DESIGN OF CACHE MEMORIES FOR MULTI-THREADED
DATAFLOW ARCHITECTURE

KrishnaM. Kavi

Ali R. Hurson,-r
Phenil Patadia
Elizabeth Abraham

Ponnarasu Shanmugam
The University of Texas at Arlington

TThe Pennsylvania State University

Abstract

Cache memoaries have proven their effectivenessin
the von Neumann architecture when localities of
reference govern the execution loci of programs. A
pure dataflow program, in contrast, contains no
locality of reference since the execution sequence is
enforced only by the availability of arguments.
Instruction locality may be enhanced if, dataflow
programs are reordered. Enhancing the locality of
data references in the dataflow architecture is a
more challenging problem. In this paper we report
our approaches to the design of instruction, data
(operand) and I-Structure cache memories using the
Explicit Token Store (ETS) model of dataflow
systems. We will present the performance results
obtained using various benchmark programs.

Keywords. Dataflow Architecture, Explicit-Token-
Store Model, Cache Memories, |-Structures

1. INTRODUCTION

It is an established fact, at least in the von
Neumann arena, that the locality of reference in a
program can be exploited using cache memories to
achieve significant performance improvement.
Until recently, dataflow architectures did not permit
the use of traditional storage models, nor was it
natural to consider localities in the execution
sequence of a dataflow program. Of late, the trend
has been to bring the dataflow computational model
closer to the control-flow model. There have been a
few designs of computer systems based on such
hybrid execution models ([Arvind 89], [Culler 93],
[Hicks 93], [lanucci 88]). The reader is referred to
numerous survey articles that have analyzed
dataflow architectures (e.g., [Lee 94]).

In our research we use one such model known as
Explicit-Token-Store [Papadopolous 90, 91], that
permits the use of storage hierarchy within the
context of dataflow.

Context-switching in dataflow architecture can
occur on a per instruction basis since each datum
carries a continuation (or atag). The instruction-
level context-switching capability combined with
sequential scheduling provides a different
perspective on dataflow architectures —
multithreading. A thread is a sequence of
statically-ordered instructions where once the first
instruction in the thread is executed, the remaining
instructions execute without interruption. The
evolution from a pure self-scheduling paradigm of
dataflow to multithreading requires locality and
improved processor efficiency during remote
memory accesses. |n conventional architectures, the
reduction in memory latencies is achieved by
providing (explicit) programmable registers and
(implicit) high-speed caches. Amalgamating the
idea of caches or register-caches within the
dataflow framework can result in a higher
exploitation of parallelism and hardware utilization.
In this paper we present various cache designs
within the Explicit Token Store (ETS) dataflow
model, and the performance resulting from the
inclusion of cache memories in dataflow
architecture.

In Section 2, we will briefly introduce the ETS
architecture. In Section 3, we will describe
instruction and operand cache memory designs
with (uniprocessor) ETS architecture. In Section 4
we will describe a multi-processor ETS system and
[-Structure cache memories. Results of our
experiments are presented in Section 5.

2. EXPLICIT TOKEN STORE DATAFLOW

One of the important developments in the design of
current dataflow proposals is the novel and
simplified process of matching operands destined
to an instruction based on matching tags. The basic

idea of this scheme (known as direct matching) is
to eliminate the expensive and complex process of
associative search used in previous dynamic
dataflow architectures to match pairs of tokens
comprising the operands for an instruction. In a
direct matching scheme, storage (called an
activation frame) is dynamically allocated for all
the tokens generated by a code-block. The usage of
locations within a code-block is determined at
compile-time, although the actual allocation of
activation frames is determined during run-time. In
a direct matching scheme, any computation is
completely described by a pointer to an instruction
(IP) and a pointer to an activation frame (FP). The
pair of pointers, <FP.IP>, is called a continuation
and corresponds to the tag part of atoken. A typical
instruction pointed to by an IP specifies an opcode,
an offset in the activation frame where the match
will take place, and one or more displacements that
define the destination instructions that will receive
the result token(s). Each destination is also
accompanied by an input port (left/right) indicator
that specifies the appropriate input arc for a
destination actor.

An example of the ETS code-block invocation and
its corresponding Instruction and Frame Memory is
shown in Figure 1.

Instruction Memory

FP. P,1.24>L <FP.|P,2.31>R opcode r dests

P ADD 2 | +1,+2L
NEG - +6
B 3 +1

frrame Memory

FP+
Code-Block Activation
4.24
L Presence Bits

Figure 1. ETS representation of a dataflow program
execution

When a token arrives at an actor (e.g., ADD), the
IP part of the continuation points to the instruction
that contains an offset r as well as displacement(s)
for the destination instruction(s). The actual
matching process is achieved by checking the
disposition of the slot in the Frame Memory
pointed to by FP+r. If the dlot is empty, the value
of the token is written in the slot and its presence
bit is set to indicate that the slot isfull. If the dlot is

aready full, the value is extracted, leaving the slot
empty, and the corresponding instruction is
executed. The result token(s) generated from the
operation is communicated to the destination
instruction(s) by updating the IP according to the
displacement(s) encoded in the instruction (e.g.,
execution of the ADD operation produces two
result tokens <FP.IP+1, 3.55> and <FP.IP+2,
355>).

A more detailed discussion of ETS and an
implementation of the model (known as Monsoon)
can be found in [Papadopolous 90, 91]. The
fundamental design of the Monsoon is based on the
mapping of activation frames among processors.
Figure 2 shows an abstract view of the
organization.

A Monsoon processor is an eight stage pipeline. On
each processor cycle a token is entered in the pipe
and after eight cycles, zero, one, or two tokens
emerge from the pipeline. One of the output tokens
can be readily circulated back into the pipe. Tokens
that are not circulated back to the pipeline are either
inserted into the token queue or sent to the
destination processor via the interconnection
network. In our simulation, we have used the
abstract ETS model with a 4-stage pipe that
includes an Instruction Fetch Unit, a Matching
Unit, an ALU, and a Token Form Unit.

From Communication Network

A T \y--~-""~~"""""-"-"========= 1
1 1
1 1
1 . 1
1 Instruction > 1
, Fetch Unit .
' Instruction |
, ¢ & Frame |,
' - Memory '
1 Matching 1
: Unit <> :
1 1
Token : E
Queue : '
1
' Processing '
A § . Unit Execution ,
s ! ¢ Pipeline '
B | :
3 |, Form .
gl TokenUnit ,
D: L e e e T Y e e e e e e e e === 1
B
=

To Communication Network

Figure 2. An organization of a pure-dataflow
processing element

3. CACHE MEMORY DESIGNSWITH ETS

In general, the design of a cache is subject to more
constraints and trade-offs than that of the main
memory. Issues such as the placement/replacement
policy, the fetch/update policy, homogeneity, the
addressing scheme, block size, and the cache
bandwidth are among those which should be taken
into consideration ([Lebeck 94], [Przybylski 90],
[Smith 82]). Optimizing the design of a cache
memory generally has four aspects:

« Maximizing the probability of finding a memory
reference's target in the cache (the hit ratio),

« Minimizing the time to access information that is
residing in the cache (accesstime),

« Minimizing the delay dueto amiss, and

o Minimizing the overheads of updating main
memory, maintaining multi-cache consistency, etc.

3.1 Locality in a Dataflow Environment

The principle of locality of reference is the
backbone of cache design. A data flow program in
it's pure form is not amenable to a cache, primarily
due to the self-scheduling of instructions for
execution. However, reordering of instructions of
such a program based on certain criteria [Tokoro
83] can produce synthetic localities. The recurrent
use of instructions (in different activation frames)
also causes the existence of temporal localities. For
our initial studies, we have reordered the
instructions on the basis of the time of availability
of their operands. This can done by grouping
instructions into execution levels (or E-levels
[Thoreson 87]). Instructions that become ready
(i.e., al inputs are available) at the same time unit
are said to be in the same level. Instructions at level
0 for example, are ready for execution at time unit
zero. Similarly, those at level 1 become ready for
execution at time unit one and so on. Instruction
locality can be achieved using the E-level ordering.
Since the execution of an instruction may produce
operands that may be destined to the instructionsin
the subsequent blocks, we need to prefetch more
than one block of operand locations from the
operand memory. We refer to these blocks as a
working set. Block size and working set size are
optimized for a given cache implementation to
achieve a desired performance. While the optimum
working set depends on the program, we have
found that a block size of 2 instructions and
working sets of 4 to 8 instructions yield significant
performance improvements.

The locality for the operand cache is related to the
ordering of the instructions in the instruction cache.
When the first instruction in a block is referenced,

the corresponding block is brought into the
instruction cache. Simultaneously, operand
locations for all the operands corresponding to the
instructions in the working set of these instructions
are prefetched into the operand cache. As aresult
of this, any subsequent references to the operand
cache caused by the instructions within this block
will be satisfied by the operand cache. Note that
the operand cache block consists of a set of
waiting operands or empty locations for storing the
results. By prefetching, we ensure that future stores
and matches caused by the execution of instructions
in the block will take place in the operand cache

3.2 Instruction Cache Design

Figure 3 shows the detailed structure of the
instruction cache. The structure is very similar to a
conventional set associative cache, except for the
additional information maintained. The low order
bits of the instruction address (i.e., IP) are used to
map instruction blocks into N sets; within each set,
the blocks are searched assaciatively. Each block in
the cache has a tag, a valid-bit and a process count
associated with it. The tag and the valid bits serve
the same purposes as those in conventional set-
associative caches. The process count refers to the
number of activation frames that refer to the
instruction. This information is used in instruction
cache replacement: an instruction block that is used
by a large number of activation frames (i.e., loop
iterations) is a poor candidate for replacement.

Sets
| I I |
I | | | 1 | o @e@ [|
% | | | [| @ @ @
§ eee ©060 oo eeo e
<
I | 1 | | | eooe []
- ~
- S~
- = a Cache Line ~ __
- - ~
\B{slld Er:lfrfs Tag Instruction Block
Figure 3. Instruction Cache Organization

3.3 Operand Cache Design.

Operand cache memory is used to store the
activation frames associated with code-blocks,
which are used for matching operands. Similar to
DFM-I1 [Takesue 87, 92] we have examined the
use of two-level set associativity to operand cache
memories. At the first level of associativity, the
operand cache is organized as a set of superblocks.
Each active context (activation frame associated
with a code-block) occupies a superblock. The

second level of associativity is used for accessing
individual locations within a frame. Figure 4 shows
the organization of the operand cache.

A superblock consists of the following information:

* A cold bit to indicate if the superblock is occupied
or not. Thisinformation is used to eliminate misses
due to cold start. In dataflow model, since the first
operand to arrive will be stored (written), there is
no need to fetch an empty location from memory.
The cold bit with a superblock is used to allocate an
entire frame (or context), and set when the first
operand is written into the frame.

» A Tag which serves to identify the context (or
frame) that occupies the superblock. This is based
on the FP address obtained from a token tag.

« Working set identifiers. The memory locations
within an activation frame (used for token
matching) are divided into working sets as
described in Section 3.1, A superblock representing
an activation frame contains more than one
working set, and these are accessed associatively
(the second level of set associativity). Each
working set of a superblock also contains a cold
start bit. This bit is used to eliminate unnecessary
fetches from memory when the operands are being
stored in the activation frame.

The two level set associativity used in the operand
cache design, presents several new issues in
studying cache designs.

Operand Cache Sets
| | | |

[| | | ® @ @
2
S|] | | @ @ @ :l\
s Super
é e o0 © 00 oo o ®o e o0 Blocks
A :1/

[] I/I | ® @@
(B:_Old Tag WSAddr. WSPr | e WS Addr, WS Ptr

its '

Accessed Associatively
Figure 4. Operand Cache Organization

3.3.1 Cache Replacement Strategies. We have
explored a few replacement algorithms with
working sets within a superblock and for replacing
superblocks themselves. For working set
replacement, we have investigated a used words
policy that replaces working sets containing
memory locations already used for matching
operands (hence will not be needed again in this
activation). This has implications for our future
research leading to the "reuse" of operand memory
locations within an activation frame. As
instructions complete their execution, the memory
locations used for matching their input operands
can be reused for matching operands of other
instructions. We believe that such an optimization
will significantly increase the performance of the
operand cache memory. For superblock
replacement, we have studied the dead context
replacement policy that replaces a superblock

representing a completed context (or frame)
[Shanmugam 93].

3.3.2 Process Control. The operand cache must
accommodate several frames (contexts or threads)
corresponding to different loop iterations, as well
as frames belonging to other code-blocks. In order
to minimize the possibility of thrashing, the number
of "active" contexts (or threads) must be carefully
managed. The number of active contexts will
depend on the cache size and the size of an
activation frame. It should be noted, however, for
tolerating remote memory latencies, the processor
must keep a larger number of contexts [Lee 93].
We believe that, by reusing locations within a
frame, we can reduce the size of an activation
frame and increase the process count. The concept
of controlling the number of active threads can also
be adopted for cache memories of conventional
multi-threaded systems.

4. MULTIPROCESSOR ETSAND I-
STRUCTURE CACHE MEMORIES

In this section we will describe how cache
memories can be used with I-Structures in a
multiprocessor environment. An |-Structure is a
special kind of memory designed to handle arrays
in dynamic dataflow computers. Three operations
are defined with I-Structures: allocate, i-store, i-
fetch. The allocate (A, N) returns an N-element
empty array (i.e., each element of the structure is
flagged as empty). An element of I-Structure can be
assigned a value V. no more than once using i-
store(A, 1, V). The I-th element of the array A is
now set to full. Any attempt to store values into a
full element resultsin an error. An element of the
array can be accessed using i-fetch (A, I). If the l-th
element is already defined (indicated by the full
status), the value of the element is returned.
Otherwise, the request is deferred until the value is
available. Fig. 5 shows an |-Structure example with
pending requests for unavailable array elements
[Arvind 86].

4.1.1-Structure Cache Memories.

We treat the I-Structure memory as the only shared
memory in the multiprocessor environment.
Processors communicate other types of data by
sending and receiving tokens where the tag
identifies the receiving context and the processor
containing the context. Although the single
assignment property of dataflow elements appears
to eliminate all cache-coherence problems, caching
[-Structure elements into processors does present
some challenging design problems. We have
investigated a directory-based protocol and a
snoopy-protocol with I-Structure cache (IS-Cache)
memories. Figure 6 shows the general structure
of our multiprocessor system.

|-Structure Memory Pending Requests

for A(2)

1| F Value of A(1)

2l W

3LE

4| | Valueof A(3)

s E Pending Requests
for A(K)

K[w | S

F: Full (Value defined); E: Empty SVal ue not defined)
W: Waiting (Pending read requests

Figure 5. An |-Structure

Directory

[-structure memory modules /

,,,,, ISm / I-structure

151 152 Cache

/ Module
| / Miss/Snoop

3\ Interconnection Network \ / Teble
/

Operand

/ Cache

PE-1 PE-2 . PE-nl / Module
| | / Instruction

Cache Cache Cache Cache
Module-1 Module-2 Module-n Module

Figure 6. Multiprocessor ETS with I-Structure Cache Memories

4.1.1. Directory-Based Protocol. As with
conventional directory-based methods, the I-
Structure memory maintains a directory for each I-
Structure block to identify the processor that is
responsible for defining (or writing) the block. An
I-Structure cache (1S-Cache) exists with each
processor to store the I-Structure elements needed
by that processor (including the elements that will
be defined by the processor and the elements used
by the processor but defined by a different
processor). 1S-Cache blocks are allocated only
when the data elements are written to them. The
following possibilities must be considered when a
read reguest for an I-Structure element is received
by the I-Structure memory controller.

i). The element is absent in the |-Structure
memory. Using the directory, the |-Structure
controller will interrogate the processor that is
responsible for defining the element. Two cases are
possible.

a). The 1S-Cache in the processor does not
contain the requested element. Since the
requested element is not defined yet, we will
store the address of the element (tag) in itslocal
table (known as the "miss" table) to reflect the
pending status with the |-Structure element.
Deferred requests are also maintained with the
|-Structure memory in the usual manner. When
the data is eventually defined in the local IS
Cache; the entry in the miss table will force a
write-back to the I-Structure memory, causing
the I-Structure memory controller to satisfy all
deferred requests. Note that the I-Structure
memory controller will need to interrogate the
processor only on the first read request. We feel

that maintaining a miss table is more efficient
than requiring the directory to periodically poll
the processor.

b). The 1S-Cache in the processor already
contains the requested element. This cache
block is written to the I-Structure memory,
causing the deferred request to be satisfied.

ii). The I-Structure memory contains the requested
data element. This is possible since |1S-Cache
blocks will experience replacement on cache
misses (i.e., the local processor is forced to write
the 1S-Cache block to global I-Structure memory to
make room for other blocks). In this event, the |-
Structure can satisfy the request directly.

We believe that compile-time analysis can be
relied on to improve the performance of the
directory protocol. If the read requests are
scheduled sufficiently later than the writes so that
the I-Structure elements from local 1S-Caches are
written back to the global I-Structure memory
before any read requests arrive (case i above), then
there is little overhead with the directory protocol.
If read requests arrive before the elements are
defined, the directory protocol incurs overhead (in
maintaining local "miss" tables and writing back
the requested dataimmediately upon definition and
the miss table can be excessively large).

