
SCHEDULED DATAFLOW ARCHITECTURE� A SYNCHRONOUS

EXECUTION PARADIGM FOR DATAFLOWy

Krishna M� Kavi Hyong�Shik Kim

Department of Electrical and Computer Engineering

University of Alabama in Huntsville

Huntsville� AL �����

Ali R� Hurson

Department of Computer Science and Engineering

Pennsylvania State University

University Park� PA 	
���

Abstract

Recent trends in technology are widening the performance gap between memory and

processors� Multithreading has been touted as a possible solution to minimize the loss

of CPU cycles due to memory latency� by executing several instruction streams simulta�

neously� In this paper� we propose a new multithreaded data�ow architecture that uses

RISC like pipelines and control��ow like scheduling of data�ow instructions� but retains

functional properties of the data�ow model� In addition� our Scheduled Data�ow archi�

tecture utilizes two separate hardware units for the execution of threads � decoupling

memory accesses from pipeline execution� We present performance data obtained using

queuing analyses of the proposed architecture� Our analysis investigated the impact of

�ne�grained vs� coarse�grained threads� number of hardware contexts� and decoupling

memory accesses from pipeline execution in our architecture�

Keywords� Data�ow architecture� multithreading� Explicit Token Store� multiple hard�

ware contexts

yThis research is funded in part by NSF grants� MIP�������	 and MIP���

����

� Introduction

Even though the data�ow model and architectures have been studied for more than two

decades and held the promise of an elegant execution paradigm with the ability to exploit

inherent parallelism available in applications� the actual implementations of the model have

failed to deliver the promised performance� Several features of the data�ow computational

model� however� have found their place in modern processor architectures and compiler tech�

nology �e�g�� SSA� register renaming� dynamic scheduling and out�of�order instructions ex�

ecution� I�structure like synchronization� non�blocking threads�� Most modern processors

utilize complex hardware to bring the execution engine closer to an idealized data�ow engine

�for detecting data hazards and renaming of registers� for instruction reordering and issuing

multiple instructions� branch prediction and predicated branches�� It is our contention that

such complexities can be eliminated if a more suitable implementation of the data�ow model

can be discovered� We feel that the primary limitations of the pure data�ow model that

prevented commercially viable implementations are�

	� Too
ne�grained �instruction level� multithreading

�� Di�culty in exploiting memory hierarchies and registers

� Asynchronous triggering of instructions

Many researchers have addressed the
rst two limitations of data�ow architectures�	� ��

� �� ��� The bene
ts of cache memories within the context of Explicit Token Store �ETS�

data�ow paradigm were presented in ���� There have been several research projects that

demonstrated how coarser grained threads can be utilized within the data�ow execution

model� In this paper� we propose a new data�ow architecture that addresses the third

limitation� In this new model� we will deviate from the asynchronous triggering of data�ow

instructions �implied by token�driven systems�� and schedule instructions for synchronous ex�

ecution� There have been several hybrid architectures proposed where the data�ow scheduling

was applied only at thread level �i�e�� macro�data�ow� with conventional control��ow instruc�

tions comprising threads �e�g�� ���� ���� ����� In such systems� the execution of instructions

within a thread do not retain the functional properties of data�ow� and introduce side�e�ects�

WAW �or output� and WAR �or anti� dependencies� Not preserving data�ow properties at

instruction level requires complex hardware for the detection of data dependencies and dy�

namic scheduling of instructions� In our system� the instructions within a thread still retain

data�ow properties� and thus eliminate the need for complex hardware�

	

��� Overview of Data�ow And Explicit Token Store Architecture

In the dynamic data�ow implementations� the results generated by an instruction are

�tagged� by its destination instruction�s address� The tagged data �known as tokens� circulate

in the system awaiting their matches� Tokens destined for the same instruction will have

identical tags� tokens destined to di�erent activations �e�g�� di�erent iterations� of the same

instruction will have di�erent tags� In a direct matching scheme �used in ETS����� storage

�called an activation frame� is allocated for all the tokens needed by the instructions of

each iteration of a code block� A code block can be viewed as a sequence of instructions

comprising a loop body or a function� A computation is completely described by a pointer

to an instruction �IP� and a pointer to an activation frame �FP�� The pair of pointers� �FP�

IP�� is called a continuation and corresponds to the tag part of a token� A typical instruction

pointed to by an IP speci
es an o�set�R� in the activation frame where the match of input

operands for that instruction will take place� When a new token arrives� the IP part of the

tag is used to obtain the o�set�R�� Examining the operand location in the activation frame

at FP�R� it can be discovered if a match is made or if the new token should wait for its

match� A hardware implementation of the ETS architecture is shown in Figure 	� For a more

detailed description of ETS� see ��� or ����

The following describes the functionality of the various pipeline stages in Figure 	�

	� Instruction Fetch� The incoming token�s instruction pointer�IP� is used to access an

instruction in the local instruction cache� For unary �one�operand� instructions� the

next two stages are skipped and the instruction is executed in ALU�

�� Address Decode� The e�ective address�FP�R� of the operand memory location is com�

puted �the o�set R is obtained from the instruction and FP from tag of the token��

� Operand Fetch� The presence bit in the operand cache location is examined� If the

bit is reset the data value is stored� otherwise a match occurs leading to a read of the

previously stored value�

�� ALU� On a match the ALU executes the opcode� with the value retrieved from the

operand memory and the value contained in the token� One or two tags are computed

by adding the destination o�sets to the instruction pointer�

�� Token Form� The result value and destination tags are packaged into tokens and the

tokens are written to the token queue�

��� Limitations of ETS Architecture

While ETS architecture permits the use of memory hierarchies �for activation frames�� the

execution of instructions are asynchronous� an instruction is enabled �only and immediately�

when its operands are generated by predecessor instructions� A two operand instruction

�

Instruction
Fetch Unit

Operand Addr
Decode

Operand Fetch
Operand
Cache

Tag
Formation

Processing
Unit

Instr.
Cache

I-Structure
Cache

Form
Token Unit

Memory

Instruction

Token
Queue

From Communication Network

I-Structure
Memory

To Communication Network

& Frame

Execution Pipeline

Figure 	� An organization of a pure�data�ow processing element

requires two separate cycles through the pipeline� corresponding to the two tokens containing

the operands� Even if registers are used for matching operands� conventional techniques such

as result�forwarding �where the results of an instruction are directly supplied to a dependent

instruction� cannot be incorporated into the ETS pipeline�

��� Hybrid Architectures

Hybrid data�ow�control �ow organizations have been proposed by several researchers �����

�	��� ����� In most of these systems� coarse�grained threads represent macro data�ow nodes

while each thread includes conventional load�store instructions� In one such proposed sys�

tem� EARTH�	��� two processors are used for the execution of macro data�ow threads� One

processor� Execution Unit �EU� behaves like a traditional RISC processor executing instruc�

tions belonging to a thread� The second processor� Synchronization Unit �SU� is responsible

for scheduling of threads on EU� remote memory accesses and thread synchronization� Earth

uses non�blocking threads� It should be noted that EU executes all instructions within a

thread� including load�store� This is one of the di�erences between our Scheduled Data�ow

architecture and EARTH� A more fundamental di�erence lies in the instructions of a thread �

instructions in our architecture retain functional properties of data�ow while those of EARTH

are control��ow instructions�

� Scheduled Data�ow Architecture

Techniques for increasing locality in data�ow have relied on de
ning an �expected� order

in which instructions are enabled ����� ���� ����� We feel that it should be possible to de
ne

an architecture that executes instructions in the prescribed order instead of executing them

as soon as the data is available� Compile time analysis on the source program can be used to

de
ne an expected order in which instructions may be executed� even if the data is already

available for these instructions� We will call such a system as Scheduled Data�ow� The

processor for our architecture can be designed with the pipeline stages as depicted in Figure

� �The
gure does not show all the data paths for the Synchronization Processor��

The various stages of Execution Pipeline �EP� are outlined below�

	� Instruction Fetch� The instruction fetch behaves like traditional fetch� relying on a

program counter to fetch the next instruction� The Context register along with the PC

can be viewed as a part of the thread id� �FP� IP��

�� Operand Fetch� This unit fetches a double word from a register
le that contains the

two operands for the instruction� Each instruction speci
es an o�set�R� that refers to

a pair of registers where its operands are stored by its predecessor instructions �see

Section ��	 for more details on the instruction formats�� Thus� a read port should

supply a double word�

� Execute� The execute executes the instruction and sends the results to write�back

unit along with the destination addresses �identifying the registers for the destination

instructions��

�� Write�back� This unit writes up to two values to the register
le� the two values may

go to two di�erent locations in the register
le� This necessitates � write ports to the

register
le�

Other units of Figure � will be explained later� Figure
 shows the organization of the

operand registers� Note that unlike ETS� the operand locations should permit the saving of

both tokens belonging to an instruction waiting to be scheduled� since instructions may not be

�

Instruction
Fetch

Execute

Operand
Fetch

Write Back

I-Structure
Cache

ContextPC

Processor
Synch

Operand
Cache

Frame
Memory

Instruction &

I-Structure
Memory

Instr. Cache

Register
Contexts

Execution Pipeline

Figure �� General organization of Scheduled Data�ow architecture

scheduled for execution immediately upon the arrival of the second token� The presence bits

associated with operand locations are used only to catch exceptions from improper scheduling

of instructions �i�e�� attempt to execute an instruction before the availability of operands��

As can be seen� this execution pipeline described above� behaves very much like con�

ventional RISC pipelines while retaining the primary data�ow properties� functional nature�

side�e�ect freedom� and non�blocking threads� The functional and side�e�ect free nature of

data�ow eliminates the need for complex hardware �e�g�� scoreboard or reservation stations

of Tomasulo�s method� for detecting write�after�read �WAR� and write�after�write �WAW�

dependencies and register renaming� The non�blocking nature of our thread model and the

use of a separate processor �Synchronization Processor� SP� for thread synchronization and

memory accesses �see subsections ��� and ��
 for more details� eliminate unnecessary thread

context switches on long latency operations or cache misses� Our architecture does not pre�

vent superscalar or multiple instruction issue implementations for the Execution Pipeline

