
the function. The Resource ID parameter (r) and the
Time parameter (ti) are assumed to be NULL if Pi

has no outstanding requests at time t. If Pi does have
outstanding requests at time t, then these quantities
denote the resource that was requested and the time
at which the request was sent.

Receive Request(TIME t, Proc ID i, Resource ID r, Time ti)
begin

if (a resource request msg is received by Pi at time t)
// assume that requests originating at Pi are ignored.
begin

RECV(message);
Processor ID j = message.getProcID();
Resource ID s = message.getResourceID();

if (r = s and j < i) my turn[r]++; // Rule 4
next turn[r]++;

//Ensure that Pi sends any future requests for s
//after j's window of vulnerability has expired;
// i.e., guarantees Rule 3
if (r 6= s)
begin

earliest[s] = max(t� dji + 2D + 1,earliest[s]);
next turn[s]++;

end

end

end

Figure 3: Algorithm Receive Request.

Note that t � ti+2D must be true if Pi has an out-
standing request (Rule 2). The resource table (array)
my turn is contained in each processor. It is assumed
that these arrays initially contain the same values in
each processor. The variable my turn[r] for a resource
r in processor Pi denotes the order in which processor
Pi will get access to resource r. Thus, the objective

is that when several processors request the same re-
source r, our mutual exclusion algorithm must ensure
that each of these processors has a di�erent local value
of my turn[r] that indicates the order in which that
processor will access the resource.

When a processor wishes to make a request for
a resource r, it �rst checks that the current time is
greater than that in earliest[r] and if this is true, sets
my turn[r] to next turn[r] and increments next turn[r].
Figure 4 contains the details.

Send Request(TIME t, Processor ID i, Resource ID r)
begin

if (earliest[r] > t)
Wait until earliest[r] to send request;

else

begin

SEND(request);
my turn[r] = next turn[r];
next turn[r]++;
earliest[r] = t+ 2D + 1; // Rule 2

end

end

Figure 4: Algorithm Send Request.

Example: Consider a folded unidirectional bus archi-
tecture (Fig 1) with n = 10 processors. Suppose that
processors P0 and P2 send resource requests at time
0, P7 at time 8, P1 at time 11, P9 at time 16, and P8
at time 22. Assume that all requests are for the same
resource. We describe the step-by-step operation of
our algorithms using Table 1.

At time 0, P0 and P2 send request messages. As
per function Send Request, both processors set their
my turn variables to 0, increment their next turn vari-
ables, and initialize earliest to 2D + 1 = 37. In the
next 7 time steps, their messages travel towards the
right on the upper segment of the folded bus. At time
step 8, P2's message becomes available at P9's receiver.
This causes P9 to update its next turn and earliest

variables as outlined in function Receive Request. Si-
multaneously, in step 8, P7 sends a request. In steps 9
through 17, P2's message travels towards the left in the
lower segment causing variables in all the processors to
be updated. Each processor increments next turn and,
if necessary, updates earliest. Also, observe, that P7
increments its my turn variable in step 10 since it has
a lower priority than P2. However, P0 does not change
its turn in step 17 since it has higher priority than P2.
In the mean time, P1 sends a resource request in step

11 and its next turn variable is subsequently updated
when P2's message passes through in step 16. The
messages from P0,P7, and P1 make their appearances
at P9 at steps 10, 11, and 20, respectively. In subse-
quent steps, these messages travel towards the left in
the lower segment updating variables as speci�ed in
Receive Request. Notice that when a message passes
the processor from which it originated, no change is
made to the processor's variables (e.g., P2 in step 15,
P0 in step 19, P7 in step 13, and P1 in step 28). Fi-
nally, we observe that the messages from P9 and P8,
which were to be sent at steps 16 and 22, respectively,
never get sent in our snapshot! This is because the
value of the earliest variable in those processors at the
speci�ed times are greater than the time step (e.g.,
the earliest variable at step 16 in P9 is 44 and 44 >
16). Observe, that on completion, all processors have
a local next turn value of 4 and an earliest value of 48.
The four processors that got their requests out before
receiving any requests (i.e., P0, P1, P2, and P7) have
been given unique turns according to their priorities.

Lemma 1 If the windows of vulnerability for two pro-

cessors overlap, then both processors are scheduled

consistently with respect to each other.

