
Visual requirement representation

Deng-Jyi Chen a,*, Wu-Chi Chen a, Krishna M. Kavi b,1

a Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC
b Electrical and Computer Engineering Department, The University of Alabama at Huntsville, Huntsville, AL 35899, USA

Received 31 March 1999; received in revised form 30 April 1999; accepted 5 April 2001

Abstract

Multimedia technology has played an important role in modern computing because it offers more natural and user-friendly

interactions with an automated system. This is particularly true for systems utilizing graphical, icon or window-based input and

output. Multimedia technology also facilitates ‘‘reuse’’ more naturally, since the basic components and functions of presentation

and animation can be reused for several different animation scenarios. This is evidenced by the rapid prototyping capability of

computer and video games where although the characters and story lines change, the basic animation remains constant. In this

paper we utilize multimedia technology for eliciting requirements of software systems, particularly those systems that utilize win-

dows- (or graphical)-based interactions with the user. Our methodology will implicitly emphasize reuse since in our approach re-

usable components include not only code and documents, but also voice narration, animation sequences and message mechanisms.

We call such software components as multimedia reusable components (MRCs). Using MRCs, one can view software requirements

instead of reading textual representation of the requirements. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Multimedia; Requirement scenario; Visual requirement

1. Introduction

An important phase in the software life cycle focuses
on eliciting the requirements from users (Pressman,
1992). Gathering requirements is an extremely difficult
task. In performing this task, five requirement elicitation
problems must be addressed: completeness, communi-
cation, irrelevancy, incorrectness, and inconsistency.
Users and engineers generally have no common termi-
nology or domain knowledge while establishing the
requirements for the software development. As widely
recognized, ineffective communication frequently leads
to misunderstandings and irrelevant or incorrect
requirements. Also, different users offering varied per-
spectives lead to inconsistent requirements. Further-

more, voluminous textual requirement documentation
arising from requirements gathering process is typically
difficult to comprehend.

Multimedia technology has played an important role
in modern computing because it offers more natural and
user-friendly interactions with an automated system.
This is particularly true for systems utilizing graphical,
icon or window-based input and output. Multimedia
technology also facilitates ‘‘reuse’’ (Lenz et al., 1987;
Freeman, 1987; Lubbars, 1987; Maien et al., 1995) more
naturally, since the basic components and functions of a
presentation and animation can be reused for several
different animation scenarios. This is evidenced by the
rapid prototyping capability of computer and video
games where although the characters and story lines
change, the basic animation remains constant.

In our ongoing research we utilize multimedia tech-
nology for eliciting requirements of software systems,
particularly those systems that utilize windows- (or
graphical)-based interactions with the user. Our meth-
odology will implicitly emphasize reuse since in our
approach reusable components include not only code
and documents, but also voice narration, animation se-
quences and message mechanisms. We call such software

The Journal of Systems and Software 61 (2002) 129–143

www.elsevier.com/locate/jss

*Corresponding author. Tel.: +886-35-712121 x 3701; fax: +886-35-

724176.

E-mail addresses: djchen@csie.nctu.edu.tw (D.-J. Chen), wjchen@

csie.nctu.edu.tw (W.-C. Chen), kavi@cs.unt.edu (K.M. Kavi).
1 Present address: Department of Computer Science, The University

of North Texas, P.O. Box 311366, Avenue B at Mulberry, Room GAB

320, Denton, Texas 76203.

0164-1212/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (01 )00108-X



components as multimedia reusable components
(MRCs) (Chen, 1998). Using MRCs, one can view
software requirements instead of reading textual repre-
sentation of the requirements. It is not our intention to
state that one should completely eliminate textual rep-
resentations, particularly if the textual representation
leads to formal analysis. We also concede that visual
requirements are not readily amenable to formal ana-
lyses since they present a subset of possible scenarios.
However, we feel that multimedia-based approach to
requirements elicitation has its place in Software Engi-
neering practice, since this presents users a visual effect
and permits early feedback on the requirements. In
many cases this form is more natural for communication
between the Software Engineer and the customer. Such
a visual (or artistic) form of communications is very
common in many human and societal interactions (e.g.
architecture and fashion industry).

In this paper, we concentrate mainly on requirement
acquisition, particularly the communication ability, re-
quirement representation, presentation, and organiza-
tion based on multimedia reusable components. A visual
requirement representation model is also proposed,
along with an authoring tool based on that model. Re-
quirement reuse has been studied for years (Maien et al.,
1995; Lam et al., 1997; Massonet, 1997; Keepence et al.,
1995). Multimedia reusable components for requirement
reuse provide another natural way to achieve the reuse
of requirements. Although MRCs facilitate reuse, we
do not emphasize this aspect of MRCs in this paper.

