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Decoupled Memory Access

Separate Processor to handle all memory accesses

The earliest suggestion by J.E. Smith -- DAE architecture
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Limitations of Smith’s DAE processor

• Designed for STRETCH system with no pipelines

Single instruction stream

• Instructions for Execute processor must be coordiated
with the data accesses performed by Access processor

Very tight synchronization needed

• Coordinating conditional branches complicates the
design

• Generation of coordinated instruction streams for
Execute and Access my prevent traditional compiler
optimizations
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More Recent implementations

A multithreaded processor
     Separate Memory and Execution Pipelines
    A thread is handed off to Memory processor
        when a Memory Access Instruction is decoded
    A thread is handed off to Execute processor
         when a non-memory access instruction is
         decoded

Other context switches may be needed
Switch on Use -- data dependencies
Synchronization
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Limitations of Rhamma Processor

• Blocking Thread Model

Requires More context switches

• Checking for data dependencies requires complex
hardware

• Bubbles in pipelines are unavoidable on context switches
and cache misses
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More Recent implementations

Pre-Load/Post-Store
Processor

• A non-blocking multithreaded processor

• Separate Memory and Execution

Pipelines

• A thread is enabled for execution only
after all data is loaded into registers

• Storing of data is delayed until the
thread completes execution

• Branch instructions cause new threads
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A Simple Example

LD F0, 0(R1) LD F0, 0(R1)
LD F6, -8(R1) LD F6, -8(R1)
MULTD F0, F0, F2 LD F4, 0(R2
MULTD F6, F6, F2 LD F8, -8(R2)
LD F4, 0(R2) MULTD F0, F0, F2
LD F8, -8(R2) MULTD F6, F6, F2
ADDD F0, F0, F4 SUBI R2, R2, 16
ADDD F6, F6, F8 SUBI R1, R1, 16
SUBI R2, R2, 16 ADDD F0, F0, F4
SUBI R1, R1, 16 ADDD F6, F6, F8
SD 8(R2), F0 SD 8(R2), F0
BNEZ R1, LOOP SD 0(R2), F6
SD 0(R2), F6

                             Conventional          New Architecture
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Features of PL/PS

•  Multiple hardware contexts

• No pipeline bubbles due to cache misses

• Overlapped execution of threads

• Opportunities for better data placement and prefetching

• Fine-grained threads -- A limitation?

• Multiple hardware contexts add to hardware complexity

If 35% of instructions are memory access instructions, PL/PS can achieve 35%
increase in performance with sufficient thread parallelism and completely mask
memory access delays!
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Scheduled Datalow

n Brings dataflow closer to conventional RISC
architecture

n Utilizes Decoupled processors to eliminate pipeline
bubbles on cache misses -- combines Preload/post-
store with dataflow

n Eliminates WAR and WAW dependencies in pipelines
The result of using dataflow execution

n Uses Non-blocking Multithreaded model
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Limitations of Previous Dataflow Architectures

n Memory Hierarchies cannot be used

n Too fine-grained

n Localities are difficult to synthesize

n Asynchronous execution

The first 3 limitations have been addressed by
other researchers

Scheduled dataflow addresses the last limitation



Jump to first page

Kavi -- ISPAN-99

11

Scheduled Datalfow Architecture

n Each instruction is associated with
a pair of “source registers”.

Predecessor instructions store their
results in these registers

n An instruction is not enabled
immediately when the two source
registers are loaded.

Instructions are scheduled similar
to conventional processors.

However, instructions retain
functional properties
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Decoupled Processors For Scheduled Datafllow
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Preliminary Performance Comparisons

• Monte Carlo simulations using simple models for
Rhamma, Scheduled Dataflow and conventional RISC
processors

• Some of the parameters are based on published data (%
load/stores, avg memory latency, cache miss rates).

• Some parameters are based on simple programs coded in
our architecture

• Some parameters are based on guesswork
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Performance Results

Effect Of Thread Level Parallelism

L is Latency and it is set to 1, 3, and 5 times the Thread run
lengths

• Multithreaded architectures

(Rhamma and SDF) perform poorly

for small degrees of parallelism

• Conventional architecture is assumed

to be single threaded

• SDF is non-blocking and incurs no

context switches during exection
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Effect Of Thread Granularity Effect Of Load/Store Instructions

• SDF is finer-grained. But modest thread run-lengths of 20 instruction

are sufficient to outperform Rhamma

• Decoupling is the main reason for the lack of performance losses even
when load/store instructions dominate
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Effect Of Cache Misses and Miss Penalties

(a) Impact of miss rates      (b) Impact of miss penalties

• SDF permits for data alignment and prefetching leading to lower cache misses

• Preload/Post store eliminates unnecessary context switches during thread execution
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Conclusions

n Combined Dataflow Architecture With Conventional
control-flow like scheduling and Decoupled memory
accesses

n The performance gains are primarily due to
u Overlapped Memory/Execute processing
u Non-Blocking and fine grained threads

F One difference between Rhamma and SDF
u Pre-load/Post-Store Decoupling

F Another difference between Rhamma and SDF
F Permits for data placement and prefetching

n Eliminates Complex Instruction Scheduling hardware
u For register renaming, detecting WAR/WAW

dependencies, Branch prediction
F A third difference between Rhamma and SDF



Jump to first page

Kavi -- ISPAN-99

18

Current Status And Future Research

• A detailed instruction simulator is being designed

• Converting Compiler backends to generate code for SDF

• Should be able to evaluate the architecture more thoroughly

using large benchmarks
Not just SPEC, but special purpose and
embedded applications

• Investigate compiler optimizations

Data placement/prefetch

Predictive preloading

•Estimate hardware savings