Proof Let Pi and Pj be two processors whose
windows overlap. Without loss of generality, assume
that Pi makes its request �rst at time ti. Since Pj

made an overlapping request, the request must have
been made at time tj such that ti � tj � ti + dij
(Rule 3). Pj 's request reaches processor Pi at time
tj + dji � ti + dij + dji � ti + 2D. Therefore, Pi re-
ceives Pj 's request in its (Pi's) window of vulnerability
and vice versa. Since processors are prioritized con-
sistently throughout the network, the turns allocated
to each processor are consistent with respect to each
other; e.g., if j < i, then Pi's turn will be incremented
whereas Pj 's turn will remain the same. 2

Theorem 1 The algorithm presented above guaran-

tees mutual exclusion.

Proof We show that di�erent processors requesting
the same resource will be assigned a \turn" for that
resource such that each processor is assigned a di�er-
ent turn. First, we show that any set Sj of requests
for resource j over some period can be partitioned into
subsets S1

j ; S
2
j ; : : : ; S

k
j , such that the windows of vul-

nerability corresponding to set Sk
j all overlap with each

other and do not overlap with windows of vulnerabil-
ity from any Sl

j , l 6= k. If this is not true, there must
exist a triple of requests from Pi, Pj , and Pk such that

Time P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
< 0 (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-) (0,-,-)
0� 7 (1,0,37) | (1,0,37) | | | | | | |
8 | | | | | | | (1,0,44) | (1,-,37)
9 | | | | | | | | (1,-,37) |
10 | | | | | | | (2,1,44) | (2,-,37)
11 | (1,0,48) | | | | (1,-,37) | (2,-,37) (3,-,44)
12 | | | | | (1,-,37) | (3,2,44) (3,-,44) |
13 | | | | (1,-,37) | (2,-,37) | | |
14 | | | (1,-,37) | (2,-,37) (3,-,44) | | |
15 | | | | (2,-,37) (3,-,44) | | | |
16 | (2,0,48) | (2,-,37) (3,-,44) | | | | |
17 (2,0,37) | (2,1,37) (3,-,44) | | | | | |
18 | (3,1,48) (3,1,44) | | | | | | |
19 | (4,1,48) | | | | | | | |
20 (3,0,37) | | | | | | | | (4,-,48)
21 | | | | | | | | (4,-,48) |
22 | | | | | | | (4,3,48) | |
23 | | | | | | (4,-,48) | | |
24 | | | | | (4,-,48) | | | |
25 | | | | (4,-,48) | | | | |
26 | | | (4,-,48) | | | | | |
27 | | (4,2,48) | | | | | | |
28 | | | | | | | | | |
29 (4,0,48) (4,1,48) (4,2,48) (4,-,48) (4,-,48) (4,-,48) (4,-,48) (4,3,48) (4,-,48) (4,-,48)

Table 1: An illustration of the values of the variables in each processor as a function of time. Each table entry is a
triple consisting of the next turn, my turn, and earliest variables (in that order) contained in the given processor at a
given instant of time. A \|" indicates that there was no change in the variables belonging to a processor relative to
the previous time step.

(i) Pi and Pj 's windows overlap. (ii) Pj and Pk's win-
dows overlap. (iii) Pi and Pk's windows do not overlap.
Without loss of generality, assume that ti < tj < tk.
Note that tj � ti + dij and tk � tj + djk implying
that tk � ti + dij + djk � ti + 2D. Thus, Pi and Pk's
windows do overlap, and the hypothesis is proved by
contradiction. Since all the requests in subset Sk

j have
mutually overlapping windows, they are all scheduled
consistently with respect to each other (Lemma 1).
2

3.2 A Timestamp-Based Algorithm

Since priorities are hard-wired into the algorithm
of the previous section, the mutual exclusion protocol
described in the previous section is consistently biased
against low priority (i.e., higher numbered) processors.
Thus, the algorithm is not fair since, even if the request
from a lower priority site originated earlier than that
of a higher priority site, the higher priority site may be
granted the mutual exclusion request before the lower
priority site. For example, every time Pi and Pj , i < j,
place requests so that their windows overlap, Pi gets
access to the resource before Pj even if tj < ti. In
this section, we present an algorithm that operates on
a First Come First Served (FCFS) basis; i.e., if Pj

places a request before Pi, it gets earlier access to the
resource even if their windows overlap. We revert to
the priority scheme of the previous section in the rel-

atively unlikely event that several processors place a
request at the same time. Algorithm Receive Request

(Figure 5) utilizes the predictability of delays in an
optical bus to determine the time of request of a mes-
sage based on the time that the message is received
at a processor. For example, if Pi receives a request
message from Pj at time t, Pj 's message must have
originated at time t� dji. If this quantity is less than
ti, the time at which Pi sent its message, Pj gets access
to the resource before Pi.