2. Visual modeling

2.1. Visual modeling

James Rumbaugh stated ‘‘modeling captures essential
parts of the system’’ (Rumbaugh et al., 1987). Modeling
is extensively employed during software requirement
analysis and design (Freeman, 1987; Booch, 1991; Coad
and Yourdon, 1990). In visual modeling we use standard
multimedia notations to describe a system’s require-
ments and software programs. Visual modeling can
capture a system’s functionality from the user’s per-
spective. We feel that such an approach is a natural
communication form and can be used to capture the
system objects and logic from users. Visual modeling
can represent levels of system abstraction, thereby per-
mitting the management of the system complexity. In a
visual modeling environment, multimedia notations are
repeatedly used, thus encouraging software reuse. Con-
ventionally, requirement acquisition process originates
from introspection, questionnaires, interviews; those
results are then represented in textual form. Problems
arising from this process have been widely addressed
(Goguen, 1996). Of recent interest, an increasing num-

ber of video and multimedia approaches have been
proposed for requirement elicitation (Jirotka et al.,
1995; Wood et al., 1994; Ohnishi, 1994; Takahashi et al.,
1996; Breen et al., 1987). For instance, a Video-based
Requirements Elicitation project was studied at Oxford
University (Jirotka et al., 1995). A project entitled
‘‘advanced multimedia organizer for requirements elici-
tation (AMORE)’’ at Carnegie Mellon University is
developing a modeling tool for assisting with require-
ments elicitation using multimedia technologies (Wood
et al., 1994). A Visual Software Requirements Definition
approach was proposed at Kyoto University (Ohnishi,
1994). In this approach, standard shapes and semantics
of icons are defined for constructing a requirement
scenario prototype. Also provided in this approach is a
mechanism for detecting discrepancies in the elicited
requirements and user’s wishes. Finally, NTT Software
Laboratories use Hypermedia support for Collaboration
in Requirements analysis (Takahashi et al., 1996).

In contrast with conventional requirement engineer-
ing, applying multimedia approach as an innovative
way for requirement representation and presentation to
software engineers is emphasized in this paper. The
major difference between the visual programming model
proposed here and other visual language tools (Hirak-
awa, 1987; Chang, 1995; Burnett et al., 1995; Baroth,
1995) is the ease of programming. We use the multi-
media reusable components as the basic elements in our
visual programming model. Multimedia reusable com-
ponents itself is like an actor in the showroom and our
visual language is used to create a scenario for those
actors to create a performance (animated scenario re-
quirement). Thus, our visual programming model deals
with programming in ‘‘super-large’’ (in the sense that
MRC is more than a class-based programming) in the
visual way. Also, the proposed tool provides designers
capability to create an animated visual requirement.
This is what we do not see in other related research.

2.2. Equivalence of requirement representation model

High level requirements can be represented using
textual or visual description and these high level models
are then transformed into requirement specifications (or
called determined requirements), as depicted in Fig. 1.
Assume that we define R as the user requirement, S the
requirement specification, T the textual model and M

Fig. 1. Representation model.

130 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



the visual model. Ideally the visual representation of the
requirement should be a conceptual equivalent to the
textual representation

RðTÞ� > RðMÞ for the same requirement R:

Restated, regardless of representation used, the user
requirement must be the same. Note that we define the
conceptual equivalent in terms of high level abstraction;
in some cases visual models may be difficult to use for
detailed description of user requirements. On the other
hand, our preliminary experiments show that visual
representation of high level requirements are preferred
to textual representations, in terms of eliciting user re-
quirements (Chen, 1998).

3. Visual requirements representation model

3.1. Using multimedia reusable components

MRCs are encapsulated as object-oriented paradigm
and designed in a standardized format (Li, 1992; Chen,
1998). An MRC, which consists of multimedia data,
operations, and message mechanism, can be viewed as a
live (active) object of the system. Combining several
MRCs allows us to produce a multimedia film. Assume
that each MRC represents a requirement in a multime-
dia form. Then, each scene subsequently produced rep-
resents a requirement scenario and the complete film
represents the requirements for the software systems
being constructed.

3.2. Scenario

A Scenario, occasionally referred to as a use case, is a
useful way of understanding the interface between the

environment and the system. A software system and its
environment can be extremely complex, and capturing
the behaviors and relationships among subsystems is
often difficult with textual descriptions. This leads to
misunderstandings between users and developers. On
the other hand, scenario is an evolving description of
situations in the environment. The use of scenarios can
more readily elicit correct (or desired) behavior of the
software, and can clarify the interrelation between
functional and non-functional requirements. A repeated
scenario can be reused as a requirement pattern. Here
we propose visual scenarios using multimedia and visual
effects to represent complex behaviors and interactions.
In this manner, a software requirement is executed with
a scenario of multimedia presentations.

