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Abstract: This paper presents an evaluation of our Scheduled Dataflow (SDF) Processor. Recent
focus in the field of new processor architectures is mainly on VLIW (e.g. [A-64), superscalar and
superspeculative architectures. This trend allows for better performance at the expense of an increased
hardware complexity and a brute-force solution to the memory-wall problem. Our research
substantially deviates from this trend by exploring a simpler, yet powerful execution paradigm that is
based on dataflow concepts. A program is partitioned into functional execution threads, which are
perfectly suited for our non-blocking multithreaded architecture. In addition, all memory accesses are
decoupled from the thread s execution. Data is pre-loaded into the thread s context (registers), and all
results are post-stored after the completion of the thread s execution. The decoupling of memory
accesses from thread execution requires a separate unit to perform the necessary pre-loads and post-
stores, and to control the allocation of hardware thread contexts to enabled threads.

The analytical analysis of our architecture showed that we could achieve a better performance
than other classical dataflow architectures (i.c., ETS), hybrid models (e.g., EARTH) and decoupled
multithreaded architectures (e.g., Rhamma processor). This paper analyzes the architecture using an
instruction set level simulator for a variety of benchmark programs. We compared the execution
cycles required for programs on SDF with the execution cycles required by the programs on DLX (or
MIPS). Then we investigated the expected cache-memory performance by collecting address traces
from programs and using a trace-driven cache simulator (Dinero-IV). We present these results in this

paper.
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1 Introduction

Multithreading has been touted as the solution to minimize the loss of CPU cycles due
to the performance gap between processors and memory, by executing several instruction
streams simultaneously. Moreover there is a consensus that multithreading, in general,
achieves higher instruction issue rates on processors that contain multiple functional units
(e.g., superscalars and VLIW) or multiple processing elements (i.e., Chip Multiprocessors)
[Butler 91], [Kavi 98a], [Krishnan 99], [Lam 92], [Tsai 99], [Wall 91].

It is necessary to find an appropriate multithreaded model and implementation to
achieve the best possible performance. We believe that the use of non-blocking dataflow
based threads are appropriate for improving the performance of superscalar architectures.
Dataflow ideas are often utilized in modern processor architectures. However, these
architectures rely on conventional programming paradigms and require complex runtime
transformation of the control-flow programs into dataflow programs. This necessitates
complex hardware to detect data and control hazards (renaming of registers and branch
prediction), reorder and issue multiple instructions.

Our architecture differs from other multithreaded architectures in two ways: i) our
programming paradigm is based on dataflow, which eliminates the need for complex
runtime scheduling, thus reducing the hardware complexity, and ii) complete decoupling of
all memory accesses from execution pipeline. The underlying dataflow and non-blocking
models of execution permit a clean separation of memory accesses (which is very difficult
to coordinate in other programming models). Data is pre-loaded into an enabled thread’s
register context prior to its scheduling on the execution pipeline. After a thread completes
execution, the results are post-stored from its registers into memory. The instruction set
implements dataflow computational model, while the execution engine relies on control-
flow like scheduling of instructions (thus, our instructions are not data driven). We have
completed the definition of the instruction set and developed an instruction level simulator.
We have translated several programs into our SDF instruction set. Using the simulator and
the benchmark programs, we compared the execution performance of our architecture with
that of conventional scalar RISC processors using DLX simulator [Hennessy 96]. The
comparison is fair since both our SDF architecture and the MIPS are single-issue
processors. We evaluated the expected cache performance by collecting address traces and
using a trace-driven cache simulator (Dinero-IV [Edler 99]).

In Section 2 we present research that is most closely related to ours. In Section 3 we
present our Scheduled Dataflow Architecture in detail. Section 4 discusses the methodology
that we used in our evaluation and shows our numerical results based on real programs.
Finally we present the concluding remarks in Section 5.

2 Related Research and Background

2.1 Decoupling Memory Accesses From Execution Pipeline

Decoupling memory accesses from the execution pipeline in order to overcome the
ever-increasing processor-memory communication cost was first introduced in [Smith 82].
Since then the concept of cache memory has been used extensively to alleviate the memory
latency problem. The gap between processor speed and average memory access time is
once again a major limitation in achieving high performance. However, increasing cache



capacities, while consuming an increasingly large silicon area on processor chips, often
results in diminishing returns. Decoupled architectures may again present a solution for
leaping over the memory wall . There seems to be a growing interest in decoupling
memory accesses from execution pipeline. We feel that combining the decoupled
architecture with multithreading allows for a wide-range of implementations for next-
generation architectures. Recently, a similar concept was the major guideline in the design
of Rhamma [Grunewald 97]. A comparison of our architecture with Rhamma can be found
in [Kavi 99a, 99b]. Rhamma uses conventional control-flow programming paradigm and
blocking threads, hence requires many more thread context switches than our non-blocking
dataflow threads. Moreover, SDF groups all Load instructions together into "preload" and
all Store instructions together into "post-store". Thus SDF outperformed Rhamma in our
analyses.