�EP�� However� unlike modern RISC processors� our architecture eliminates the need for in�

struction reordering at execution time� the execution order is completely determined at compile

time�

�

0
1
2

Left Operand Right OperandP P

Figure
� Operand registers in Scheduled Data�ow architecture

Offset(R)Op Code Dest-Instr-1 and Port Dest-Instr-2 and Port

a� ETS Instruction Format

Op Code Offset(R) Dest-Data-1 and Port Dest-Data-2 and Port

b� Scheduled Data�ow Instruction Format

Figure �� Instruction Formats

��� Instruction Formats

Relative to the ETS model���� the instruction format for the proposed Scheduled Data�ow

architecture requires only minor changes� The di�erence lies in the speci
cation of destina�

tions for the results generated by an instruction �Figure ��� In ETS� the destinations refer to

the destination instructions �i�e�� IP values�� in Scheduled Data�ow the destinations refer to

the operand locations of the destination instructions �i�e�� o�set value into activation frames

or register contexts�� This change also permits the detection of RAW data dependencies

among instruction in the execution pipeline and the use of result forwarding so that results

from an instruction can be sent directly to dependent instructions� The result forwarding

is not applicable in ETS data�ow since instructions are token driven� implying that an in�

struction is not allowed to enter the execution pipeline until the operands were generated

and written into the operand memory� It should be remembered that each operand memory

location �or register	 of Scheduled Data�ow consists of a pair of values
 Thus� the o�set�R	 of

an instruction refers to a pair of registers containing the two source operands of that �binary	

instruction�

�

��� Separate Synchronization Processor

Using multiple hardware units for the coordination and execution of instructions is not

new� Some of the earlier designs attempted to use a separate hardware unit for accessing

memory� decoupling the memory accesses from pipeline execution�		�� More recently� sep�

arate hardware units have been proposed to handle the synchronization among threads in

multithreaded architectures �e�g�� Alewife�	��� StartT�NG�	
�� EARTH�	��� PL�PS�	���� We

follow this tradition and propose two hardware units for the Scheduled Data�ow �see Figure

� above � although the
gure does not show all data paths for Synchronization Processor��

One of the hardware units �EP� will be similar to conventional RISC pipelines as described

previously� The other hardware unit �SP� is responsible for accessing memory to load the

initial operands of enabled threads into registers �i�e�� preload� and store the results pro�

duced by threads from registers �i�e�� post�store�� for maintaining synchronization counts for

threads and scheduling enabled threads �including allocation of register contexts and placing

the enabled thread on the ready queue of the execution unit�� Our approach more closely

resembles the dual processors of EARTH�	�� � with the addition of preload and post�store

operations�

��� Operand Registers

To fully utilize the multithreading capabilities� we propose multiple register sets� Each

thread is allocated a register
le �context or activation frame�� As mentioned earlier� each

register consists of a pair of locations and registers must be designed with two write ports and

one double�word read port� Initial values and inputs from other threads are preloaded into a

thread�s context by the Synchronization Processor �SP�� The thread�s results will be left in

its registers and the Synchronization processor either �post�stores� results in operand cache

or uses them towards the synchronization requirements of awaiting threads� This is similar to

a non�blocking architecture described in �	��� eliminating all data memory �or cache� accesses

during the execution of threads by the EP�

��� Operand Memory Reuse

In ETS the operand locations used for matching operands of an instruction can be reused

for matching operands other instructions with careful analysis of the data dependencies �see

for example in �	���� This reuse can lead to smaller activation frames for threads� Since in

Scheduled Data�ow� instructions of a thread are executed sequentially� there will be more

opportunities to reuse operand registers for more than one instruction� This in turn can lead

to even smaller thread contexts and the possibility of more hardware contexts on chip�

�

��	 Example Code Segment

In order to provide a better insight into the proposed architecture� we present a code

segment for the Fibonacci function in Figure �� C code for the function is shown for refer�

ence� The function is translated into two code blocks � one makes the two recursive function

calls and the other sums the results from the two forked functions� The non�blocking na�

ture of our architecture requires the creation of a new code�block to sum the results� Each

code block includes an a preload thread �to access memory and load initial values into the

thread�s context�� one or more post�store threads� and execution threads� A typical binary

operand instruction speci
es an op code� a single �double word� source register� and up to

two destination registers as shown in Figure �� A complete description of the instruction set

with several program examples can be found in �	���

Figure ��b� shows the code segment that will be executed by the EP� while Figure ��c�

shows code for SP� The post
xes� �pre�� �post� and �main� indicate the preload thread�

the post�store thread� and the main thread respectively� The extensions� ��l� and ��r� are

devised to designate either the left or the right half of a �double�word� register� Every thread

nishes its execution by either enabling the next thread �on either EP on SP� or deallocat�

ing the frame� An enabled thread is scheduled only when its synchronization requirements

�including data from other threads� are met�

Since the example code segment has not been written for number�crunching purpose� only

ve binary operand instructions are found at EP code� � eq� gt� two sub�s� and add� Their

two operands are made ready at a double word single register before being accessed� Even

though two destination registers are allowed� only one destination is needed in this example�

The right column shows that SP preloads two pairs of operands from the frame into

two double word registers� R� and R�� at both preload threads� and post�stores values into

individual registers instead of double word registers at post�store threads� The second code

block has two post�store threads� and only of the two threads will be executed depending on

where the control �ows �i�e�� branch decision��

� An Analytical Model For Evaluation

There have been many analytical formulations to predict the performance of multi�

threaded programs on conventional architecture �see for example in �	��� �	���� In this paper�

we will use a closed�form queuing network model to compare the performance of Scheduled

Data�ow with conventional processors� ETS�like data�ow architecture and hybrid systems

�The authors believe that numeric application could utilize a double word source registers more e�ectively
than this example�

�

int f�int i�
�

if �i � �� return f�i����f�i�	�

else if �i �� �� return �

else return �

�a� C code

�main� mkval � R	�r
gt R	 R��l
brnz R��l �main�	
eq R	 R��l
brnz R��l �main��

�main��� mkval � R���l
switch�s �post��

�main��� mkval � R���l
switch�s �post��

�main�	� falloc R��l �pre 	
falloc R��l �pre 	
falloc R��l �pre �
select�l R	 R��l R��l
mkval � R��r
sub R� R��l
mkval 	 R��r
sub R� R��l
mkval 	�l R��r
mktag R� R���l
mkval 	�r R��r
mktag R� R���l
switch�s �post�	

�main� add R	 R���l
switch�s �post

�b� EP code

�pre� load R� Rfp �
load R	 Rfp 	
switch�p �main

�post��� store R���l R��l �
ffree

�post�	� store R���l R��l ��l
store R��l R��l 	�l
store R���l R��l ��l
store R��l R��l 	�l
store R��l R��l ��l
ffree

�pre� load R� Rfp �
load R	 Rfp 	
switch�p �main

�post� store R���l R��l �
ffree

�c� SP code

Figure �� Example code segment

�

utilizing separate processors for thread execution and thread scheduling �e�g�� EARTH�	����

It may be instructive to explore the factors that impact our model� Consider the number

of cycles needed to execute a program with N � R instructions� where N is the number of

threads and R is the average number of instructions per thread �i�e�� run�length�� In a con�

ventional architecture �assuming no instruction reordering or multiple issue�� the number of

cycles needed to execute the program depends on the number of instructions per thread� the

average CPI that accounts for cache misses �ignoring other pipeline stalls�� context switching

overhead to switch between threads� and the number of threads� Thus� in addition to N and

R� the factors that in�uence the performance include fm �fraction of instructions which are

memory reference instructions�� Tm �average memory access time including cache misses� and

Tc �context switch time�� In ETS� two operand instructions require two cycles per instruc�

tions and one operand instruction requires one cycle through the pipeline� In addition� since

the operands �for two operand instructions� must be stored in the operand cache� we need

to account for delays due to cache misses� One operand instructions do not involve an access

to the operand memory� Thus� the factors that in�uence the performance of ETS include�

total number of instructions �N � R�� the fraction of two operand instructions �f�� and the

average memory access time �Tm�� Since ETS uses pure data�ow model� each instruction can

be viewed as a separate thread� and the thread switching cost is zero �as each instruction car�

ries its own context�� In practical implementation of ETS �e�g�� Monsoon�� a context switch

is required to change from one activation frame to another� particularly when only
nite

number of activation frames can be held in the operand memory� For hybrid data�ow sys�

tems �such as EARTH�� since there exist two separate execution units� some overlap between

thread execution and thread synchronization �and scheduling� can be achieved� The factors

that in�uence performance of the Execution Unit �EU� include N � R� fm �fraction of instruc�

tions which are memory reference instructions�� Tm �average memory access time including

cache misses�� while Ts �thread synchronization� scheduling and context switch time� impacts

the performance of the Synchronization Unit �SU�� If insu�cient parallelism is available in

the program to completely overlap the execution of threads �in EU� with synchronization of

thread related activities �in SU�� hybrid systems incur idle cycles�

In Scheduled Data�ow� thread context is preloaded by the Synchronization Processor

�SP�� eliminating all memory accesses during the execution of a thread� fm �the fraction of

instructions that are memory access instructions�� Tm �average memory access time and Ts

�thread synchronization and scheduling� e�ect the performance of the SP� while the perfor�

mance of EP is in�uenced by N � R and the context switch between threads �np�� If insu�cient

parallelism is available in the program to completely overlap the execution of threads with

the preloading and synchronization delays� Scheduled Data�ow will incur idle cycles during

	�

Table 	� Notation

symbol meaning

Tp pipeline execution time of a single instruction
Tm memory access time including cache miss
Ts synchronization and scheduling overhead
Tc context switch overhead
f� fraction of instructions with two operands
fm fraction of memory access instructions �e�g�� preload�post�store�
np number of wasted pipeline cycles on thread switch �set to ��
N number of runnable threads in a system
R average run length of a thread
U average utilization rate

the execution of the program� It should be noted that the context switching overhead�np� is

at most equal to the number of pipeline stages� This is because� a new thread can be fed into

the execution pipeline� soon after the previous thread completes execution �as indicated by