3.3. The proposed model

The visual requirement representation model, as
shown in Fig. 2, includes six parts.
Visual requirements authoring system (VRAS) can be

considered as a multimedia authoring tool, consisting of
a script language, graphical user interface (GUI) for
interconnecting MRCs, and animating them. It is used
to capture a requirement visually and playing it back to
the customer.
Customer: A user who provides the high level re-

quirements for the system and may participate in cre-
ating the requirements film (or movie) using the VRAS.
System analyst: The system analyst can use VRAS to

capture a customer’s requirement. An analyst must also
determine which MRC is necessary for the customer’s
requirement.
Component constructor: When existing MRCs are not

adequate to describe user requirements, a new MRC will
be added to the MRC manager using the compo-
nent constructor. The constructor includes a multimedia

Fig. 2. Visual requirements representation model.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 131



editor and a relatively simple programming environment
to encapsulate multimedia data and related code com-
ponents. Multimedia artists and the software engineer
are involved in MRC construction phase.
MRCs’ manager: A database management system for

managing MRCs and provides interface for adding or
deleting MRCs as well as for retrieving an existing
MRC. The manager organizes and stores MRCs (along
with all related files) based on component standardiza-
tion information.

Once the visual requirement is produced, it is possi-
ble to transform the requirement into a formal form. We
call these determined requirements, and the determined
requirements dictate the design and coding phases. In
this paper we will not describe automated transforma-
tion of visual requirements into determined require-
ments.

3.4. Definition of terms

Four basic authoring elements are available to create
a visual representation of a requirement: scenes actors,
relationships, and window-based operations.
Actors: An actor, which is an object that can send or

receive messages, represents a requirement segment and
is a minimal reusable component for requirements. In
our case each MRC will be considered an actor.
Scenes: A scene is a container where an actor is used

to represent a requirement session. A scene can therefore
be used to accumulate one or more requirement sce-
narios and a requirement scenario consists of one or
more MRCs. A scene also defines a requirement frame-
work. In a scenario, an MRC may be replaced by an-
other MRC. A scene itself can become a reusable
component of a requirement framework.

Table 1

Presentation actions and script language features

Presentation requirement Actions Requirements presentation meaning Script language features

Scene background and display

effect

Select display effect. Select back-

ground. Save background. Draw on

background

Beautify the look of a scene Background (ID, file name).

Effect (ID)

Actor arrangement Arrange actors’ position and ani-

mation movement on visual editor.

Set actors’ attributes

Basic requirement components Actor name (ID, file name).

Position ðx; yÞ. Size (width,

height). Speed (frames). Depth

(level). Rotate (degree). Path

(ðx1; y1Þ; ðx2; y2Þ; . . .)
Sequential presentation When an anchor actor starts, a list

of actors will follow its presentation

one by one. A finished message is

returned when the last actor in the

list finishes its presentation

Sequential scenario. Represent

serial message flow, control

flow, or processes

Sequential (anchor, actor list)

ParallelOR presentation When an anchor actor starts, a list

of actors also starts their presenta-

tion at the same time. A finished

message is returned when any one of

actors in the list finishes its presen-

tation

Parallel scenario. Concurrent pro-

cesses. Control transfer

occurs at any of the current pro-

cesses terminated

ParallelOR (anchor, actor list)

ParallelAND presentation When an anchor actor starts, a list

of actors also starts at the same

time. A finished message is returned

when all actors in the list finish their

presentation

Parallel scenario. Concurrent

processes. Control transfer

occurs at all of the current

processes terminated

ParallelAND (anchor, actor list)

Delay presentation Delay period after receiving the start

presentation message. It is used with

sequential and parallel presentation

Represent a real-time constraint Delay (actorID, second)

Loop presentation Repeatedly present the actor A process is continuous running

or repeats several times

Loop (actorID, times)

Appear/hide Show an actor on a scene. Hide an

actor from a scene

Represent creation or deletion

of an object while process running

Appear (actorID). Hide (actorID)

Scene branch Close current scene and open an-

other scene

Scenario connection. Link to

subsystem. To view a scenario in

detail

LinkScene (sceneID)

Concrete Define a scenario pattern To represent a scenario (framework)

for which actors in the scenario can

be substituted

Concrete: Scene Begin . . . Scene

End

Start/stop Start/stop presenting a scene Start/stop visual requirements sce-

narios presentation

Start: Start (sceneID) Stop

132 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



Relationship: A relationship describes the intra-actor
relationship and scene-actor relationship. The object
relationships denote the presentation sequence among
actors, e.g. serial or parallel presentation. The space
relationships describe MRC’s size, position, movement
path, depth, and rotation when the MRC is placed in
a scene. The time relationships describe the timing
constraints during presentation including the presen-
tation speed, loops, or delays. MRCs are organized
by relationship features to execute a requirement sce-
nario.
Requirement project: A requirement project organizes

scenes to present a system requirement. The project can
be viewed as a multimedia program and capture the
interaction of actors in each scene.