2.2 Dataflow Model and Architectures

The dataflow model and architecture have been studied for more than two decades and
held the promise of an elegant execution paradigm with the ability to exploit inherent
parallelism available in applications. However, the actual implementations of the model
have failed to deliver the promised performance. Nevertheless, several features of the
dataflow computational model have found their place in modern processor architectures and
compiler technology (e.g., Static Single Assignment, register renaming, dynamic
scheduling and out-of-order instructions execution, I-structure like synchronization, non-
blocking threads). Most modern processors utilize complex hardware techniques to detect
data and control hazards, and dynamic parallelism -- to bring the execution engine closer to
an idealized dataflow engine. It is our contention that such complexities can be eliminated
if a more suitable implementation of the dataflow model can be discovered. Some of the
limitations of the pure dataflow model that prevented its practical implementations include
the following:

Too fine-grained (instruction level) multithreading,
Difficulty in exploiting memory hierarchies and registers, and
Asynchronous triggering of instructions.

Many researchers have addressed the first two limitations of dataflow architectures [Kavi
95, 98b], [Papadopoulos 90, 91], [Takesue 87], [Thoreson 87], [Tokoro 83]. Our current
architecture specifically addresses the third limitation.

Some researchers have proposed designs in which the dataflow scheduling is applied
only at thread level (i.e., macro-dataflow), while each thread is comprised of conventional
control-flow instructions [Govindarajan 95], [Hum 95], [Sakai 93]. In such hybrid
dataflow-control flow systems, the instructions within a thread do not retain functional
properties, and hence, introduce Write-After-Write (WAW) and Write-After-Read (WAR)
dependencies. This in turn requires complex hardware to perform dynamic instruction
scheduling. In our system, the instructions within a thread still retain functional properties
of dataflow model, and thus eliminate the need for complex hardware. The results (or data)
flow from instruction to instruction, where each instruction specifies a location for the data
to be stored. Our deviation in the proposed decoupled Scheduled Dataflow (SDF) system
from pure dataflow is a deviation from data driven execution (or token driven execution)



that is traditionally used for the implementation of "pure" dataflow processors'. The data-
driven execution of dataflow program utilized in previous architectures required two cycles
per (dyadic) instructions. By scheduling dataflow instructions (akin to control-flow
execution) results in one cycle per instruction.

Using analytical models we compared SDF with hybrid architectures (e.g. EARTH
[Hum 95]) that use two processors: one (Execution Processor) for executing instructions of
a thread and a second processor (Synchronization Processor) to perform thread
synchronizations and scheduling of threads. SDF outperformed hybrid architectures both
because of the decoupling of memory accesses (not part of hybrid architectures) and
because of the elimination of WAW and WAR dependencies that exist among the
instruction of threads in hybrid architectures [Kavi 98a, 98b]; such dependencies can cause
pipeline stalls

2.3. Explicit Token Store (ETS) Architecture

Since our architecture draws heavily from previous research on dataflow system, in
general, and from the ETS model in particular [Papadopoulos 90, 91], we will describe the
ETS model in some detail here. ETS uses direct matching of operands (or tokens)
belonging to an instruction. In a direct matching scheme, storage (called frame) is
dynamically allocated for all the tokens needed by the instructions in a code block. A code
block can be viewed as a sequence of instructions comprising a loop body or a function.
The actual disposition of locations within a frame is determined at compile-time; however,
the actual allocation of frames is determined during run-time. In a direct matching scheme,
any computation is completely described by a pointer to an instruction (IP) and a pointer to
a frame (FP). The pair of pointers, <FP.IP>, called a continuation, corresponds to the tag
part of a token. A typical instruction pointed to by an IP specifies an opcode; an offset (1)
in the frame where the match of input operands for that instruction will take place; one or
more displacements (dests) that define the destination instructions that will receive the
result token(s); and input port (left/right) indicator that specifies the appropriate input arc
for a destination instruction. Consider Figure 1 for illustration.