�switch� instruction�� It may be possible to reduce the overhead by initiating a new thread

as soon as the �switch� to a new context instruction is fetched and decoded� It should also

be noted that� in our evaluation of hybrid architectures �such as EARTH�� we have lumped

the context switch into the synchronization overhead� In practice� the combined overhead of

synchronization� scheduling and context switching can be very signi
cant�

Figure � shows closed queuing networks for ETS� EARTH�like hybrid architectures� and

Scheduled Data�ow� The workload for conventional architecture� ETS� hybrid architecture

and Scheduled Data�ow will be respectively N � �N � R� � �	 � f���
� N and N � Table 	

de
nes the symbols�

� Performance Analysis

It is straightforward to derive throughput� utilization� average queue length� etc�� from

the queuing model using Mean Value Analysis� In this paper� we are interested in comparing

ETS and hybrid architectures with Scheduled Data�ow in terms of total execution times� In

addition� we are also interested in the e�ects of run�lengths �coarse vs�
ne�grained�� number

of threads �hence hardware contexts�� number of loads�stores� and synchronization overhead

�Remember that � � f� number of tokens are needed for each instruction on the average� thus making the
execution time � � f� times total number of executed instructions
N � R�� Therefore� the probability of

two�operand instruction being executed is represented as

 f�
� � f�

�

		

Tp

Tm

	 � f�

	 � f�

	� f�

� f�

a� ETS

Ts

R �Tp � fm Tm�

b� EARTH�like hybrid architecture

R Tp np Tp

Ts � fm R Tm

c� Scheduled Data�ow

Figure �� Queuing networks

on the performance of the Scheduled Data�ow� While we do not have real benchmarks for our

evaluation� all parameters used are based on either published data� our observations based

on hand�coded programs or our observations based on architectural di�erences�

��� Total Execution Time

To compare the execution time of Scheduled Data�ow with that of the other architectures�

we have varied f� �i�e�� fraction of two�operand instructions in ETS� from
�� to ���� and the

synchronization overhead �i�e�� Ts� for both EARTH�like hybrid architecture and Scheduled

Data�ow from � to �� We also varied the context switch overhead for conventional architecture

from � to 	�� We set the fraction of load�store instructions �fm� to
�� �using data from

�	���� It should be noted that the synchronization overhead �Ts� can be as small as � cycles
�

�The typical synchronization and scheduling requires�

	�

�as indicated in Sparcle������ The number of cycles lost between thread switches �np� is set to

� �based on the number of pipeline stages of Scheduled Data�ow system shown in Figure ���

Figure � shows the results for di�erent number of threads �N� and run�lengths �R�� �HDF�

represents hybrid architecture� Note that for ETS� R is always 	 and the number of threads

is equal to N �R�

We assumed a CPI �Tp� of 	 cycle� and di�erent memory access times �Tm� for each

architecture� We set the memory access time that takes into account cache miss rates and

miss penalties �Tm� of Scheduled Data�ow to ���� It was previously observed that �data�

cache miss rates for ETS are typically higher than those for conventional architectures����

It is our contention that the �data� cache miss rates for Scheduled Data�ow will be lower

than those of a conventional architecture� This results from the preloading and poststoring of

thread contexts which facilitate for better prefetching and data placement possibilities� With

these assertions� we set the cache miss rate of ETS to four times as high as that of Scheduled

Data�ow �i�e�� Tm ��� for ETS�� Cache miss rates for the other architectures are assumed

to be twice that for Scheduled Data�ow �i�e�� Tm
���� �In section ��
� we will compare the

performance of each architecture by varying memory access time �Tm� from 	�� through ����

Even with the same memory access times and cache miss rates� Scheduled Data�ow performs

better than the other architectures��

Although the experiment with other values of the various parameters was conducted�

we present only two sets of data for each architecture� All results exhibit similar tendencies�

Scheduled Data�ow performs better than other architectures unless R is very small �less than

�� or there is very little parallelism �N is less than �� � this may be di�cult to observe from

the
gure because of the clustering of data near the origin� SDF�s performance is superior

to the other systems even when the synchronization delays for Scheduled Data�ow are as

high as �� Scheduled Data�ow incurs a
xed overhead even when N �� since two separate

processors are used�

From Figure ��b� it can be observed that for large R �� 	��� the synchronization overhead

has negligible impact because the thread execution time �in EP� is completely overlapped

by the synchronization and scheduling of threads �in SP�� For very small R �� ��� HDF

and ETS perform better than the proposed SDF� For R 	� and N 	� �and Ts ���

Scheduled Data�ow requires ������ less execution time than hybrid data�ow� �	�	�� less

than conventional architecture and ������ less than ETS� For larger N �i�e�� more
ne grained

�� post�store results from a thread
already included in fm��

� If the synchronization count of a thread is zero� obtain next �FP�IP��
�� Set FP to the �rst instruction of the thread�
�� Preload initial values of thread into its local registers
already included in fm��

	

