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Abstract. An address decoder is a small hardware unit that uses an
address to index and place the data into memory units including cache
memories. In current CPU cache designs there is a single decoder unit
which serves to place data into the cache. In this paper we describe
a technique to reduce contention on CPU’s caches through the use of
multiple address decoders. We argue that by using multiple decoding
techniques better data placement can be achieved and the CPU cache
can be better utilized. We present an overview of an instrumentation
tool developed to collect fine-grained data traces and a technique for
virtually splitting caches using separate address decoders. Our results
demonstrate the feasibility and the impact of virtual cache splitting.
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1 Introduction

The CPU-Memory speed gap persists to this day while cache designs remain vir-
tually unchanged. The processor-memory speed gap refers to the ever increasing
speed of processors when memory access speeds are lagging. This results in the
CPU sitting idle waiting for requested data to be brought from main memory.
To reduce the speed gap computer architects introduced CPU caches.

A CPU’s cache is a fast but space-limited storage unit that serves as an
intermediary place holder for data that is requested by the CPU. The speed
difference between main memory and a CPU’s cache is primarily due the design
and due to their distance to the CPU.

The introduction of caches diminished the negative effects of the speed-gap,
but it was soon realized that to further improve cache effectiveness it is worth-
while to explore different placement and replacement policies. This led computer
architects to introduce multi-level caches, higher associative caches, better re-
placement techniques, etc.

As software became more complex and the average applications’ memory
footprint increased, a CPU’s cache exhibited greater cache thrashing due to
the increased data contention per cache line. Several studies explored various
addressing schemes to improve this behavior [1–5], but none have addressed the
issue from a data-type perspective.



1.1 Cache Placement

It is important to understand the components of a computer system which drive
cache data placement because they are the driving factor of cache related per-
formance issues. At the top level we have page placement driven by the kernel.
The physical pages assigned by the kernel relate to physical memory which maps
physical addresses to the application’s virtual space. In modern systems a shared
and last level cache (LLC) is indexed using a data’s physical address. This allows
the system to reduce data and instruction duplication across multiple cores and
reduces address translation cost.

Processes see only their own virtual space. Private level caches (e.g., L1
caches) are indexed using the virtual address. Depending on the data layout this
becomes a factor behind performance issues related to private level caches. The
virtual space data layout is controlled by three agents: the compiler, the user,
and the run-time system’s memory allocator. The compiler reorders static data
usually placed within the stack and the uninitialized sections. The user exhibits
control over structure data placement. The run-time system controls dynamic
data allocation and generally impacts fragmentation and an application’s mem-
ory footprint. These factors determine data’s virtual address placement.

At the lowest level we have the cache memory controller which controls where
the data is to reside once requested by the CPU. The design is fairly simple,
depending on the cache level, an address decoder’s input is either a virtual or
physical address. The decoder translates the address to determine the cache line
to index. Depending on the cache size, line size, and a cache’s associativity, fixed
number of bits are used to index the cache. It is important to note that for all
data-types the same addressing scheme is used because in todays processors only
a single decoder is used.
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Fig. 1. A data’s address and its corresponding bits used to index into the

cache.

Figure 1 shows how a decoder uses bits of an address to search for data in
the cache. For example assume an address space of 2N bytes and a cache size of
2n+b bytes (with 2n lines and 2b bytes per line). An address decoder uses m bits
out of the N address bits to locate a set with k lines (k-way associative), where
m = n− log2(k), and we use b additional bits to locate a byte. This means that
N −m− b bits are used as the tag.

1.2 Trace collection and simulation

In order to observe how an application utilizes a CPU’s cache the traditional
miss-rate statistics are not enough. A miss-rate statistic is a good measure if



we wish to obtain a general picture of an application’s impact on the cache;
however, to determine cache utilization we must collect statistics for each cache
set. To measure the effects of different data-types on cache utilization we must
collect enough information about each cache access of an application and this
information can be used to evaluate newer cache designs that may improve cache
performance based on accesses to specific data objects. This is the focus of our
research and the focus of this paper.