These four elements can be utilized to author visual
requirements or MRCs.

3.5. Script language

A scripting language is necessary to describe the
connections among the MRCs and to define presenta-
tion behavior. In our system the scripting language
(Chorng-Shiuh, 1995; Chen, 1998) is based on visual
forms so that a user can create visual requirements
easily, without having to learn a complex scripting lan-
guage that is based on textual commands. The visual
scripts are automatically converted into textual scripts.

While actors can only execute simple tasks, a script
controls the MRC at a very high level. A script plays a
role similar to that of a process manager in multitasking
operating systems. Scripts create, delete actors and trigger
events. The script and the actors execute concurrently.

A presentation script has two components: declara-
tions and actions. The declaration part deals with the
storage of objects. The action part concerns itself with
the way these objects are presented. An action can be
either primitive or compound. A primitive action is de-
fined as a single media presentation. The language does
not specify how primitive actions are executed since such
actions are contained within MRCs.

The script language is used to describe the manner in
which actions are executed, such as in parallel or in se-
rial and their duration. Our script language handles the
following relationships:

1. Actor space relationship: presentation path, icon size,
position, depth, and rotation.

2. Actor time relationship: sequential, parallel-or, paral-
lel-and, delays.

3. Presentation properties: speed, loop, appear, hide,
start, stop.

4. Actor creation and deletion.
5. Multimedia hyperlink between scenes: jump, condi-

tional branch.
6. Concrete: define a scenario pattern.

Table 1 summarizes the presentation actions and
script language features.

4. Visual requirements authoring

4.1. Representation structure

Requirement scenarios are complex for a large soft-
ware system. A structural organization for such a com-
plex requirement scenarios should be provided. In our
visual representation model, at least one scene repre-
sents the visual requirements. A scene includes actors
and relationships to represent a requirement scenario.
Organizing the requirement scenarios involves struc-
turing the scenes. Scenes can generally be structured as a
list, tree, or graph (see Fig. 3) (Chorng-Shiuh, 1995;
Chen, 1998). Hyperlinks are used to connect scenes.
These three basic scene structures can be arbitrarily
combined to describe a complex requirement scenario. A
specific scene organization can be abstracted into a re-
usable requirement representation pattern or represen-
tation framework.

4.2. Visual requirements authoring

A visual requirement is created by visual operations
and captured by the script language. Fig. 4 illustrates the
visual requirements authoring process. We initially cre-
ate a project for the system. Next, one or more scenes
can be created for the project. We can reuse a scene if a
reusable scene pattern (application framework) is lo-
cated. Otherwise an empty requirement framework is
created. For every scene, actors (MRCs) are selected
from MRC database and placed on the scene. For all
selected actors in the scene, we define their actions and
describe relationships to perform a scenario. A visual
requirement scenario is then produced. The scenario can
be previewed (or played) to examine whether the sce-
nario meets the user requirement or not.

Fig. 3. Representation structure.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 133



4.3. Visual requirements reuse

The basic reusable component in our visual require-
ments methodology is an MRC. A scenario is a re-
quirement segment. A specific scenario pattern may also
be abstracted into a reusable requirement scenario pat-
tern, since it provides a means of replacing component
MRCs to produce a new requirement scenario. A scene
represents one or more scenarios and the scene itself can
be viewed as a framework for reusable object. A project
describes an application framework – entities in the
framework can be replaced by other entities to represent
a different application framework. We contend that such
a reuse during requirements elicitation can significantly
enhance the software development.

5. Implementation

5.1. System structure

The major component of our visual requirements
approach is the visual requirement authoring tool
(VRAT), which allows users to select MRCs, stored in
the MRCs Manager System, and creating a film (visual
representation) that can be played to customers.

The MRCs must be designed in a standard format to
permit searching and archiving MRCs for reuse. The
MRC designers must seek assistance from artists in
drawing meaningful and simple animations to accu-

rately depict the basic meaning of an event (a require-
ment scenario). The authoring tool must provide
functions that allow analysts to change an MRC’s at-
tributes, to create an animation sequence for an event in
an MRC, and assemble MRCs together as a scenario-
based requirement. These scenario-based requirements
are then combined as a feature presentation (film) to be
played by a playback system to users for the purpose of
evaluating if the requirement representation satisfies his
or her need. Fig. 5 depicts the system architecture.

Fig. 5. System structure.

Fig. 4. Visual requirements authoring process.

134 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



5.2. Example – A part of the banking transaction system
scenario

In this section we show how our VRAT can be used
to create a visual requirement. This example will be used
to evaluate the differences between textual representa-
tion and visual representation.