0

500

1000

1500

2000

0 8 16 24 32 40 48 56 64

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

N

a� R 	�

100

1000

1 2 4 8 16 32 64

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

R

b� N 	�

Figure �� Analysis on expected execution time

	�

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

U
til

iz
at

io
n

ra
te

Pipeline
Synchronization

N

a� R 	�

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

U
til

iz
at

io
n

ra
te

Pipeline
Synchronization

R

b� N 	�

Figure �� Utilization of Scheduled Data�ow

parallelism�� Scheduled Data�ow performs even better� For larger R �i�e�� coarser grained

threads�� the performance di�erences between SDF� HDF and conventional architectures is

less pronounced�

��� Utilization

We wanted to investigate the e�ects of thread granularity and the number of threads�or

register contexts� on the utilization of the two separate functional units in Scheduled Data�ow

�viz�� EP and SP�� Figure � shows the results� For this experiment we chose fm
���

Ts �� All other parameters are the same as those for Figure �� The results indicate that

the synchronization unit is not a bottleneck for thread lengths �R� greater than �� Also� very

high utilization can be achieved for modest sized threads �R 	�� and a modest number of

threads �N � ��� This implies that it is feasible to design
ne�grained data�ow systems with

very small number of register contexts�

��� E
ect of Memory Accesses

We wanted to investigate the impact of memory access times on the performance� We

varied the average number of cycles needed for memory access �Tm� from 	�� to ���� This

includes the e�ect of cache misses and miss penalties� The results are shown in Figure ��

	�

Here� we set R 	� and N 	��� The
gure indicates that memory access delays have

the most signi
cant impact on ETS� In Scheduled Data�ow memory accesses are overlapped

with thread execution� For both conventional architectures and hybrid systems� the impact of

memory access time is more linear� The
gure also shows that the performance of Scheduled

Data�ow is better than the other architecture even when we assume the same cache miss

rates and memory access times�

We also studied the signi
cance of the load�store instructions �for preload�post�store�

on the performance of Scheduled Data�ow �Figure 	��� As expected� with more load�store

instructions� the overall execution time increases for SDF� This is because SP is more heavily

loaded than EP� This can be alleviated by more parallelism �larger N�� For HDF� since the

EU performs load�store� the increase in execution times are more linear� The same behavior

is found for conventional architecture� too�

��� Thread Granularity

In order to investigate the impact of the thread granularity �i�e�� R� on the performance of

Scheduled Data�ow� we compared the total execution times of Scheduled Data�ow with the

other architectures for various values of R� Note that R 	 for ETS� For a fair comparison� we

kept N �R constant in each experiment to re�ect equal amount of work on all architectures�

The results are shown in Figure 		� We varied total number of instructions and included �

sets of data in this paper� Results from other values show very similar trends�

The right�most values in the graphs re�ect the case when N 	� Except when R is

small �less than ��� Scheduled Data�ow outperforms the other architectures� for all values

of f� �fraction of two operand instructions in ETS�� Tc �context switch overhead in con�

ventional architecture� and Ts �synchronization overhead in hybrid architecture and Sched�

uled Data�ow�� The graphs also re�ect that optimal performance �in Scheduled Data�ow�

is achieved only when a balance between the number of threads and thread granularity is

achieved� The experiment indicates that coarse�grained threads are not necessary for high

performance �although longer threads tolerate more synchronization and preload�post�store

overheads�� As expected hybrid architecture performs better than ETS and conventional

architecture because of the use of two separate hardware units �EU and SU�� the proposed

SDF performs better than hybrid systems� since SDF not only uses two separate hardware

units �SP and EP	� but also decouples memory accesses from Execution Pipeline�

�Note that previous �gures show results using di�erent cache miss rates for the various architectures as
described in Section ���� Here we compare the architectures for a range of memory access times� As can be
observed� even when the memory access times are the same� Scheduled Data�ow performs better than the
other architectures�

	�

0

100

200

300

400

500

600

1 2 3 4 5 6

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

Tm

Figure �� E�ect of memory access time

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1.0

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

fm

Figure 	�� E�ect of number of load and store instructions

	�

200

500

1000

2000

1 2 4 8 16 32 64 128 256

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

R

a� N � R ���

20K

50K

100K

1 4 16 64 256 1K 4K 16K

E
xp

ec
te

d
ex

ec
. t

im
e

ETS� f� �

ETS� f� ��

SDF� Ts �
SDF� Ts �
HDF� Ts �
HDF� Ts �

Conv� Tc �
Conv� Tc 	�

R

b� N �R 	�
��

Figure 		� E�ect of run length

	�

0

10

20

30

40

50

1 2 4 8 16 32 64

N

U ��
U ��
U ��
U ��
U ��

R

a� Ts �

0

10

20

30

40

50

1 2 4 8 16 32 64

N

Ts �
Ts �
Ts �
Ts �

R

b� U ���

Figure 	�� Required number of hardware contexts

��	 Hardware Contexts

Although the previous
gure �Figure 		� gives some clues on the number of threads

�hence number of hardware contexts� required to achieve optimal performance� we conducted

an experiment to investigate the number of hardware contexts �N� needed to achieve high

utilization of the pipeline unit� The results shown in Figure 	� indicate that even for a modest

number of threads �N ��� and a modest thread granularity �R ��� very high utilization