When a token arrives at a node (e.g., ADD), the IP part of the tag points to the
instruction that contains an offset r as well as displacement(s) for the destination
instruction(s). The actual matching process is achieved by checking the disposition of the
slot in the Frame memory pointed to by FP+r. If the slot is empty, the value of the token is
written in the slot and its presence bit is set to indicate that the slot is full. If the slot is
already full (indicating a match), the value is extracted, leaving the slot empty, and the
corresponding instruction is executed. The result token(s) generated from the operation is
communicated to the destination instruction(s) by updating the IP according to the
displacement(s) encoded in the instruction (e.g., execution of the ADD operation produces
two result tokens <FP.IP+1, 3.55> and <FP.IP+2, 3.55>1 ). Instruction execution in ETS is
asynchronous since an instruction is enabled immediately upon the arrival of the input
operands. This token driven execution necessitates two cycles through the pipeline, per

"1t is often believed that dataflow means parallel execution. Dataflow model of computation only exposes the
inherent parallelism and the parallelism can only be exploited if multiple functional units or processing elements
are available. In the presence of a single processing element (or functional unit), dataflow instructions still execute
sequentially, albeit asynchronously.



(dyadic) instruction. In our model, we schedule instructions synchronously, requiring only
one cycle per instruction.
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Figure 1. ETS representation of a dataflow program execution.

3. The Scheduled Dataflow Processor

Our architecture consists of two processing units: Synchronization Pipeline (SP) and
Execution Pipeline (EP). SP is responsible for scheduling enabled threads on EP, pre-
loading thread context (i.e., registers) with data from the thread s Frame memory, and post-
storing results from a completed thread s registers in Frame memories of destination
threads. A thread is enabled when all its inputs are received: the number of inputs is
designated by its synchronization count, and the input data is stored in its Frame memory.
The EP performs thread computations including integer and floating point arithmetic
operations. In this section we will describe the two processing units in more detail.

3.1 Execution Pipeline

Figure 2 shows the block diagram of the Execution Pipeline (EP). Remember that EP
executes computations of a thread using only registers.
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Figure 2. General Organization of Execution Pipeline (EP).



Instruction fetch unit behaves like a traditional fetch unit, relying on a program counter
to fetch the next instruction’. We rely on compile time analysis to produce the code for EP
so that instructions can be executed in sequence and assured that the data for the instruction
is already available in its pair of source registers. The information in the Register context
can be viewed as a part of the thread continuation: <IP, FP>, where FP refers to a register
set assigned to the thread during its execution. Decode (and register fetch) unit obtains a
pair of registers that contains (up to) the two source operands for the instruction. Execute
unit executes the instruction and sends the results to write-back unit along with the
destination register numbers. Write-back unit writes two values to the register file.

As can be seen, the Execution Pipeline (EP) behaves very much like a conventional
pipeline while retaining the primary dataflow properties; data flows from instruction to
instruction. Moreover, the EP does not access data cache memory, and hence require no
pipeline stalls (or context switches) due to cache misses.

3.2 Synchronization Pipeline

Figure 3 shows the organization of the memory access primary pipeline of the
Synchronization Processor (SP).
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Figure 3. The Memory Access Pipeline.
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Here we process pre-load and post-store instructions. The pipeline consists of the
following stages: Instruction Fetch unit fetches an instruction belonging to the current
thread using PC. Decode unit decodes the instruction and fetches register operands (using
Register Context). Effective Address unit computes effective address for memory access
instructions. LOAD and STORE instructions only reference the Frame memories’ of
threads, using a frame-pointer (FP) and an offset into the frame; both of which are
contained in registers. Memory Access unit completes LOAD and STORE instructions.
Pursuant to a post-store, the synchronization count of a thread is decremented. Finally,
Write-Back unit completes LOAD (pre-load).

In addition to accessing memory (for pre-load and post-store), Synchronization
Pipeline (SP) holds thread continuations awaiting inputs and allocates register contexts for

2 Since both EP and SP need to execute instructions, our instruction cache is assumed to be dual ported. Since
instruction memory causes no coherency related problems, it may be possible to utilize separate cache memories
for EP and SP. This is not unlike most Superscalar systems.

? Following traditional dataflow paradigm, we use I-Structure memory for arrays and other structures.



enabled threads. In our architecture a thread is created using a FALLOC instruction.
FALLOC instruction creates a frame and stores instruction pointer (IP) of the thread and its
synchronization count (Synch Count) indicating the number of inputs needed to enable the
thread. When a thread completes its execution and "post-stores" results (performed by SP),
the synchronization counts of awaiting threads are decremented.

An enabled thread (when the Synch Count becomes zero) is scheduled by allocating a
register context to it, and "pre-loading" the registers from its Frame memory. In order to
speed up frame allocation, SP pre-allocates fixed sized frames for threads and maintains a
stack of indexes pointing to the available frames. The Execution processor (EP) pops an
index from the stack and uses it as the address of the frame (i.e., FP) in response to a
FALLOC instruction. SP pushes de-allocated frames when executing FFREE instruction
after finishing post-stores of completed threads. The register sets (Reg. Context) are
viewed as circular buffers for assigning (and de-allocating) to enabled threads. These
policies permit for fast context switches and thread creations. A thread moves from "pre-
load" status (at SP), to "execute" status (at EP) and finishes in "post-store" status (at SP).
We use FORKSP to move a thread from EP to SP and FORKEP to move a thread from SP
to EP. FALLOC and FFREE take 2 cycles in our architecture. FORKEP and FORKSP take
4 cycles to complete. This number is based on the observations made in Sparcle [Agarwal
93] that a 4-cycle context switch can be implemented in hardware. Figure 4 shows a more
complete view of the SP.
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Figure 4. Overall Organization of the SP

The scheduler unit is responsible for determining when a thread becomes enabled and
allocating a register context to the enabled thread. Scheduler will also be responsible in
scheduling preload and post-store threads on multiple SPs and preloaded threads on
multiple EPs in superscalar implementations of our architecture. We are currently
developing the superscalar implementation of SDF. Note that the scheduling is at thread
level in our system, rather than at instruction level as done in other multithreaded systems
(e.g., Tera, SMT), and thus requires simpler hardware.

Notice how a thread is identified differently during its life cycle. Initially, when a
thread is created, a frame is allocated. Such a thread (called Waiting) will be identified by a
Frame Pointer (FP), an Instruction Pointer (IP) that points to the first instruction of the
thread, usually a pre-load instruction, and a synchronization count (Synch Count) indicating



the number of inputs needed before the thread is enabled for execution. When the
synchronization count becomes zero, the thread is moved to the Enabled list, following the
allocation of a Register Context. At this time, the thread is identified by a FP, a Reg.
Context, and a IP. Once a thread completes the "pre-load" phase, it is moved to the Pre-
Loaded list and handed off to the Execution Processor (EP). At this time, Register Context
and the IP identify threads. The IP will now point to the first instruction beyond the pre-
load (referring to the first executable instruction). After EP completes the execution of a
thread, the thread is then moved to the Post-Store list and handed off to the SP for post-
storing . At this time a Register Context and an IP identify the thread. The IP points to the
first post-store instruction.

3.3 Instruction set architecture

The latest version of SDF instruction set can be found in [Giorgi 99]. Our instructions
(Figure 5) are very similar to those of ETS model [Papadopoulos 90, 91]. The difference
lies in the specification of destinations for the result generated by an instruction. In ETS, the
destinations refer to the destination instructions (and the instruction specifies a memory
location where operands for that instruction are matched). In scheduled dataflow the
destinations refer directly to the operand locations (one of a pair of source registers) of the
destination instructions. This change eliminates the need for fetching an instruction twice
for dyadic instructions as in ETS. This change also permits the detection of RAW data
dependencies among instructions in the Execution Pipeline and the application of data
forwarding scheme in pipelines for sending results directly to the successor instructions.
The result forwarding is not applicable in ETS since instructions are token-driven (execute
asynchronously), and an instruction is not allowed to enter the execution pipeline until both
operands were generated and written into the operand memory.
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Figure 5: Instruction Format
3.4. Programming Example.

To describe the "scheduling" of instructions in our architecture, we show how our SDF
code for Figure 1 may look like. We will view each frame memory location used for
matching tokens in ETS as a pair of registers -- a pair consists of even-odd registers. For
example, RR6 refers to registers R6 and R7 within a specified thread context. The two
source operands destined for a SDF instruction are stored in the pair of registers assigned to
that instruction -- data is stored in either the left or right half of a register pair by a
predecessor instruction. Unlike in ETS, in our architecture, an instruction is not scheduled
for execution immediately when the operands are matched. Instead, operands are saved in
the register-pair associated with the instruction and the enabled instruction is scheduled for
execution at a later time.