Therefore make three key contributions:

1. We describe a tool that allows us to track every memory access and relate
it back to source level object names. This information can be used to an-
alyze functions, and data structures that cause most memory performance
bottlenecks.

2. We describe a method for separating objects into different cache partitions to
minimize conflicts. More specifically we show the performance gains achieved
by separating stack, heap, and global areas of applications into separate cache
partitions.

3. We show how to adjust the size of cache partitions allocated for each program
data segment and how proper selections of these sizes is important to achieve
improved performance.

The rest of the document is organized as follows; in Section 2 we will review
related work. There has been much work done in the area of improving cache
utilization, reducing cache miss rates, and cache designs to improve overall sys-
tem performance. In section 3 we will provide a basic overview of the tools that
we use and our experimental methodology. In order to obtain detailed informa-
tion we rely on trace-driven cache simulation. As part of our research we have
developed a set of tools to facilitate this research. In section 4 we present our
results. In section 5 we will offer our conclusions, and finally in section 6 we will
discus future research direction.

2 Related Work

Improving cache placement has been discussed extensively from both the soft-
ware and hardware perspective. Compiler research and memory allocation tech-
niques address the software aspect of optimal data placement [6–9]. Hardware
research concentrates on reducing cache conflicts by means of applying various
cache indexing schemes or introducing additional hardware. The ultimate goal
of either research is performance optimization.

Over the past decade several researchers reported on using various indexing
schemes to reduce overall cache conflicts. In [10] several of these techniques have
been evaluated in terms of their overall applicability. The conclusion is that cache
indexing scheme are application dependent and thus their performance gains are
variable.

From a cache’s perspective achieving optimal placement generally falls within
two categories: optimal indexes and dynamic cache remapping.



2.1 Optimal Indexing

Assume an application’s trace is known at runtime. An optimal index consists
of selecting best possible bits as index bits (see Figure 1) that map the address
to a cache set. In a more general way this can be viewed as a hashing function.
Therefore the goal is to find bits which define a perfect hashing function. How-
ever, there are two shortcoming with this approach. Firstly for the majority of
these approaches the trace must be known and secondly finding a perfect hashing
function is NP-complete [10].

2.2 Dynamic Cache Remapping

The other approach is by introducing additional hardware units. Higher asso-
ciative caches lead to better cache utilization and reduction of cache misses.
Increasing a cache’s associativity allows multiple data elements to map to the
same index. This also means that replacement functions must be introduced
that lead to greater complexity, increased access delays and cost. We must note
that higher associativity does not predominate in higher level caches (i.e., caches
closer to the CPU). Even in modern processors higher level (L1) caches exhibit
2-way or 4-way associativity. Therefore researchers proposed dynamic relocation
of addresses through additional hardware units.

Column Associativity In [1], a technique known as column associative caches
is proposed to reduce misses in directly mapped (DM) caches. In this technique
a cache is viewed as DM and if the element is not found then the cache is viewed
as 2-way associative. This provides higher associativity only when needed.

Adaptive Caches In this approach conflicting data items are relocated to new
cache lines based on two history tables [5]. The two tables keep a list of most
recently used set references set reference history table (SHT), and an OUT table
that maintains indexes for items evicted from heavily referenced sets. The idea
is to relocate items from heavily accessed sets (maintained in SHT) to new sets
and the new set indexes are kept in OUT. The performance of this technique
depends on the size of the two tables.

2.3 Cache Splitting

In our previous work we discussed the feasibility of splitting the data cache into
array specific and scalar specific data caches [11]. This technique should not be
confused with todays instruction and data split caches which are common in
modern processors. Splitting data caches into array and scalar caches reduces
cache conflicts commonly occurring between high spatial locality structures such
as arrays and low spatial locality structures such as dynamic elements [11].

There are several observable correlations with a poorly utilized cache. Be-
cause cache performance relates to cache utilization, an underutilized cache im-
plies poor performance. It was reported in [12] that cache accesses remain highly



non-uniform even with increased associativity. High non-uniformity implies that
majority of data items are mapped to a small number of cache sets. This observa-
tion has a couple of implications: power is wasted due to unused cache lines, and
mapping of multiple data items to a subset of cache implies higher contentions
to those sets, leading to higher miss rates even when other sets are not used.

Virtual Cache Splitting In this paper we present a technique to virtually split
caches using multiple address decoders. As previously explained it is possible to
vary data mapping based on an indexing scheme. We make several assump-
tions regarding the feasibility of this approach. We assume that the architecture
provides new load and store address instructions. These instruction simply in-
dicate which decoder to use. The use of these instructions also assumes that
the compiler technology can differentiate different object types and use differ-
ent decoders. For this paper, we identify and use different decoders for stack,
heap, globals, etc. These assumptions are not far fetched, because manipulating
stack frame pointers and managing heap sections is a fundamental task of any
compiler.

Fig. 2. Multiple Address Decoders

Figure 2 depicts the use of multiple address decoders. It is for illustration pur-
poses only because to address 3

4 of a cache we can use 3 decoders each addressing
1
4 , thus minimizing the hardware needed by the decoders.

3 Simulation Methodology

3.1 Introduction

Our simulation incorporates several tools developed for the specific purpose of
this research. We rely on a binary instrumentation tool called Gleipnir [13] to



provide the detailed trace information required for our study. Our cache simula-
tor is based on DineroIV [14] a configurable trace driven simulator. Our modifi-
cation are small in that the simulator takes into account additional information
provided by Gleipnir.

3.2 Gleipnir

Gleipnir is built on top of Valgrind [15], a binary instrumentation framework.
It is similar to the standard Valgrind tools such as Lackey, a basic instruction
tracing tool and Massif a heap profiler.

Gleipnir operates on a set of events provided by Valgrind. Each event is either
an Ir, Dr, Dw, or Dm for Instruction read, Data read, Data write, or Data modify
respectively. Every instruction is recorded and traced. During the execution of
data read, write, or modify, the address is fed into a debug parser which will
search the known debug symbol table and output corresponding information
regarding source level program elements back into the trace. For static and global
variables this will suffice, however, for dynamically allocated objects Gleipnir
uses a wrapper to Valgrind’s allocation routines to intercept calls and record the
blocks. Symbol table look-up enables Gleipnir to deliver fine-grained information
for each data write, read, or modify. Every instruction is annotated with the
address to be fetched, modified, or written to; the function which caused the
access; the scope of the variable, thread that executed the code; and finally the
data element itself. See Table 1 for the format of traces generated by Gleipnir.

ACCESS TYPE ADDRESS FUNCTION SCOPE FRAME NO. THREAD VARIABLE

S 7ff000108 malloc LS 0 1 zzq args[5]
Table 1. Gleipnir’s trace line

The individual elements are easily accounted for if the variable is a global
or local (stack) data-structure or variable. The first field is the access type,
either a Load, Store, Modify, Instruction, or X (for miscellaneous instructions).
The second field is the virtual address of the data to be accessed followed by the
function name. If any symbol information exists the trace will be annotated with
the element’s scope (Local,Global, or Heap), and the element’s type (Variable or
Structure). The next two numbers indicate the elements Frame and the executing
Thread. The final value is the variable name itself.

Because Gleipnir relies on Valgrind’s internal debug parser to fetch the in-
formation applications must be compiled with the compiler’s -g flag.