�� ���� can be achieved� Longer threads are needed to tolerate higher synchronization

overheads �Figure 	��b��� This reiterates our belief that it is possible to design
ne�grained

data�ow systems with a modest number of hardware contexts� For example with run�lengths

of �� ��� utilization is achieved with � hardware contexts �even when Ts ��� More contexts

do not increase the utilization�

��� Utilization of Synchronization Unit and Pipeline Unit

The next issue of interest is the utilization of the two hardware units �SP and EP� in

Scheduled Data�ow� We wanted to
nd when the Synchronization Processor �SP� limits

the system performance� We varied the number of threads �with
xed R� and run�lengths

�with
xed N�� as the synchronization overhead �Ts� is varied from 	 to 	� � re�ected by the

x�axis �y�axis shows utilization�� The results are shown in Figure 	
� The utilization of the

	�

U

Ts

1.0

0.5

0
0 5 10

a� N � �� R � �	

1.0

0.5

0
0 5 10

b� N � ��� R � �	

1.0

0.5

0
0 5 10

c� N �
�� R � �	

1.0

0.5

0
0 5 10

d� N � ��� R � �	

1.0

0.5

0
0 5 10

e� N � ��� R � �

1.0

0.5

0
0 5 10

f� N � ��� R � �	

1.0

0.5

0
0 5 10

g� N � ��� R � ��

1.0

0.5

0
0 5 10

h� N � ��� R �
	

Figure 	
� E�ect of Ts on system saturation of Scheduled Data�ow

Execution Pipeline �solid lines� decreases while the utilization of the Synchronization Proces�

sor�dotted lines� increases with increasing values of Ts� Except for large Ts� Synchronization

Processor is not a bottleneck� The
gure also implies that it is better to increase the number

of contexts �N� instead of the granularity of threads �R�� when Ts is large�

��� Utilization of Multiple Functional Units

Considering that multiple functional units are commonly used in today�s high�performance

processors� we measured the potential performance gain when our Scheduled Data�ow adopts

multiple functional units� Figure 	� shows three di�erent con
gurations� only Synchroniza�

tion Processors are replicated� only Execution Pipelines are replicated� both units are repli�

cated� The performance improvement is most remarkable when both units are replicated�

Replication of SP�s only� at least for small replication factors� shows performance gains both

for larger R �coarser grained threads� and larger N �more parallelism�� Replication of only

EP�s a�ects the performance only for larger N � These results are to be expected since larger

N more heavily loads EP� and smaller N more heavily loads the SP� Figure 	� investigates the

e�ect of multiple functional units on the number of thread contexts� Even with a replication

factor of ��
� hardware contexts are su�cient for ��� utilization rate �that is about � or �

contexts per pipeline unit��

��

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of SP’s

R �
R 	�
R 	�
R ��

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of SP’s

N �
N 	�
N 	�
N ��

a� multiple SP�s only

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of EP’s

R �
R 	�
R 	�
R ��

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of EP’s

N �
N 	�
N 	�
N ��

b� multiple EP�s only

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of SP’s/EP’s

R �
R 	�
R 	�
R ��

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xp

ec
te

d
ex

ec
. t

im
e

No. of SP’s/EP’s

N �
N 	�
N 	�
N ��

c� multiple SP�s�EP�s

Figure 	�� E�ect of multiple functional units

�	

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8

No. of pipeline/sync. units

U ��
U ��
U ��
U ��
U ��

N

Figure 	�� Required number of hardware contexts for multiple functional units

� Conclusion

Our research is centered around the investigation of approaches to implement data�ow

architectures that can become viable alternatives to control��ow systems� We also hope to

study the impact of decoupled hardware units on the performance of data�ow and hybrid

multithreaded architectures� In this paper we presented a data�ow architecture that de�

viates from traditional token�driven model� and schedules instructions sequentially� akin to

control��ow model� Unlike other hybrid architectures �e�g�� ���� ���� ���� where the data�ow

properties were applied only at thread level �i�e�� macro�data�ow� with conventional control�

�ow instructions within threads �along with side�e�ects� WAW and WAR dependencies�� our

model retains data�ow properties even at the instruction level� We used a simple closed�

form queuing model to analyze the proposed architecture� The results indicate that it is

possible to develop control��ow like execution of data�ow architectures� which outperform

token�driven data�ow models� The results also indicate that when a separate hardware unit

is used for synchronization� scheduling of threads� preloading and post�storing thread data

into hardware contexts� one can tolerate synchronization overheads and memory latencies�

Most importantly� in such systems� high utilization is achieved with
ne�grained threads and

a small number of hardware thread contexts� The impact of multiple functional units �i�e��

superscalars and multiple issue systems� on the number of hardware contexts �hence the com�

plexity of hardware� is also investigated� Due to the non�blocking and
ne�grained nature

of our threads� the proposed architecture achieves very high utilization even with very few