Theorem 2 The algorithms presented above guaran-

tee mutual exclusion and fairness.

Proof Mutual exclusion is guaranteed by reason-
ing identical to that in Theorem 1. The timestamp
technique described above clearly causes requests to
be handled in an FCFS fashion. 2

We note that the algorithms can be easily extrapo-
lated to other optical networks by choosing appropri-
ate values for dij .

3.3 Performance Analysis

In this section, we analyze the performance of the
Timestamp algorithm of the previous section assum-
ing the folded bus architecture. We begin by de�ning
some performance measures for mutual exclusion al-
gorithms. Our de�nitions are adapted from those in
[4].

Receive Request(TIME t, Proc ID i, Resource ID r, Time ti)
begin

if (there is a resource req msg at Pi's receiver at time t)
// assume that requests originating at Pi are ignored.
begin

RECV(message);
Processor ID j = message.getProcID();
Resource ID s = message.getResourceID();

if (r = s) then
begin

if (t� dji < ti) then my turn[r]++;
elseif (t� dji = ti and j < i)

then my turn[r]++;
next turn[r]++;

end

else // r 6= s

//Ensure that Pi sends any future requests for s
// After j's window of vulnerability has expired.
begin

earliest[s] = max(t� dji + 2D + 1, earliest[s]);
next turn[s]++;

end

end

end

Figure 5: Algorithm Receive Request.

In order to determine the synchronization delay
SD, we assume that when a processor releases a lock,
it broadcasts a release message to all the other pro-
cessors. On a folded bus, this takes a minimum of
n units (for Pn�1) and a maximum of 2n � 2 units
(for P0 or P1). To determine the throughput TH , we
assume that a processor spends E time units in a crit-
ical section. Then, TH = 1=(SD + E). Appropriate
values for SD can be substituted to obtain minimum
and maximum throughput. Next, we present best and
worst case analyses for response time RT for some ar-
bitrary processor Pi. The best case is when the lock is
not held by any other processor and no other processor
requests the lock during Pi's window of vulnerability.
In this case, RT = 2D +E. Alternatively, if we make
the common assumption that in the best case, Pi has
to wait for a single processor Pj to release the lock,
RT also includes the remaining execution time of Pj

(E=2 on the average) and the synchronization delay
after Pj releases the lock (approximately 3n=2 on the
average). Then RT = 2D + 3=2E + 3n=2. In the
worst case, all processors request the resource at the
same instant of time and Pi's request receives the low-

est priority (i.e., i = n� 1). So, after waiting for the
window of vulnerability to expire, Pn�1 must wait for
the remaining n�1 processors to execute and to incur
their synchronization delays before perfoming its own
execution. Here,

RT = 2D + nE + 2n� 2 + �n�2
i=1 (2n� i� 1)

= 2D + nE + 3=2n2 � 3=2n� 1

Note that P0 has SD = 2n� 2, while an arbitrary Pi

has SD = 2n� i� 1.

References

[1] K. Li, Y. Pan, S.Q. Zheng, \Pipelined TDM optical
bus with conditional delays," Optical Engineering,
vol. 36, pp. 2417{2424, Sept. 1997.

[2] D.C. Ho�meister et al, \Lightning network and
system architecture," in Parallel Computing us-

ing Optical Interconnections (K. Li, Y. Pan, S.Q.
Zheng, ed.), Kluwer Academic Press, 1998.

[3] K. Li, Y. Pan, S.Q. Zheng, ed., Parallel Computing

using Optical Interconnections. Kluwer Academic
Press, 1998.

[4] M. Singhal, N. Shivaratri, Advanced Concepts in

Operating Systems. New York: McGraw-Hill, 1994.

[5] Y. Pan, \Basic Data Movement Operations on the
LARPBSModel," in Parallel Computing using Op-

tical Interconnections (K. Li, Y. Pan, S.Q. Zheng,
ed.), Kluwer Academic Press, 1998.

[6] S. Pavel, S.G. Akl, \Computing the Hough
Transform on Arrays with Recon�gurable Optical
Buses," in Parallel Computing using Optical In-

terconnections (K. Li, Y. Pan, S.Q. Zheng, ed.),
Kluwer Academic Press, 1998.

[7] Z. Guo et al, \Pipelined communication in opti-
cally connected arrays," Journal of Parallel and

Distributed Computing, vol. 12, no. 3, pp. 269{282,
1991.

[8] C. Qiao, R. Melhem, \Time-Division Optical
Communications in Multiprocessor Arrays," IEEE
Transactions on Computers, vol. 42, pp. 577{590,
May 1993.