ADD RR2, R4, R6
NEG RR4,R9, R12
SUB RR6 R14,R17

Assuming that registers R2 and R3 contain the source operands for ADD, when
scheduled, this instruction adds the contents of these two registers and stores the result in
R4 and R6. Register R4 is one (only one) of the source operands for NEG instruction.
Likewise the operands for SUB are stored in the pair R6, R7. Registers R9, R12, R14, R17
indicate the destinations for the results generated by NEG and SUB instructions which are
not shown in Figure 1. Note that these instructions still retain the functional nature of
dataflow -- data flows from instruction to instruction and there are no write-after-read
(WAR or conceptually equivalent anti-) and write-after-write (WAW or equivalent output-)
dependencies. Our deviation is from token driven models of previous dataflow
implementations. We use "instruction driven" paradigm by scheduling instructions.

The code shown above is for the Execution Pipeline (EP). The Synchronization
Processor (SP) is responsible for scheduling enabled threads on EP, pre-loading thread s
context (i.e., registers) with data from the thread s Frame memory, and post-storing results
from a completed thread s registers in Frame memories of destination threads.

To illustrate the preload concept, consider the code segment of Figure 1 and the SDF
code shown previously. Assume that the code block of Figure 1(viewed as a thread)
receives the two inputs for ADD from other threads. Each thread will be associated with a
frame and the inputs to the thread are saved in the frame until the thread is enabled for
execution (based on its synchronization count, as described later). When enabled, a register
context is allocated to the thread and the input data for the thread from its frame memory is

preloaded into its registers.

LOAD RFP|2, R2
LOAD RFP|3, R3
LOAD RF P[4, R32
LOAD RFP |5,R35

Assuming that the inputs for the thread (or ADD instruction) are stored in its frame
(RFP) at offsets 2 and 3, the first tow LOAD instructions preload te thread with required
data. Consider that the result generated by SUB in our code example (in R17) is needed by
some other thread. The last two LOAD instructions save the frame pointer and offset for
returning the results when the thread completes its execution.

STORE R17,R32|R35

This instruction transfers (or post-stores) the result of the current thread (i.e., from

SUB, in R17) to a frame pointed to by R32 at a frame-offset contained in R35.

3.5 Code partitioning
The SDF assembly code is the product of our compiler (SDFC). The compiler takes

care of partitioning the high-level source code in order to create the SDF threads. Each
thread consist of three portions: pre-load code, execute code and post-store-code [Fig. 6].
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Figure 6: The three code portions of an SDF thread.

When a thread is created (using FALLOC), a frame allocated for storing the inputs of
the thread. An instruction pointer (IP) indicating the first executable instruction of the
thread and a synchronization count indicating the number of inputs needed before the
thread becomes enabled for execution are stored in the allocated frame. Once a thread
receives all the necessary inputs, the thread is allocated a register context. The pre-load
code then moves the data from a thread’s frame memory into its registers. The execute
portion will perform computations using only the registers, while the post-store code will
store the thread’s results in other threads’ frames.

4 Evaluation of the Decoupled Scheduled Dataflow Architecture

Previously, we relied on analytical models and Monte Carlo simulations to compare
the proposed architecture with Rhamma, ETS, EARTH and conventional RISC processors
[Kavi 99a-b]. In this work we evaluate our architecture based on the execution of complete
programs. We developed an instruction level simulator for Scheduled Dataflow
architecture. At present the simulator assumes a perfect cache. However, we will show the
cache behavior of our architecture by using address traces from our simulator. Concurrent
with the simulator, we have also developed a backend to a Sisal [Bohm 91], and used
MIDC as intermediate language [Shankar 95, 96] to generate code for our architecture®,

Using the simulator we were able to compare the performance of the Scheduled
Dataflow system with a single threaded RISC architecture. We also investigated the effect
of parallelism (i.e., number of enabled threads), thread granularity (average run-lengths of
the execution threads on EP) on the performance of our architecture. Using address traces
from our simulator, we investigated the expected cache behavior

4.1 Execution Performance Of Scheduled Dataflow.

In this section we compare the execution cycles required for Scheduled Dataflow with
those for a conventional RISC system using DLX simulator [Hennessy 96]. The programs
used for this comparison include a Matrix Multiply, Livermore Kernel 5, Fibonacci and a
code segment for picture zooming application [Terada 99]. We used generated code for
complete programs. We used dlxcc to generate DLX code in our comparisons. For both

* At this time our backend only generates partial code. We extend this with hand-coding to generate complete
programs for SDF simulator. The backend does not perform any optimization (and produces rather poor code).