��

hardware contexts�

The closed form re�ects an idealized situation and assumes that as threads leave the

system an equal number of new threads enter the system� In reality� there may be a variable

number of idle cycles between the completion of one thread and the initiation of a new thread

due to synchronization requirements �in addition to context switching and preload�post�store

delays�� In order to analyze the architecture in a more realistic light� we are in the process of

developing detailed� instruction level simulations of the proposed architecture and empirically

evaluate the proposed architecture� We will use various benchmark programs available in Sisal

language for the evaluations�

References

�	� A� R� Hurson� K� M� Kavi ! B� Lee� Cache memories in Data�ow architectures� IEEE

Parallel and Distributed Technology� 	���� ������

��� K� M� Kavi� A� R� Hurson� P� Patadia� E� Abraham� ! P� Shanmugam� Design of cache

memories for multi�threaded data�ow architecture� Proceedings of the ��nd Int�l Symp

on Computer Architecture �ISCA���	� 	���� St� Margherita Ligure� Italy� ��
�����

�
� M� Takesue� A uni
ed resource management and execution control mechanism for

Data�ow Machines� Proc

�th Annl
 Int�l Symp
 on Computer Architecture� 	���� ������

��� S� A� Thoreson ! A� N� Long� A Feasibility study of a Memory Hierarchy in Data Flow

Environment� Proc
 of Int�l Conference on Parallel Conference� 	����
���
���

��� M� Tokoro� J� R� Jagannathan ! H� Sunahara� On the working set concept for data��ow

machines� Proc
 of
�th Int�l Symp
 on Computer Architecture� 	��
� ������

��� R� Govindarajan� S� S� Namawarkar ! P� LeNir� Design and performance evaluation of

a multithreaded architecture� Proc
 of the HPCA�
� 	���� ����
���

��� H� H��J� Hum� The super�actor machine� A hybrid data�ow�von Neumann architecture�

doctoral diss�� McGill University� Montreal� Canada� 	����

��� S� Sakai� K� Okamoto� H� Matsuoka� H� Hirono� Y� Kodama� ! M� Sato� Super�threading�

Architectural and software mechanisms for optimizing parallel computations� Proc
 of

��� Int�l Conference on Supercomputing� 	��
� ��	�����

��� G�M� Papadopolous ! D�E� Culler� Monsoon� an Explicit Token�Store Architecture� The

�th Int�l Symp
 on Computer Architecture� 	���� ������

�	�� H� H��J� Hum� O� Maquelin� K� B� Theobald� X� Tian� X� Tang� G� R� Gao� P� Cupryk�

N� Elmasri� L� J� Hendren� A� Jimenez� S� Krishnan� A� Marquez� S� Merali� S� S� Ne�

mawarkar� P� Panangaden� X� Xue� ! Y� Zhu� A design study of the EARTH multipro�

cessor� Proc
 of the Conference on Parallel Architectures and Compilation Techniques�

�

Limassol� Cyprus� 	���� ������

�		� J� E� Smith� Decoupled Access�Execute Computer Architectures� Proc of the �th Annual

Symp
 on Computer Architecture� 	���� 		��		��

�	�� A� Agarwal� R� Bianchini� D� Chaiken� K� L� Johnson� D� Kranz� J� Kubiatowicz� B��H�

Lim� K� Mackenzie� ! D� Yeung� The MIT Alewife machine� Architecture and perfor�

mance� Proc
 of ��nd Int�l Symp
 on Computer Architecture �ISCA���	� 	���� ��	
�

�	
� D� Chiou� B� S� Ang� B� Greiner� Arvind� J� C� Hoe� M� J� Beckerle� J� E� Hicks� !

A� Boughton� StarT�NG� Delivering seamless parallel computing� Proc
 of the �rst Int�l

EURO�PAR conference� 	���� 	�	�		��

�	�� K� M� Kavi� D� Levine ! A� R� Hurson� PL�PS� A non�blocking multithreaded architec�

ture� Proc
 of the Fifth International Conference on Advanced Computing �ADCOMP

���	� Madras� India� 	����

�	�� K� M� Kavi ! A� R� Hurson� Investigation of operand memory reuse in a dynamic

data�ow architecture� Proceedings of the High Performance Computing Symposium ��	�

New Orleans� Louisiana� 	���� ��������

�	�� H��S� Kim� Instruction set architecture of Scheduled Data�ow� Technical Report� Dept

of Electrical and Computer Engineering� University of Alabama in Huntsville� 	����

�	�� A� Agarwal� Performance tradeo�s in multithreaded processors� IEEE Transactions on

Parallel and Distributed Systems�
���� �����
�� 	����

�	�� D� E� Culler� Multithreading� Fundamental limits� potential gains and alternatives� Proc

of Supercomputing �
� workshop on Multithreading� 	����

�	�� J� L� Hennessy ! D� A� Patterson� Computer Architecture� A Quantitative Approach�

Morgan Kaufmann Publisher� 	����

���� A� Agarwal� J� Kubiatowicz� D� Kranz� B��H� Lim� ! D� Yeung� Sparcle� An evolutionary

processor design for multiprocessors� IEEE Micro� 	��
� ����	�

��

