Fault-Tolerance Using Cache-Coherent Distributed Shared Memory Systems

D. L. Hecht, K. M. Kavi, R. K. Gaede
The University of Alabama in Huntsville
{hecht, kavi, gaede}@ece.uah.edu

Abstract

In this paper, we describe new protocols augmenting
traditional cache coherency mechanisms to implement
fault-tolerance based on Recovery Blocks and
checkpointing. Concurrent processes compound rollback
recovery since the rollback can potentially lead to a
"domino effect” whereby the process is rolled back to the
beginning. Several approaches have been proposed to
limit the domino effect. One set of such techniques
requires communicating processes to periodically
synchronize in order to checkpoint a globally consistent
state. These schemes can be implemented more naturally
on distributed shared memory systems using
synchronization on shared memory. We have developed
extensions to well known cache-coherency methods (e.g.,
directory-based) for the implementation of checkpointing
consistent states.’

1. Introduction

While hardware fault-tolerance has long enjoyed
considerable attention, software fault-tolerance received
interest only during the 1980°s, giving rise to techniques
such as N-version programming, Recovery Blocks and
rollback recovery. Backward rollback recovery involves
the periodic checkpointing of state, which is restored
when an error is detected. The backward recovery
schemes can be implemented more naturally on
distributed shared memory (DSM) systems using
synchronization on shared memory. With suitable support
for data coherency, the granularity of synchronization can
range from very fine-grained (per variable) to coarse-
grained (per page).

We have developed extensions to well known
directory-based cache-coherency methods ([11]) for the
implementation of backward recovery. No new language
constructs are needed for the specification of
conversations among concurrent processes ([12], [10])
because they are implied by the use of the shared memory

* Acknowledgments. This work is supported in part by the following
NSF grants: MIPS 9796310, EIA 9729889 and EIA 9895216. Partial
travel support for D. Hecht was provided by the Graduate School of
UAH.

C. Katsinis
Drexel University, Philadelphia, PA.
ckatsini@ece.drexel.edu

programming model. Our technique combines directory-
based protocols for maintaining cache-coherency with
version numbers to track checkpoint/recovery boundaries.
The granularity of synchronization for rollback purposes
is a cache block, the unit for which consistency is
implemented in DSM systems. On recovery, only the
processes that have shared the affected block since a
previous globally consistent state will rollback their
computations to the previous checkpoint.

In this paper, we describe our approach using the most
basic directory protocol (p+1 protocol) and illustrate the
changes needed in the directory and local cache
memories. We tested our method using a simulator
designed specifically for this purpose. Our research
should be contrasted with the research that aims to make
DSMs fault tolerant ([1], [8], [14]). Our goal is to utilize
DSMs to develop fault-tolerant software. There have been
a few attempts to utilize DSM systems for transparent
rollback and checkpointing ([2], [15]). The research that
comes close to our work can be found in [6], in which
nodes periodically checkpoint their shared pages. Each
checkpoint is identified by a number, which is
communicated to other nodes that request the pages.
Receiving nodes use this checkpoint number to create
"dependency tables" that track the sharing history. On an
error, a globally consistent checkpoint is constructed
using the dependency tables of all nodes and the rollback
is then propagated to other nodes as appropriate.

These techniques do not address Recovery Block
implementations, particularly when processes are
structured with multiple nested Recovery Blocks. A
recursive cache designed for a single node system was
proposed in [12] for storing checkpoints from nested
recovery layers but does not take into account recovery
layers that span multiple machines.

Our approach is similar in spirit to the techniques that
rely on DSMs’ ability to maintain coherency for shared
memory. Unlike other techniques, however, we utilize
directory-based cache coherency protocols and version
numbers to keep track of different Recovery Block
boundaries and sharing history, for checkpointing and
rollback propagation to affected processes.

2. Extending DSMs for Recovery Blocks

In this section, we describe how directory-based cache
coherency techniques can be extended for use with
Recovery Block based fault-tolerance. In our algorithm,
each cache block is assigned a version number to reflect
the Recovery Block level in which the cache block was
modified. A Rollback on failure involves the rolling back
of shared variables to a value with a prior version number.
In general, all processors that have accessed a shared
variable with a version number that corresponds to a
failed Recovery Block must rollback their cache blocks to
previously checkpointed data from a prior version
number. No rollback is necessary for a processor that did
not access variables with a failed version number.

Each Recovery Block is associated with a globally
unique, non-decreasing layer number (Global Layer
number) maintained by the directory. When a processor
enters a new Recovery Block, it requests a new Global
Layer number from the directory controller. Every
processor maintains a local copy of the Global Layer
number called the Local Layer number. The Local Layer
number is used to mark modified variables. Each
processor keeps track of the layer numbers that
correspond to its individual recovery block structure.

2.1 New Cache and Directory Structures.

In directory-based coherence schemes, local caches
maintain state information for each entry as SHARED
(read-only) access or EXCLUSIVE (write) access. In our
case, local caches must also include the Local Layer
number, version numbers for each local copy of a shared
cache block, and a stack of local checkpoints.

Figure 1 shows the revised cache structures used by the
cache controllers. Each time the directory controller
communicates with a cache controller, the current Global
Layer number is included with the message and used by
the cache controller to update its Local Layer number. In
this presentation, we assume that each cache block
corresponds to a single variable (although, in general, a
cache block contains 32-128 bytes). The version number
of a variable is the number of the Local Layer in which
the variable was last modified. Additionally, the processor
that modified the variable is stored as part of the
Version/Processor to facilitate dependency tracking
during rollback. If processors enter recovery blocks
between modifications to a variable, the version number
of the variable may change multiple times during a single
period of ownership. If the version number of the
variable changes, the variable is locally checkpointed
before it is modified. A separate Checkpoint Stack exists
for each variable in the processor’s cache.

A layer stack is included in each cache to track the
Recovery Layers entered by that processor. On entering a

Recovery Block, a processor receives a new Global Layer
number from the directory controller. The cache
controller pushes the new layer number onto the layer
stack and sets the Local Layer number to the Global
Layer number. Exiting a Recovery Block causes the
processor to pop the top layer from the stack but does not
result in messages to the directory controller or in any
changes to either the Local Layer or Global Layer
numbers. When a processor must rollback, the number at
the top of the stack identifies the number of the layer to
which it must rollback (the Rollback Layer).

PROCESSOR: 0

LOCAL_LAYER: 13

layer stack: 12 9 6 3 0 (Val/Ver/Proc)
VAR STATE VALUE VER/PROC CHECKPOINT STACK

A s 1 5/0

B s 1 8/0

C S 0 5/2

D E 8 11/0 4/11/1
E E 8 13/0 4/10/0
F I 10 13/0

G I 0 0/-1

H I 0 0/-1

PROCESSOR: 2
LOCAL LAYER: 13
layer stack: 13 10 4 1 0 (Val/Ver/Proc)
VAR STATE VALUE VER/PROC CHECKPOINT STACK
A I 8 1/2
8/0
5/2
0/-1
-1/-1
-1/-1
8/2 0/-1/-1
0/-1

mQMEO QW
HEHHHW\®
(SR N e e e

PROCESSOR: 1

LOCAL LAYER: 13

layer stack: 7 52 0 (Val/Ver/Proc)
VAR STATE VALUE VER/PROC CHECKPOINT STACK

A S 1 5/0

B 1 8/0

[S 0 5/2

D I 4 11/1

E I 4 10/0

F E 1 13/1 10/13/0
G I 0 0/-1

H E 31 6/1 0/-1/-1

Figure 1: Modified Local Cache Structures

In order for the directory controller to direct the global
backward error recovery process, additional information
must be added to the basic p+1 directory structure [4].

Figure 2 shows the new directory structure with values
taken from a simulated environment with three
processors, PO, P1, P2, and several shared variables, A
through H. Items added to the directory structure include
the Global Layer number, Version/Processor numbers
associated with individual variables, Access Set, an
Access Stack, and a Checkpoint Stack. The
Version/Processor information is initialized to -1 in order
to distinguish it from the values assigned at runtime. The
Global Layer number identifies the current Global
Recovery Layer of the program. As noted before, the
version number in Version/Proc is the Recovery Block
layer in which a variable is modified and the Proc is the
processor that modified the variable. This information is
used for rollback purposes

The directory controller uses the version number to

determine which variables are affected by a failed
Recovery Block. The value and version of a variable is
updated when a WriteBack message is received from the
owner of the variable. The WriteBack message contains
the value and version assigned to the variable by the
owner. The previous value and version of the variable are
checkpointed before the directory entry is updated.
Checkpoints are kept in the Checkpoint Stack for each
variable and are shown in the figure as
value/version/proc, where proc is the number of the
processor that modified that version of the variable.