DLX and SDF we used a degree of 5 loop unrolling for Matrix Multiply, Livermore Loop 5
and Zoom. Since DLX is single threaded, only one thread was used for all programs. We
used 5 threads for Scheduled Dataflow when executing Matrix Multiply, Livermore Loop 5
and Zoom programs. The results are shown in Table 1.

Table 1: Execution Behavior Of Scheduled Dataflow

Matrix Multply Livermore 5
N DLX SDF Speed | Loop=N DLX SDF Speed
Cycles Cycles UP Cycles Cycles Up

25%25 966090 306702 3.150 50 87359 56859 1.536

50*50 7273390 2159780 3.368 100 354659 215579 1.645

75*75 24464440 6976908 3.506 150 801959 476299 1.684

100*100 57891740 16175586 3.579 200 1429259 839019 1.703

250 2236559 1303739 1.715

300 3223859 1870459 1.724

350 4391159 2911789 1.508

400 5738459 3309899 1.734

450 7265759 4182619 1.737

Fibonacci Zoom
N DLX SDF Speed N DLX SDF Speed
Cycles Cycles UP Cycles Cycles UP

5 615 842 0.7304 [5,54 10175 9661 1.0532
10 7014 10035 0.699 |10,10,4 40510 37421 1.0825
15 77956 111909 0.6966 (15,154 97945 83331 1.1754
20 864717 1241716 0.6964 (20,20,4 161580 147391 1.0963
25 9590030 13771467 0.6964 (25,254 271175 229601 1.1811
30 1.06E+08 1.53E+08 0.6964 (30,30,4 391150 329961 1.1854
35,354 532285 448471 1.1869
40,40,4 645520 585131 1.1032

In both platforms, we assumed one cycle per arithmetic and memory access
instructions. However, if memory access requires more than one cycle (realistic caches with
cache misses) we feel that our multithreading will lead to even better performance than
conventional single threaded system. As can be seen from Table 1, SDF system
outperforms MIPS architecture when the program exhibits greater parallelism (e.g., Matrix
Multiply). Livermore loop exhibits less parallelism than Matrix Multiply due to a loop
carried dependency. Zoom exhibits moderate parallelism, but contains a significant
sequential fraction degrading the parallelism (as per Amdhal s law). Fibonacci contains no
thread-level parallellims and hence our architecture under-performs DLX. Our architecture
incurs unavoidable overheads for creating threads (allocation of frames, allocation of
register contexts) and transferring threads between SP and EP (FORKEP and FORKSP
instructions). At present, data can only be exchanged between threads by storing them in
threads’ frames (memory). These memory accesses can be avoided by storing the results of
a thread directly into another thread’ register context. Our experiments show that Matrix



Multiply needs 11, 9, 8, 7, 6 for 5, 4, 3, 2 and one thread, respectively. For this application,
we could have eliminated storing (and loading) thread data in memory by allocating all
frames directly in register sets (by providing sufficient register sets in hardware).

At this time we do not know if SDF performs better than a more recent RISC
superscalar processor with dynamic instruction scheduling (i.e., out of order instruction
issue and completion, predicated instructions). However, SDF system eliminates the need
for complex hardware required for dynamic instruction scheduling. The hardware savings
can be used to include additional register-sets, which can help in an increased degree of
thread parallelism and thread granularities.

4.2 Effect Of Thread Level Parallelism On Execution Behavior.

Here we will explore the performance benefits of increasing the thread level
parallelism (i.e., number of concurrent threads). We used the Matrix Multiply for this
purpose. We executed a 50*50 matrix multiply by varying the number of concurrent
threads. Each thread executed five (unrolled) loop iterations. The results are shown in
Figure 7. As can be expected, increasing the degree of parallelism will not always
decrease the number of cycles needed in a linear fashion. This is due to the saturation of
both the Synchronization and the Execution Pipeline (reaching nearly 80% utilization
with 10 threads). Adding additional SP and EP units (i.e., superscalar implementation)
will allow us to utilize higher thread level parallelism. The number of registers available
per context also limits on how many concurrent threads can be spawned at a time. We are
exploring techniques to enhance the thread level parallelism when multiple EP s and SP s
are available. Although not presented in this paper, we observed very similar behavior for
other data sizes with Matrix Multiply and for the other benchmarks, Zoom and Livermore
Loop 5.
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Figure 7. Effect Of Thread Level Parallelism On SDF Execution (Matrix Multiply)

4.3 Effect O Thread Granularity On Execution Behavi or



In the next experiment with Matrix Multiply, we held the number of concurrent
threads at 5, and varied the thread granularity by varying the number of innermost loop
iterations executed by each thread (i.e., degree of unrolling). The data size for Figure 8 is
50*50. Here, the thread granularity ranged form an average of 27 instructions (12 for SP
and 15 for EP) with no loop unrolling, to 51 instructions (13 for SP and 39 for EP) when
each thread executes ten unrolled loop iterations. Once again, the execution performance
improves (i.e., execution time decreases) as the thread granularity increases. The number
of registers per thread context (currently 32 pairs) is also a limiting factor on the
granularity. Our results confirm that performance of multithreaded systems can benefit
both from the degree of parallelism and coarser grained threads. Because of the non-
blocking nature and the decoupling of memory accesses, it may not always be possible to
increase thread granularity in decoupled Scheduled Dataflow (SDF). We are exploring
innovative compiler optimizations utilizing speculative executions to increase thread run
lengths.
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Figure 8. Effect Of Thread Granularity On SDF Execution (Matrix Multiply)

4.4. Utilization of the two processing units.

It may be natural to wonder if there exists a workload imbalance between the two
separate processing units (EP and SP) in our system. We collected the utilization of EP
and SP for a variety of benchmarks and input data sizes. Figure 9 shows the average
utilization rates for 4 benchmarks (the benchmark LGR is a program used heavily for
testing the correctness of the code generated by our Sisal compiler; it consists of a variety
of loops, conditional statements and case statements). As can be seen, at least in our
current environment, both EP and SP handle reasonably balanced workloads. This is not
conclusive data since at present we assume a perfect cache. In the near future, we will
collect utilization rates for EP and SP using a realistic cache.
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4.5 Cache Behavior of Scheduled Dataflow.

Tabl e 2: Cache Behavi or

Matrix Multiply | Livermore

N DLX DLX DLX SDF SDF SDF  |oop=N DLX DLX DLX SDF SDF SDF
Refs  Misses MissRate  Refs  Misses Miss Rate Refs  Misses Miss Rate Refs  Misses MissRate

25 286714 61 00002 156470 382 0.0024 | 50 22429 8 0.00036 24177 22 0.00091

50 1627928 237 000015 1094360 614  0.0006 | 100 88829 13 0.000146 91913 31 0.000337
75 5462503 530 000001 3526250 1010 0.0003 | 150 199229 17  853E-05 203249 40  0.000197
100 12910828 940 0.00007 8164640 1558 0.0002 | 200 353629 22 6.22E-05 358185 49  0.000137
250 550458 27  4.90E-05 556721 58  0.000104
300 794429 32  4.03E-05 798857 67  8.39E-05
350 1080829 36  3.33E-05 1084593 76  7.01E-05

400 1411229 41  291E-05 1413929 88  6.22E-05

450 1785629 46  2.58E-05 1786865 97  543E-05

Fibonacci
N DLX DLX DLX SDF SDF SDF
Refs Misses  MissRate Refs Misses Miss Ratt
5 260 5 0.019 134 8 0.06
10 3014 10 0.003 1702 13 0.008
15 33546 14 4E-04 19076 18 9E-04
20 372152 18 5E-05 211758 23 1E-04
25 4127350 23 6E-05 2E+06 28 1E-05
30 40975448 27 7E-07 3E+07 33 1E-06




At present our instruction set simulator does not include cache memories. In this
section, we compare the expected cache behavior of SDF programs with that of DLX. For
this purpose we generated address traces on both systems and used Dinero-IV [Edler99] to
generate cache behaviors.

In Table 2, we used 5 SDF threads for Matrix Multiply, and Livermore Loop 5
programs, but a single thread for Fibonacci program. The cache behavior for SDF programs
is very comparable to that of DLX programs. For the data in Table 2, we used direct
mapped cache with 256K bytes and a block size of 64 bytes. SDF cache behavior is similar
to cache memories in conventional systems when the cache parameters (like associativity,
block size, and cache size) are changed. The best cache behavior is observed when the
block size equals the frame size. We feel that cache pre-fetching is more effective in our
architecture; since the input data from a thread’s frame is pre-loaded into the thread’
context, the frame can be pre-fetched. Once preloaded, the frame is freed and can be
allocated for the next thread to be created.

4.6 Separate Data And I-Structure Caches.

In our architecture, I-structure elements and Frames are mapped to different areas of
memory. Using a single cache for both the frame data (data cache) and the I-structures
(arrays) cause more conflict misses. Following our previous work [Kavi 95, 98b] where we
have shown the benefits of using separate I-structure cache for ETS, here we investigated
the use of a separate I-structure cache. The data is shown in Table 3.