After reading the description, the textual represen-
tation of the scenario is shown below:

1. Customer sends a ‘‘Request_For_E-Cash’’message to
the bank.

2. Bank requests the customer’s personal data for au-
thorization.

3. Customer sends his account information to the bank.
4. Bank updates the customer’s account information.
5. Bank sends ‘‘Request_For_E-Cash’’message to Elec-

tronic Mint.
6. Electronic Mint updates the bank’s account informa-

tion.
7. Electronic Mint sends ‘‘E-Cash’’ to the customer.

Fig. 6 depicts the event diagram of the textual scenario.

5.2.1. Visual representation of the partial requirement of
banking transaction 2

For the same requirement scenario shown in
the previous segment is depicted using the visual
requirement representation. Fig. 7 depicts the system
behavior and the event diagram for the same require-

ment scenario in animated form. Notably, the circled
number in Fig. 7 represents the presentation order. All
objects are presented with animation with multimedia
effects.

Fig. 6. Event diagram of obtaining scenario.

Fig. 7. Visualized event diagram of the requirement scenario.

2 A copy of the CD that contains the animated requirement

representation of Fig. 7 is available by request.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 135



5.3. Evaluation of the proposed visual requirement tool

This paper outlined a visual requirement represen-
tation paradigm and a VRAT for creating visual
requirement representation. To evaluate the effective-
ness of the proposed VRAT, an experiment was per-
formed. This experiment attempts the following:

1. To understand the difficulties involved in creating the
visual requirements representation.

2. To evaluate the merits and limitations of the
VRAT.

5.3.1. Experimental design
Twenty-four graduate students from a graduate

course on Object-oriented Computing served as the
control group. They were asked to use both the textual
representation and the visual representation to represent
a same problem. We collected the time needed for both
approaches and collected responses to a questionnaire
after the students completed the requirement represen-
tation.

5.3.2. Variables
The experiment measured four independent variables:

1. time usage;
2. degree of problem expression ability;
3. communication ease between users and developers;
4. understandability.

Variables 2–4 are measured in five ranks: 0%, 25%,
50%, 75% and 100%.

5.3.3. Design
This experiment compared the use of the textual re-

quirement representation method and the visual require-
ment representation method. In light of the example,
viz., electronic cash system (ECS) requirements, all sub-
jects were asked to represent the requirements in both
textual form and visual form. Appendix A describes
electronic cash system. The requirement analysis should
be represented by object modeling, dynamic modeling,
and functional modeling. The object modeling includes
three parts: identify object classes, data dictionary, and
object model. The dynamic modeling consists of five
parts: behavior description, scenarios, event flow dia-
gram, state diagram, and data flow diagram.

Appendix A was given on the first day of the exper-
iment, and not prior to the start of the experiment. The
pictorial representations of the bank, database, elec-
tronic mint, etc. created as MRCs were provided as *.gif
or *.bmp files. Thus all students in the experiment had
equal footing for creating the ‘‘textual requirements’’

and ‘‘visual requirements’’. For the VRAT users group,
as planned most of the MRCs related to the problem
description could be downloaded to the VRAT’s MRC
database. Note that our claim is that the availability of
such MRCs will make it easier to create visual require-
ments (without having to learn complex visual lan-
guages or authoring tools).

The time needed for using textual and visual repre-
sentation was recorded. A questionnaire was designed
for accumulating the subjective reflections of subjects
after they had completed the textual and visual re-
quirement representations. Appendices B and C list the
results of the questionnaires. In the experiment subjects
were divided into two groups randomly, group A and
group B, with 12 persons per group. Processes of the
experiment included four phases.
Phase 1: All subjects were requested to represent the

system by using the textual model and the time spent
was recorded.
Phase 2: Group A was asked to use the proposed

VRAT to create requirement representation. Mean-
while, group B selected other multimedia authoring tool
familiar to them, to author the system. Time needed was
recorded by group B also.
Phase 3: Complete the questionnaires.
Phase 4: Accumulate and analyze the data.
Experimental results are reported in the following

sections.

5.3.4. Data and analysis
5.3.4.1. Multimedia authoring tools used. Fig. 8 displays
the multimedia authoring tools used in the experiment.
One-half of the experimental students were asked to use

Fig. 8. Multimedia authoring tools used in the experiment.

136 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



proposed VRAT. The other students selected their fa-
miliar multimedia authoring tools: Power Point, Action,
Authorware, Director, and ToolBook. These five tools
are referred to as ‘‘others’’ tool in this paper.

5.3.4.2. Time usage. The time ratio is defined as

Time ratio � time� usage in textual representation

time� usage in visual representation
:

Fig. 9 indicates that using the proposed VRAT, students
spent less time for creating the same requirements, as
compared to using other multimedia authoring tools.
However, the time needed to create a meaningful MRC
for matching a requirement under consideration was not
including in the time estimates. Thus, this experiment
applies to the case when sufficient number of MRCs is
available in the database, the authoring of a visual re-
quirement is relatively easy.

5.3.4.3. Representation difficulties. Figs. 10 and 11
compare the difficulties in using the proposed VRAT

and other multimedia authoring tools. These figures
show that VRAT is relatively easy to use compared to
other multimedia authoring tools.

5.3.4.4. Problem expression ability. Fig. 12 shows that
visual requirements representation expresses the prob-
lem better than the textual representation.

Fig. 10. Representation difficulties.

Fig. 11. Representation difficulties.

Fig. 9. Time ratio and time usage.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 137



5.3.4.5. The easiness of communication between users and
developers. Fig. 13 compares the ease of communication
between users and developers using our VRAT and
other multimedia tools. The results indicate that VRAT
facilitates more acceptable means for communication
among users and developers.

5.3.4.6. Early feedback. Fig. 14 shows the degree of early
feedback facilitated by our VRAT, other visual author-
ing tools and textual representation of requirements.
The figure clearly shows the advantage of visual repre-
sentations, and among visual representation, the ad-
vantages of VRAT.

Based on the results of the experiment, the following
conclusions can be made:

1. Visual requirement representation provides an earlier
feedback from the users.

2. Visual requirement representation facilitates for bet-
ter communication between users and developers.

3. Visual requirement representation is more expressive
in describing user wishes (user’s requirement) because
of the audio and visual effects.

4. Our requirement authoring tool with the multimedia
features aids in the development of visual requirements
and the presentation of the requirements to users.

As can be seen from the results of the experiment, the
availability of multimedia icons (or MRCs) based on the
domain can aid in the creation of visual requirements,
animation of the requirements and early feedback from
the customer to avoid any misunderstanding of the user
requirements. The easiness of communication between
users and developers variable is measured based on the
questionnaire E in Appendix C. In our experiment stu-
dents take the role of both users and developers; stu-
dents in each group assume these roles and conduct
necessary interviews. This experiment is limited in scope
and a more extensive experiment is needed to further
validate these conclusions.

Fig. 12. Problem expression capability.

Fig. 13. The easiness of communication between users and developers.

138 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



6. Conclusion

Our research shows that requirements can be visual-
ized. The proposed MRCs make the visual requirement
representation possible. By using visual requirements,
the requirements can be viewed as an animation se-
quence instead of reading voluminous requirement
documents. Such a novel software requirement repre-
sentation technique facilitates for more natural means of
communication between the users and the developer,
provides early feedback from users, more expressive in
describing user’s wishes. Our requirement authoring
tool with the multimedia features helps users to develop
visual requirement and presentation.

Appendix A. Electronic cash system, E-Cash system 3

A.1. System requirement

The E-Cash system provides trading methods and
instruments for computer network users and merchants.
Users can trade with merchants for goods and services
through Internet, and complete the transfer of money
without the flow of cash.

The following are involved in the operation of the
system:

Customer
Merchant
Customer’s Bank
Merchant’s Bank
Electronic Mint
The operating procedure of the system is illustrated

below. The direction of the arrow indicates the flow of
information; the text besides the arrows display the in-
formation contents and the order of the message flow.
All the messages must be protected for confidentiality.
All the E-Cash transactions will be effective only after
being approved and recognized by the Electronic Mint.

The system must complete three phases in each trade
as described here.
Phase 1: Obtaining E-Cash. Customer requests the E-

Cash transfer from his/her bank. Customer’s Bank
insures sufficiency of funds, and transmits relevant cus-
tomer’s information (address, name. . .) together with
amount of funds to be delivered to the Electronic Mint.
The Electronic Mint sends E-Cash to the customer after
receiving and crediting the funds from the customer’s
bank. The customer, his/her bank and the Electronic
Mint must update their database to reflect the transac-
tion.

Phase 2: Purchasing with E-Cash. Customer can
purchase goods from a merchant using the E-Cash de-
livered by the Electronic Mint. The merchant delivers
the purchased goods to the customer after receiving the
E-Cash.

Phase 3: Redeeming cash by the merchant. The mer-
chant redeems the money from Electronic Mint by
tendering the E-Cash. The Electronic Mint deposits
equivalent amount of money in the Merchant’s Bank.
The account information and the amount of funds to be
credited will be exchanged between the Electronic Mint
and the merchant’s bank, and the two entities update
their databases to complete the transaction.

D
eg

re
e

Degree

Person No.

N
u

m
b

er
 o

f 
P

er
so

n
s 

Fig. 14. Early feedback.

3 Please note that Appendices A, B and C were written in Chinese

and were freely translated to English.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 139



140 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



Appendix B. Questionnaire D

B.1. Self-estimate form

Fill-iner:

Estimate item/method Conventional require-
ment representation

Visualized requirement
representation

Spent time (min)

Difficulty in production � very high � high � very high � high
� middle � middle
� easy � very easy � easy � very easy

If being offered media database for employment,
you think the difficulty in production is

� very high � high � very high � high
� middle � middle
� easy � very easy � easy � very easy

If being offered special instrument for requirement
representation, you think the help for lowing difficulty in
production is

� very helpful � very helpful
� helpful � helpful
� no influence � no influence

Degree to express problems � complete expression � complete expression
� 75% � 75%
� middle (50%) � middle (50%)
� 25% � 25%
� unable to express � unable to express

Source of media � self-produced � self-produced
� produced by others � produced by others
� use visible materials � use visible materials
� etc. � etc.

User’s communicating ability � very high � high � very high � high
� middle � middle
� low � very low � low � very low

Understandability � very high � high � very high � high
� middle � middle
� low � very low � low � very low

Material amount (Kbyte)

Confront problems and (possible) way to resolve

If the repetitive use of multimedia elements has to be self-produced and accumulated by you, which method are you
willing to adopt?

� conventional requirement representation
� visualized requirement representation

If the repetitive use of multimedia element base has been established, which method are you willing to adopt?
� conventional requirement representation
� visualized requirement representation

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 141



Appendix C. Questionnaire E

C.1. Crossestimate form

Fill-iner:

References

Baroth, C.H., 1995. Visual programming in the real world. In: Burnett,

M.M., Goldberg, A., Lewis, T. (Eds.), Visual Object-oriented

Programming Concepts and Environments, pp. 21–42.

Booch, G., 1991. Object-oriented Design with Applications. Benjamin/

Commings Publishing Company Inc., Menlo Park, CA.

Breen, D.E., Getto, P.H., Apocada, A.A., Schmidt, D.G., Sarachan,

B.D., 1987. The clockworks: an object-oriented computer anima-

tion system. In: Proceedings of Eurographics, pp. 275–282.

Burnett, M.M., Baker, M.J., Bohus, C., Carlson, P., Yang, S., van Zee,

P., 1995. Scaling up visual programming languages. IEEE Com-

puter (March) 45–54.

Chang, S.K., Costagliola, G., Pacini, G., 1995. Visual-language system

for user interfaces. IEEE Software 12 (2), 33–44.

Chen,W.C., 1998. A visual and reuse-based paradigm for software con-

struction. Ph.D. Dissertation, Computer Science and Information

EngineeringDepartment, National Chiao TungUniversity, Taiwan.

Chorng-Shiuh, K., 1995. The design and implementation of a script

language and playback system for electronic dtory book. Master

Thesis of National Chiao Tung University, Taiwan.

Coad, P., Yourdon, E., 1990. Object-oriented Analysis. Prentice-Hall,

Englewood Cliffs, NJ.

Freeman, P., 1987. A Perspective on Reusability. The Computer

Society of the IEEE, pp. 2–8.

Goguen, J.A., 1996. Formality and informality in requirements

engineering. In: Proceedings of the 2nd International Conference

on Requirements Engineering, April 15–18, Colorado Springs,

Colorado, pp. 102–108.

Hirakawa, M., Iwata, S., Yoshimoto, I., Tanaka, M., Ichidawa, T.,

1987. Hi-visual iconic programming. In: Proceedings of the IEEE

Workshop Visual Language, pp. 305–314.

Jirotka, M., Heath, C., Luff, P., 1995. Ethnography by video for

requirements capture. In: Proceedings of the 2nd International

Symposium on Requirements Engineering, April 27–29, York,

England, pp. 190–191.

Keepence, B., Mannion, M., Smith, S., 1995. SMARTRe require-

ments: writing reusable requirements. In: Proceedings of the 2nd

International Symposium on Requirements Engineering, April 27–

29, York, England, pp. 27–35.

Lam, W., McDermid, J.A., Vickers, A.J., 1997. Ten steps towards

systematic requirements reuse. In: Proceedings of the 3rd Interna-

Estimate item/method Conventional requirement represen-
tation

Visualized requirement representa-
tion

Study time (min)

Degree to express problems � complete expression (100%) � complete expression (100%)
� 75% � 75%
� middle(50%) � middle(50%)
� 25% � 25%
� unable to express � unable to express

User’s communicating ability � very high � high � very high � high
� middle � middle
� low � very low � low � very low

Understandability � very high � high � very high � high
� middle � middle
� low � very low � low � very low

If the operation of multimedia is
advisable

� very advisable � very advisable
� advisable � advisable
� middle � middle
� unadvisable � unadvisable
� very unadvisable � very unadvisable

If you are a system requester, which method are you willing to adopt?
� conventional requirement representation
� visualized requirement representation

If you are a system analyst, which method are you willing to adopt?
� conventional requirement representation
� visualized requirement representation

Do you think using visualized request description is helpful for getting correct software requirement?
� yes � no

142 D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143



tional Symposium on Requirements Engineering, July 6–10, 1997,

Annapolis, MD, USA, pp. 6–15.