GLOBAL_LAYER: 13

VAR STATE VALUE VER/PROC PO Pl P2 ACCESS
A S 1 5/0 1 1 0 000
B S 1 8/0 1 1 1 010
C s 0 5/2 1 1 1 110
D E 4 11/1 1 0 0 000
E E 4 10/0 1 0 0 100
F E 10 13/0 0 1 0 110
G E 0 -1/-1 0 0 1 000
H E 0 -1/-1 0 1 0 000
ACCESS STACK:
Layer A B C D E F G H
12 000 000 000 000 000 000 00Q 000

0 11 010 011 000 110 010 01 00Q 000
10 000 000 000 100 100 000 00Q 000

©

000 000 000 000 000 000 00Q 000
110 100 110 000 010 100 001 000
010 010 000 000 000 000 00Q 000
000 000 000 000 000 000 00Q 010
100 100 001 000 001 001 00Q 000
000 000 000 010 000 000 00Q 000
000 000 000 000 000 000 00Q 000
000 001 011 000 000 000 00Q 000
001 000 001 000 000 000 00Q 000
000 000 000 000 000 000 00Q 000

O N W o @

CHECKPOINT STACK (Val/Ver/Proc)
Var Checkpoints

A 8/1/2 0/-1/-1

2/5/0 11/2/2 0/-1/-1

3/2/1 13/1/2 0/-1/-1

3/7/1 4/4/1 0/-1/-1

1/8/1 0/-1/-1

5/11/1 0/-1/-1

T QM EOQW

Figure 2: Modified Directory Structure

Note that the Copy Set only indicates which processors
currently contain a copy of the cache block and it does not
include processors that may have had a copy of a data
item before it was either invalidated or replaced. The
Access Set associated with a variable tracks all processors
that access the variable in the current Recovery Block
Layer (even if a processor does not currently have a copy
of the variable), allowing the correct rollback to occur.
Since a processor may rollback to any previous Recovery
Layer, Access Sets of variables in previous Recovery
Layers are saved on the Access Stack.

2.2 New Coherency Algorithms

State transition diagrams for the cache block entries in
the directory and the local caches are shown in Figure 3
and Figure 4, respectively. The following description of
the state transition diagrams emphasizes the modifications
made to the basic p+1 directory protocols [4].

In each of the state diagrams, the nodes represent the
states of a cache block and the edges are labeled with the
events and actions associated with the state transitions.
Actions are represented by numerical labels
corresponding to the type of action performed. Messages
received by the directory and cache controllers are shown
in Table 1.

Table 1: Input Messages

Cache Controller Directory Controller

Read Read

Write Write

Enter Recovery Block | Enter Recovery Block (ERB)

(ERB)

Downgrade (DG) Downgrade Acknowledge (DG Ack)

Invalidate (Inv) Invalidate Acknowledge (Inv_Ack)

Invalidate-Writeback Acknowledge

(Inv. WB_Ack)
ERB
7.8
ERB Write Read grp

78 13,9 13,9

78

Read

Inv_WB_Ack 139

10,2,8,1,3
Write
4

DG_Ack
10,2,8,1,3

Waiting

for Acks

Actions:

1) Update Copy Set

2) Update Variable Info (value, state, version)
3) Sendreply

4) Send Invalidate

5) Send Invalidate-Writeback
6) Send Downgrade

7) Increment Global Layer
8) Save Access Set

9) Update Access Set

10) Take Checkpoint

11) Restore checkpoint

Figure 3: State Diagram for Directory Entries

Changes to the basic p+1 directory controller actions
for Read and Write operations include the updating of the
Access Set and the Take Checkpoint action that happens
on the WriteBack message caused by an invalidation or
downgrade. In addition to the traditional actions
performed by the cache controller, the new actions
involved in the write operation include updating the
version number and taking a checkpoint of the variable
(or cache block) when it is modified.

When a processor enters a new recovery block, it sends
an Enter Recovery Block (ERB) request to the directory
controller and waits to receive the Global Layer number

to which the new recovery layer is assigned. The
directory controller receives the ERB request from the
processor, increments the current Global Layer number
and sends the new number back to the processor. The
directory controller also pushes the current Access Set
onto the Access Stack and updates the current Access Set
by clearing it. The last action is performed because the
Access-Set indicates which processors have accessed the
variable during the current recovery layer and a new
recovery layer was just entered.

ERB
4

Shared
New Layer

Exclusive
New Layer Read

Read 4
Actions:

1) Writeback Variable Info

2) Update Version

3) Take Checkpoint

4) Increment Layer Number

Figure 4: State Diagram for Cache Entries

After the waiting processor receives the new Global
Layer number, it pushes that number onto the Layer Stack
and updates the Local Layer number. When a processor
exits a recovery block, it pops that block’s layer number
from the Layer Stack. No other actions are taken by
either the processor or the directory controller when a
recovery block is exited.

The major modification in the state transition diagram
for cache entries is the addition of the ERB message.
Changes in the version numbers of the variables and the
resulting checkpoints are caused by the change in the
Local Layer number that results from the ERB message.
The Shared New Layer and Exclusive New Layer states
indicate that the next write to the variable will result in a
checkpoint and a new version for the variable.

The modifications to the state transition diagram for
entries in the directory are concerned with the saving of
the current Access Set and the change in the Global Layer
number when an ERB message is received. The ERB
message is not serviced while a shared variable is waiting

for Invalidation Acknowledgments, lest an inconsistent
state result.

When an acceptance test fails, the processor sends a
rollback request to the directory controller with the Layer
number of the failed Recovery Block (Failed Layer). The
Global Backward Error recovery actions take place in two
phases. In the first phase, the directory determines which
processors will be required to rollback (using the Access
Sets associated with the cache blocks) and notifies them.
At this point, the affected processors will stop executing
their programs until the Backward Error Recovery is
completed. The processors send acknowledgments back
to the directory controller with the layer to which they
will roll back.

During the second phase, the directory controller
creates a table of all Rollback Layers, which is used by
the directory and cache controllers to choose the
appropriate checkpoints to restore. After this phase is
completed, the directory controller informs the processors
that they may resume execution of their programs. It
should be noted that, in our approach, there is no domino
effect (or cascading of rollbacks). The checkpoint (or
layer) to which a processor must rollback is determined
before any rollback is effected.

For the following example, the system state before
rollback (Figure 1, Figure 2) and after rollback (Figure 5)
are needed. If PO failed, it would send a Rollback Request
to the directory controller with Failed Layer number = 12.
When the directory controller receives the Rollback
Request, it searches the directory entries for each variable
with a version number greater than or equal to the Failed
Layer number. In this case, F is the only variable affected
by the rollback since it has a version of 13.

In order to determine which processors have accessed
the affected variable, the Access Sets for all layers from
the Failed Layer through the current layer (12-13) are
examined. The directory controller creates a list of
processors that must roll back, sends each of them a
Rollback message with the Failed Layer number and then
waits for their acknowledgments with the layer to which
each processor will roll back (Rollback Layer). In the
example, processors 0 and 1 have accessed the variable
and must be notified.

After receiving a Rollback message, each processor
pops all layers from its Layer Stack that are higher than
the Failed Layer, leaving the Rollback Layer at the top of
the stack. PO rolls back through layer 12 and P1 rolls back
through layer 7. The processor sends the directory
controller its Rollback Layer and waits for the directory
controller to send the list of the other processor's Rollback
Layers. The directory controller creates a table of the
Rollback Layers for each of the processors and sends it to
the processors that must roll back. The processors use the
rollback table along with version information to choose
the appropriate checkpoints to restore.

DIRECTORY
GLOBAL_LAYER: 15

VAR STATE VALUE VER/PROC PO Pl P2 ACCESS
A S 1 5/0 1 1 0 000

B S 1 8/0 1 1 1 000

C S 0 5/2 1 1 1 000

D E 4 11/1 1 0 0 000

E E 4 10/0 1 0 0 000

F S 0 -1/-1 0 0 0 000

G E 0 -1/-1 0 0 1 000

H E 0 -1/-1 0 1 0 000

ACCESS STACK:
Layer A B C D E F G H

14 000 000 000 00O 000 000 00O 0CO
13 000 010 110 000 100 110 00O 0CO
12 000 000 000 000 000 000 000 000

CHECKPOINT STACK (Val/Ver/Proc)
Var Checkpoints

A 8/1/2 0/-1/-1

2/5/0 11/2/2 0/-1/-1

3/2/1 13/1/2 0/-1/-1

3/7/1 4/4/1 0/-1/-1

1/8/1 0/-1/-1

5/11/1 0/-1/-1

moMmEoOQo

PROCESSOR: 0
LOCAL_LAYER: 14

layer stack:14 9 6 3 0
VAR STATE VALUE VER/PROC

(Val/Ver/Proc)
CHECKPOINT_STACK

A S 1 5/0

B S 8/0

C S 0 5/2

D E 8 11/0 4/11/1
E E 4 10/0

F I 10 13/0

G I 0 0/-1

H I 0 0/-1

PROCESSOR: 1

LOCAL_LAYER: 15
layer stack:15 5 2 0
VAR STATE VALUE VER/PROC

(Val/Ver/Proc)
CHECKPOINT STACK

A S 1 5/0

B S 1 8/0

C S 0 5/2

D I 4 11/1

E I 4 10/0

F I 10 13/0

G I 0 0/-1

H E 31 6/1 0/-1/-1
PROCESSOR: 2
LOCAL LAYER: 13
layer stack: 13 10 4 1 0 (Val/Ver/Proc)

VAR STATE VALUE VER/PROC
A I 8 1/2

1 8/0
Q 5/2
Q 0/-1
0 -1/-1
0

7

Q

CHECKPOINT_ STACK

-1/-1
8/2 0/-1/-1
0/-1

QEEgOQW
HEHHH®®

H

Figure 5: Directory and Caches after Rollback

The directory controller is responsible for providing
correct checkpoint values for SHARED variables. If the
processor contains a checkpoint for the EXCLUSIVE
variables in its local memory, the checkpoint is restored.
Otherwise, the processor sends a request to the directory
controller to restore the checkpoint for the variable.

Choosing the appropriate checkpoint is tricky since
each processor rolls back to a different layer. The correct
checkpoint is one that reflects all of the changes that will
not be repeated, but reverses the modifications from
layers that will be rolled back. This explains the need for
storing the modifying processor number with the version

number.

For each checkpoint, the version number is compared
to the Rollback Layer for the processor that modified the
variable. If the version number is greater than or equal to
the Rollback Layer, that particular modification is
repeated after rollback and the checkpoint is not the one
to use. Each checkpoint is evaluated and discarded until
an acceptable one (version < rollback layer[proc]) is
found and used to update the variable .

P1 does not have the correct checkpoint for F since the
checkpoint version is 13 and therefore not acceptable. P1
is forced to invalidate F and ask the directory controller to
restore it. The directory controller discards the 5/11/1
checkpoint since the rollback layer for P1 was 7 (which is
less than version 11). In this case, the initialization value
will be used as the restore value for F.

When all required checkpoints are restored, the
directory controller sends Restart messages containing a
new Global Layer number to each of the processors that
have rolled back. Subsequent to a recovery, new, higher,
Global Layer numbers are used for the layers that must be
repeated due to rollback, since Global Layer numbers are
non-decreasing. From the time the directory controller
receives a Rollback Request message until it sends the
Restart messages, no new requests (Read, Write, Enter
Recovery Block, or Rollback Request) are serviced, so
that inconsistent directory states can be prevented.

3. Performance Evaluation

In this section we describe the overhead incurred by
our algorithms, in terms of additional memory required,
messages exchanged between the directory and cache
controllers, and computational overhead.

The Access Stacks and the Checkpoint Stacks account
for the majority of the memory overhead in our scheme.
The number of levels in the Access Stack corresponds to
the total number of Recovery Blocks entered by all of the
processors. The number of Checkpoints in the Checkpoint
Stack for each cache block depends on the memory access
pattern of the programs. The worst case would occur
when every processor modified every cache block in
every layer. We feel that for a typical program, the
average memory requirements would be substantially less
than the worst case. Moreover, it is possible to reduce the
memory required for the Access Stack and Checkpoint
Stack by defining barrier synchronizations with each
conversation. The synchronization points can be used to
obtain a globally consistent state. We are working to
develop a memory consistency model based on such
barrier synchronizations.

During normal operation, the number of messages
passed between the directory and processors is increased
due to the Enter Recovery Block messages that are
required to establish the Global Layer Number for the

recovery block. Rollback messages add to the traffic
during backward error recovery.

Additional ownership requests may occur after
rollback since processors may have invalidated
EXCLUSIVE cache blocks when local checkpoints were
not available for the variables. The directory controller
could include some of the variable checkpoints when
servicing a write request. This increases the chance that
the required checkpoint will exist on the processor when a
rollback occurs; avoiding unnecessary ownership requests
after the rollback completes. This approach also increases
the write-reply message size and the memory required to
store the checkpoints in the processor.

The computational overhead is determined by the extra
work required to maintain the new components of the
directory and processor cache structures and to perform
the Backward Error Recovery operations in the case of a
failure, namely the searches of the directory, Access Stack
and Checkpoint Stacks.”

4. Summary And Future Research

In this paper we presented a new approach for the
implementation of distributed Recovery Blocks on DSMs
which provides a reduction in programming complexity
over current conversation schemes. Our approach
combines directory-based protocols for maintaining cache
coherency with version numbers to keep track of
Recovery Block levels, and judicious checkpointing of
cache blocks to effectively implement backward recovery.
Although we have used a centralized directory in this
paper, our technique is also applicable for distributed
directories. Since our approach extends data coherency
techniques, they are applicable to both hardware and
software DSM systems.

We are continuing to investigate ways to reduce the
overhead of our approach. One possibility is to extend our
approach to relaxed memory consistency models
(I31[51[7]), in which case coherency is maintained only on
locks. In addition, it is also possible to limit the amount of
rollback caused by errors. We propose barriers (Global
and Partial) with communicating processes such that all
processes synchronizing on a barrier maintain consistent
checkpoints when they depart from a barrier. Global
barriers assure that all processes synchronize and thus
receive a globally consistent state. In partial barriers, only
those processors involved in a partial barrier will achieve
a consistent state. When using barriers, a computation is
not rolled back beyond the previous barrier. In the near
future, we hope to modify an existing DSM system (either
ThreadMarks [9] or Brazos [12]) so that the Recovery

2 Detailed analysis along with results obtained from our simulations can
be found at http://crashl.eb.uah.edu/~kavi/Research/dsm.html.

Block support based on our algorithms can be
implemented and the efficacy of our methods can be
empirically tested.

5. References

[1] E.N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. “The
performance of consistent checkpointing”, Proc of the 11"
Symposioum on_Reliable Distributed Systems, Houston,
Texas, 1992, pp39-47.

[2] M.J. Feeley, J.S. Chase, V.R. Narasayya and H.M. Levy.
"Integrating coherency and recoverability in distributed
systems”, Proc_of the first Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 1994,
Monterey, CA, pp 215-227.

[3] K. Gharachorloo, A. Gupta and J. Hennessy.
"Performance evaluation of memory consistency models
for shared memory multiprocessors", Proc of Int’l
conference on_architectural support for programming
languages and operating systems (ASPLOS), 1991, pp
245-257.

[4] J.L. Hennessy and D.A. Patterson. "Computer
Architecture: A quantitative_approach", 2™ Ed. Morgan
Kaufman, 1996.

[5] L. Iftode, et. al. "Scope consistency: A bridge between
Release consistency and Entry consistency”, Proc of the
8" Annl ACM Symposium_on_Parallel Algorithms and
Architectures, 1996.

[6] B. Janssens and W. K. Fuchs, "Ensuring Correct Rollback
Recovery in Distributed Shared Memory Systems,"
Journal of Parallel and Distributed Computing, vol. 29,
no. 2, Sept. 1995, pp. 211-218.

[7] B, Janssens and W.K. Fuchs. "Relaxing consistency in
recoverable distributed shared memory", Proc. 23 Int’l
Symp. on Fault-Tolerant Computing, June 1993, pp 155-
163.

[8] N. C. Juul and B. C. Fleish. A Memory Approach to
Consistent, Reliable Distributed Shared Memory. Proc of
the 5" Symp. on Hot Topics in Operation Systems, May
1995. To be published.

[9] P. Keleher, et. al. "ThreadMarks: Distributed Shared
Memory on standard workstations", Proc of 1994 Winter
Usenix Conference, 1994, pp 115-131.

[10] K.H. Kim. "Approaches to mechanizations of the
conversation schemes baed on monitors”, /EEE Trans. on
Software Engr., May 1982, pp 189-197.

[11] D. Lilja. "Cache coherence in large scale shared memory
mulitprocessors: Issues and comparisons", ACM
Computing Surveys, Sept. 1993, pp 303-338.

[12] B. Randell. "Systems structure for software fault
tolerance”, IEEE Trans. on Sofiware Engr., June 1975, pp
220-232.

[13] E. Speight. "Efficient runtime support for cluster based
distributed shared memory multiprocessors", PhD Thesis
Rice University, Houston, TX, 1997.

[14] M. Stumm and S. Zhou. "Fault-tolerant distributed shared
memory algorithms”, Proc. Of 2" Symp. on Parallel and
Dist. Processing, Dec. 1990, Dallas, TX pp 719-724.

[15] K.L. Wu and W.K. Fuchs. "Recoverable distributed
shared virtual memory"”, IEEE Trans. on Computers, April
1990, pp 460-469.