Table 3: Effect Of A Separate |-Structure Cache

Matrix Livermore

Multiply Loops
N SDF  Jnified Unified [-Struct |-Struc Frame | N SDF Jnified  Unified [-Struct  |-Struc ~ Frame
Refs  Misses MissRate Misses MissRate Misses Refs  Mises MissRate Misses MissRate Misses

25 156470 382  0.0024 81 0.0005 1 50 24177 22 0.00091 12 0.0005 10
50 1094360 614  0.0006 319 0.0003 1 100 91913 31 0.000337 21 0.0002 10
75 3526250 1010 0.0003 3132  0.0009 1 150 203249 40 0.00097 30 0.0001 10
100 8164640 1558 0.0002 6215  0.0008 1 200 358185 49 0.000137 39 0.0001 10
250 556721 58 0.000104 48 8.62E-05 10
300 798857 67 8.39E-05 57 7.14E-05 10
350 1084593 76 7.01E-03 66 6.09E-05 10

400 1413929 88 6.22E-05 78 5.52E-05 10

450 1786865 97 5.43E-05 87 4.87E-05 10

The table shows data only for Matrix Multiply and Livermore Loop 5 (both with 5
threads). For unified case, we used a single 256K cache (64byte blocks); for split case, we
used 128K I-structure cache and 128K frame cache. The I-structure miss behavior is
somewhat erratic for Matrix Multiply, because the program accesses rows of one matrix
and columns of another matrix, and the strides have caused more conflict misses for certain
data sizes. It should be noted that data cache (used for thread frames) encounters no conflict



misses. This behavior can be attributed to our "stack" of frames allocation described
previously. The misses indicate the maximum number of frames needed by the program
during its execution. Reusing recently freed frames eliminates cache misses. As previously
mentioned, for 5 threads, Matrix Multiply requires a maximum of 11 frames (while
Livermore needs 10 frames), and these frames could be eliminated by allocating register
sets to threads on creation.

5. Conclusions

In this paper we presented a dataflow multithreaded architecture that utilizes control-
flow like scheduling of instructions. Our architecture separates memory accesses from
instruction execution to tolerate long latency operations. We developed an instruction set
level simulator for our decoupled Scheduled Dataflow (SDF) and a backend to a Sisal
compiler. Using these tools we compared the execution performance of SDF with that of a
single pipelined MIPS processing system. Our results are very encouraging. When the
degree of parallelism is high, SDF substantially outperforms MIPS. We also investigated
the impact of increasing thread granularity and thread level parallelism. As with any
multithreaded system, SDF shows performance improvements with coarser grained threads
and increased thread level parallelism.

Our current architecture simulator assumes a perfect cache. We will soon incorporate
realistic cache memories into our simulator. However, we investigated the expected cache
behavior of SDF program by collected address traces and using a trace-driven cache
simulator (Dinero-IV). The results indicate that SDF programs incur no more (often fewer)
cache misses than a traditional RISC processor. Using separate caches for I-structure
memory and frame memories further reduces the number of cache misses encountered by
SDF programs.

While decoupled access/execute implementations are possible within the scope of
conventional architectures, multithreading model presents greater opportunities for
exploiting the separation of memory accesses from execution pipeline. We feel that, even
among multithreaded alternatives, non-blocking models are more suited for the decoupled
execution. In our model, threads exchange data only through the frame memories of
threads (all other data is provided through I-structure memory). The use of frame memories
for thread data permits a clean decoupling of memory accesses into pre-loads and post-
stores. This can lead to greater data localities and very low cache-miss rates.

At this time we do not know if our approach performs better than modern superscalar
systems that use dynamic instruction scheduling (e.g., out of order instruction issue and
completions) or other multithreaded systems such as SMT. However, we strongly believe
that the use of dataflow instructions reduces the complexity of the processor by eliminating
the need for complex logic (e.g., scoreboard or Tomasulo s reservation stations [Hennessy
96]) needed for resolving data dependencies, register renaming, out-of-order instruction
scheduling and branch predictions. The silicon area saved may be used to include more
register-sets and registers per set to improve thread level parallelism and thread
granularities. Moreover, our current instruction set and the compiler are not optimized. We
are working to improve both the instruction set and the compiler to produce more efficient
executions of programs. We will soon develop quantitative comparisons of our architecture
with conventional scalar and superscalar architectures for a wider range of benchmark
programs (including SPEC-2000 programs).
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