3.3 Simulation

Our approach uses a modified cache simulator based on DineroIV [14]. DineroIV
is a trace driven uniprocessor cache simulator. Our extensions are based on
Gleipnir’s trace information. This allows our cache simulation to track cache
access statistics for each program data’s segment and all identified program



structures. Simulator’s output consists of cache set statistics for each function
and encountered variables. The simulations results are used for further analyses.
Table 2 shows a function cache miss summary after a Mibench patricia [16]
benchmark simulation. The output is used to identify functions with most cache
misses.

misses function name variables

105221 HEAP 0

60570 pat search 842

44613 IO vfscanf 4

43891 main 32686

28702 printf fp 1

21910 str to mpn 1

21780 strtol l internal 1

14327 xsputn@@GLIBC 2.2.5 1

10996 rawmemchr 2

9624 memchr 1

4986 vfprintf 1

2211 unided 1

1114 strtof l internal 1

917 puts 1

666 printf 1

630 itoa word 1

622 memcpy 2

553 fgets 3

504 IO getline info 3

484 mpn mul 1

371 insertR 456

368 STACK 0
Table 2. Simulation results after using separate address decoders.

Because Gleipnir’s traces provide meta-data information that describe ac-
cesses based on their scope we can explore the performance impact of reserving
special areas in the cache for data within the same scope. It is now possible to
group all stack based accesses and group all dynamic accesses into reserved cache
areas. We achieve this by tracking an access scope. An instruction which is iden-
tified as a local structure or variable (LS or LV ) will use a stack decoder. A stack
decoder is different from the standard decoder in that its modulo arithmetic will
only include a fraction of total cache sets. This will force all stack based ac-
cesses to be grouped into a reserved cache area. Similarly any heap access (HB)
will use a heap decoder that groups dynamic accesses into a different portion
of the cache. Global (GV or GS ) accesses use a global decoder. The amount of
available scope information is application dependent. In addition we can track
the application expanding and retreating stack’s address, global address, and
dynamic region to account for 100% of all stack, heap, and global accesses.



4 Results

Our intent is to simulate an environment in which compilers or runtime systems
can choose decoders based on application’s specific needs. For example, an ap-
plication which predominately uses heap elements will require a larger portion of
the cache reserved for dynamic accesses. Likewise an application that uses stack
data will require larger portion of the cache reserved for its stack. This applies
to global data as well.

We claim two hypotheses: Our first hypothesis is that we can improve cache
performance by splitting the CPU cache into regions reserved for specific data
segments. Our second hypothesis is that cache region size is application depen-
dent, and they should be carefully selected to optimize cache performance. We
use a variety of MiBench benchmarks[16] to validate our hypotheses.

Using a single decoder is the standard decoding scheme in which we use
a single decoder to place data into the cache. To our knowledge all of today’s
architectures use a single decoding scheme which makes no distinctions of fetched
data types. Mibench benchmarks are applications with relatively small memory
footprints; therefore, we have reduced the cache size to 32k bytes and 32 bytes
per block line.

Fig. 3. Jpeg’s stack, heap, and global references

Fig. 4. Jpeg’s stack, heap, and global misses

Figure 3 depicts reference counts for the benchmark jpeg. The X axis are
the number of references during program execution. The Y axis is the percent
of total references for stack, heap, and global data. It can be observed that the
majority of accesses are stack references (red). They consume on average over
80% of all references. Figure 4 shows the number of misses for each segment per



10k misses. It can be observed that in the first 40% of all misses the stack misses
exhibit a greater miss count than in the later 60%. Interestingly our results in
Figure 4 show that majority of misses occur between heap data. This implies
that references to stack data are evicting heap data.

Figure 3 and Figure 4 also show that an application may exhibit distinct
phases of segment utilization.

After running several mibench benchmarks we observed that separating data
segments into reserved cache areas benefits the overall cache behavior.

Figure 5 shows the overall miss reduction for a variety of mibench bench-
marks. In all but two benchmarks a split cache design improves overall behavior.
The two benchmarks that do not benefit from a split cache design are basicmath
and bitcount. The reason is that both benchmarks operate strictly from the stack
segment. This means that any reduction in cache space for the stack will have
diminishing overall cache effects.

Fig. 5. Jpeg’s stack, heap, and global misses

Figure 6 shows normalized cache effects. It can be observed that on average
a split cache design shows a ≈25% improvement. The outliers are basicmath and
bitcount benchmarks.

Fig. 6. Jpeg’s stack, heap, and global misses



4.1 Design Cost

We make two assumptions regarding our cache design. First, we require that
there exists architectural support which allows the compiler or runtime system
to choose which decoder to use. Additional decoder cost are minimal because a
decoder requires simple logic to build. In most cases a register and multiplexer
will suffice to build a decoding unit.

The second assumption is that required compiler support exists. Managing an
application’s stack top address and the global address segment is a fundamental
task of any compiler; therefore we feel that that these assumptions are not far
fetched in terms of cost or future system implementation.

5 Conclusions

In this paper we started with two hypotheses. Our first hypothesis claimed that
we can reduce cache misses by reserving areas in data cache (or splitting cache)
for different data segments. Our second hypothesis claimed that because appli-
cations behave differently and different data segments vary in size for different
application, no single cache splitting technique will satisfy all applications. In
this paper we have described a technique to decouple data access patterns into
stack, heap, and global accesses. Our experiments show the potential to improve
cache performance by decoupling accesses based on data regions. We used trace
driven cache simulation experiments to simulate data caches split into different
regions, each portion reserved for a specific data access region (e.g., stack, heap
and globals). Using these experiments we validated these hypotheses.

In this research we relied on two tools: Gleipnir [13] and DineroIV [14]. Gleip-
nir was developed by us to collect fine-grained trace information on memory
accesses and relate them back to source level objects. We used the fine grained
information for identifying accesses to different data segments like stack, heap
and globals. It should be noted that, to our knowledge, no other tool or set of
tools that can provide the detailed information on memory access as Gleipnir.
Gleipnir can be used for other purposes beyond that described in this paper.

DineroIV is a trace driven cache simulator which was modified for our purpose
so that we could split data caches into different regions. We outlined how this can
be achieved using multiple address decoders, one per region. While this requires
a very modest additional hardware, our experiments show that the performance
gains resulting from the elimination of cache conflicts outweigh the additional
hardware investment.

6 Future Work

6.1 Structure based cache splitting

Gleipnir’s traces provide meta-data information about local variables and local
structures. They are identified with either a V for variable or S for structure.



A structure may be an array or a dynamically allocated struct type. Knowing
this information we should be able to split data caches by reserving sections for
specific data types. In our future experiments we will explore the feasibility of
reserving structure specific cache regions.

6.2 Dynamic Cache Partitioning

Our experiments rely on static cache configuration. This means that our simu-
lation must decide beforehand which type of partitioning to use. Our cache par-
titions are set based on previous simulation analyses of an application’s stack,
heap, or global segment behavior. While for many practical purposes this may
not be ideal it still shows the feasibility of segment based cache partitioning. We
are actively exploring an effective and cost-friendly design to dynamically adjust
our cache partition sizes depending on application’s run-time behavior.

6.3 Multithreaded Cache Simulations

Valgrind’s framework enables Gleipnir to collect trace information for multi-
threaded processes. However, Valgrind segregates memory accesses on a per
thread basis. No information about the order of accesses of multiple threads is
maintained. We are currently exploring models for interleaving thread accesses in
order to create a simulation of conflicts among multiple threads. Another related
problem is Gleipnir’s use of virtual addresses instead of physical addresses. Use
of physical addresses is necessary for two reasons: shared data or segments may
have different virtual addresses but same physical addresses; lower level caches
(such as L-2 or Last Level Caches) use physical addresses. We are exploring
the use of more complex, full system simulators to translate virtual addresses
generated by Gleipnir to physical addresses used by a running thread.
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