Lenz, M., Schmid, H.A., Wolf, P.W., 1987. Software reuse through

building blocks. IEEE Software, 34–42.

Li, C.L., 1992. An object-based icon programming methodology.

Master Thesis of National Chiao Tung University, Taiwan, June.

Lubbars, M.D., 1987. Wide-spectrum support for software reusability.

In: Proceedings of the Workshop on Software Reusability and

Maintainability, October.

Maien, N.A.M., Mistry, P., Sutcliffe, A.G., 1995. How people catego-

rise requirements for reuse: a natural approach. In: Proceedings of

the 2nd International Symposium on Requirements Engineering,

April 27–29, York, England, pp. 148–155.

Massonet, P., van Lamsweerde, A., 1997. Analogical reuse of

requirements frameworks. In: Proceedings of the 3rd International

Symposium on Requirements Engineering, July 6–10, Annapolis,

Maryland, USA, pp. 26–37.

Ohnishi, A., 1994. A visual software requirements definition method.

In: IEEE Proceedings: The first International Conference on

Requirements Engineering, April 18–22, Colorado Springs, Colo-

rado, pp. 194–201.

Pressman, R.S., 1992. Software Engineering – A Practitioner’s

Approach, third ed. McGraw-Hill, New York.

Rumbaugh, J. et al., 1987. Object-oriented Modeling and Design.

Prentice-Hall, Englewood Cliffs, NJ.

Takahashi, K., Potts, C., Kumar, V., Ota, K., Smith, J.D., 1996.

Hypermedia support for collaboration in requirements analysis.

In: Proceedings of the 2nd International Conference on Require-

ments Engineering, April 15–18, Colorado Springs, Colorado, pp.

31–40.

Wood, D.P., Christel, M.G., Stevens, S.M., 1994. A multimedia

approach to requirements capteru and modeling. In: IEEE

Proceedings: The first International Conference on Require-

ments Engineering, April 18–22, Colorado Springs, Colorado, pp.

53–56.

Dr. Krishna M. Kavi is currently a Professor and Eminent Scholar of
Computer Engineering. Prior to joining UAH, he was a Professor of
Computer Science and Engineering at the University of Texas at Ar-
lington. For two years (1993–1995) he was a Program Manager at the

National Science Foundation, managing Operating Systems, and
Programming Languages and Compilers programs in CCR Division.
He was an IEEE Computer Society (CS) Distinguished Visitor (1989–
1991), Editor of the IEEE Transactions on Computers (1993–1997),
and Editor of the Computer Society Press (1987–1991). His primary
research interest lies in Computer Systems Architecture, including
dataflow and multithreaded systems, Memory management, Operating
Systems, and Compiler Optimization. His other research interests in-
clude Formal specification of Concurrent Processing Systems, Per-
formance Modeling and Evaluation, Load Balancing and Scheduling
of Parallel Programs. He published over 125 technical papers on these
topics. He received his B.E. (Electrical) from the Indian Institute of
Science, MS and Ph.D. (Computer Science and Engineering) from the
Southern Methodist University. He is a Senior Member of the IEEE
and a member of the ACM.

Wu-Chi Chen received his B.S. and Ph.D. degree in Computer Science
and Information Engineering from National Chiao Tung University
(Hsinchu, Taiwan) in 1992 and 1998. Since then he joined the Taiwan
Semiconductor Manufacturing Co. as a Section Manager. His research
interests include Software Engineering, Object-oriented Modeling,
CIM System Integration, Supply Chain Management, and Factory
Planning System.

Deng-Jyi Chen received the B.S. degree in Computer Science from
Missouri State University (cape Girardeau), USA, and M.S. and Ph.D.
degree in Computer Science from the University of Texas (Arlington),
USA in 1983, 1985, 1988, respectively.

He is now a professor at Computer Science and Information En-
gineering Department of National Chiao Tung University (Hsinchu,
Taiwan). Prior to joining the faculty of National Chiao Tung Uni-
versity, he was with National Cheng Kung University (Tainan, Tai-
wan). So far, he has been publishing more than 100 referred papers in
the area of performance and reliability modeling and evaluation of
distributed systems, computer networks, fault-tolerant system, soft-
ware reuse, object-oriented systems, and multimedia application sys-
tems. He has been invited to talk and to present papers around the
world (USA, Canada, UK, Japan, Korea, China, Hong Kong, Neth-
erlands, Germany, Switzerland, Spain, and Italy). Some of his research
results have been technology transferred to some companies and used
in product design and implementation. So far, he has been a chief
project leader of several commercial products. Some of these products
are widely used in primary schools for CAI educational tools in Tai-
wan.

He has also received the research award yearly from National
Science Council Taiwan for the past 12 years and serves as a committee
member in several academic and industrial organizations.

D.-J. Chen et al. / The Journal of Systems and Software 61 (2002) 129–143 143