4.1.2. Snoopy-Based Protocol. As with many
snoopy protocols, each processor will snoop on a
subset of I-Structure elements that are defined by
the processor. A local table called "snoopy" table
can be used to list the elements on which a
processor snoops. As read-requests are sent to the
global I-Structure memory, processors will snoop

for any requests that they can satisfy. The
following two cases are possible.

a). The processor containing the requested data in
its 1S-Cache is successful in snooping on the
request, and the request is satisfied from the
processor's | S-Cache.

b). The processor containing the requested data in
its IS-Cache is not successful in snooping on the
request. In order to keep the snoop table small, a
processor will not snoop on all elements contained
in its 1S-Cache. The request will be handled by the
global I-Structure memory controller. We will
assume that the I-Structure memory maintains a
directory so that the request can be satisfied by
interrogating the processor containing the data
(similar to the directory protocol).

It is possible for the processor to snoop not only on
the elements that are already defined in its IS
Cache, but also on the elements that will be
defined in the future. This requires larger snoop
tables. We believe that compile-time analysis can
be used to minimize the possibility of arequest for
yet to be defined data, and to manage the snoop
table more efficiently.

5. PERFORMANCE EVALUATION

Unlike with conventional cache experiments,
benchmark programs and traces for dataflow
architectures are not readily available. We have
developed atrandlator that takes |F1 graphs from a
Sisal compiler [Feo 90] and generates ETS
instructions for our ssmulator®. This allowed us to
use actual Sisal programs in our studies (although
we could not find very large Sisal programs). The
IF1 graphs are preprocessed to enhance locality as
discussed earlier (Section 3.1). We have used an
FFT (feo.fft) program, a matrix multiplication
program, loop 5 of Livermore Loops and arandom
graph in our studies. The use of random graph isto
study the effectiveness of our techniques for
reordering instructions. We plan to extend the set
of benchmarks by rewriting some standard C or
Fortran programs in Sisal. Table 1 lists the
characteristics of the programs used in our current
experiment.

1we have not used IF-2 graphs since they incorporate
optimizations for conventiona architectures. Since our
target is a dataflow instruction set, we wanted to
maintain the dataflow purity in the source.

#ingructions | #Operand |#|-Structure

Name Referenced References | References
FFT (feo.fft) 179,050 128,524 38553

Livermore

Loop 5 158,074 134,620 28,386

Matrix

Mult 115,682 69,292 18,128

Random 281,960 196,204 36,786

Table 1 - Program Statistics

5.1. Experiments with Conventional Cache
Parameterson Miss Ratios.

Initial experiments with the cache designsinvolved
performance evaluation of various cache
parameters like, cache size, working set and block
size. The effects of these parameters on the miss
ratio are similar to those obtained for a
conventional caches.

Instr Block = 16; Associativity = 2
Oprd cache = 1K; Oprd Block =2

0.018

0.016 Superblock Associativity = 4
0.014 | Working-set Associativity = 2
I Process Threshold = 8

©0.012

E 0.01 o —— feo ff

.« 0.008 —0 foop

= I — matmul
0.006 1 —)——tando
0.004 .
0.00 | o o
? 0 0.25 0.5 1 2

Instruction cache size(Kbytes)

Figure 7. Instruction Cache Size vs. Miss Ratio

0.45 -'r Instruction cache = 1K; Instr Block = 16;
0.4 Associativity = 2; Oprd Block =2 Superblock
Associativity = 4; Working-set Associativity = 2

0.35 Process Threshold = 8
o 0.3 —n feo.fft
Bo2s | X T loows
; 1 matmult
£ 0.2 —<>— random
= i
0.15
0.1
005 |
l l l]
0 1 2 4 8 16

Operand cache size(Kbytes)
Figure 8. Effect of Operand Cache Size on Miss
Ratio
This indicates that localities can be synthesized in

a data flow environment. Increasing the operand
and instruction cache sizes reduces the miss ratio

as can be seen in Figures 7 and 82 Nearly all
instruction cache misses are due to "cold-start"
misses, and these misses can be reduced by
increasing block size as shownin Figure 9.

In dataflow, it is not only necessary to assure the
presence of input operands for instructions but also
assure that the destination locations for results of
instructions are available in the operand cache
memory. Large block sizes lead to large working
sets which in turn lead to more conflict misses
since the cache is shared among several frames.
Instruction Cache = 1K; Associativity = 4

Oprd Cache = 2K; ; Superblock

Associativity = 4; Working-set

Associativity = 4; Process Threshold = 8

T
0.0016 ®
0.0014

0.0012
£ 0.001
©
£0.0008
Ko
=0.0006
0.0004

— feo.fit
—[J— loop5
—e matmult

——<)—— random

0.0002

m\!}

01
Blgck Size (in ingtruction)
Figure 9. Instruction Cache Block Size Vs Miss
Ratio

Figure 10 shows the effect of block size on the
miss ratio for operand cache memories. This
should be contrasted with the instruction miss
ratios of Figure 9.

—m feo.fft
—}— loop5
s T — matmult
0.35 —-()— random *
03 7T Instruction Cache = 1K; Associativity = 2 2

Oprd cache = 4K; Oprd Block =2;Superblock

0.25 9 Associativity = 4; Working-set Associativity = 2
Process Threshold = 8
02 T

2
g
%0.15 T
s & _ _
0.1 \
005 T ”
0 1]]]
! 2 4 Block size 8 16
Figure 10. Effect of Block Size on Operand Cache
Miss Ratio

2To compensate for the small sizes of the programs
used in our experiments, the instruction and operand
cache memory sizes are kept small.

16

Instruction Cache = 1K; Block Size = 4; Associativity = 2;
Operand Cache = 2K; ; Superblock Associativity = 4;;

0.45 Working-set Associativity = 4; Process Threﬂlold =8

o
© w 9
w 0 N

©
NS
a

Miss ratio

u feo.fft
—{F—loop5

bl matmult

random

16

Wgrking Set Sizeztin operand Ioc%tions)
Figure 11. Operand Working Set Size vs. Miss
Ratio
Figure 11 shows the effect of changing operand
working set size on operand cache misses. Our
results indicate that an optimal block sizeis 8, and
working set size is 2 (we will use these sizes for

the remaining experiments).

We then investigated the significance of
associativity on instruction cache design. We found
when the set associativity is increased beyond 2,
the miss ratio increases (more details can be found
in [Abraham 94], [Patadia 94]). This suggests that
direct mapped caches perform well even for
dataflow instructions. Since our operand cache
contains two levels of associativity, we varied both
associativities.

Increasing the super block associativity does not
result in significant reduction in miss ratio (Figure
12). The optimal associativity depends on the
block size used for the cache design. Figure 12
shows the benefit of addressing operands at two
levels. The operand address space is divided into
superblocks (threads/contexts/frames) and within a
frame, operands are addressed using smaller
addresses. We believe this gives more freedom to
compilers in alocating threads (or loop iterations)
to processors without losing localities.

—B— oo fit
—7 loop5
—e matmult
_ —<—— random
0.18 o - . -
0.16 | Instruction Cache = 1K; Associativity = 2
Oprd cache = 4K; Working-set Associativity = 2
0.14 L Process Threshold = 8
-8 0.12 L = T I u|
8 01
7
s 0.08 ' 1% "% <
0.06 L
0.04 |
0.02 ' ' ' i
01 2 4 8 16

Superblock associativity

Figure 12. Superblock Set Associativity

In ETS, the significance of associativity within a
context (i.e., associativity of working sets)
behaves somewhat similar to that of conventional
operand cache associativity. Increasing the
working set associativity reduces the miss ratio
(for fft and loop5) upto a point beyond which the
miss ratio startsincreasing (Figure 13). The initia
increase is due to the elimination of conflict
misses, while the increase at higher associativities
is due to fewer sets (for a given cache size). Cold
start misses in operand cache memories are
eliminated since we allocate (not fetch) cache
blocks on write (see Section 3.3).

5.2. The effect of unconventional cache
parameterson missratio_

Effect of Process Control. The motivation for
Introducing process control is to avoid too many
active processes(or contexts) contending for the
limited operand cache resources. An appropriate
threshold value allows for disciplined use of the
cache resources and hence better utilization and
performance. This can be readily observed in
Figure 14.

——{l—— feo.fft
— loop5
—" matmult
—<)—— random
Instruction Cache = 1K; Operand Cache = 4K
05 Associativity = 2;
’ Superblock Associtivity = 4
Process Threshold = 8
0.4
20.3 =
E -
90.2 ¢
= N
0.1 4
1 t t t i
01 2 4 8
Working Set Associativity
Figure 13. Working Set Associativity
Instruction Cache = 1K; Operand Cache = 4K
o5 T Associdivity =2; Superblock Associativity =4
o 4% 1 Working-set Associativity = 4
04 T
035 T —a— feo.fft A
% 03 L loops &
;O s+ matmult
ke _V_ random
= 02] . = -
015
0.1 C = O o
A PaN VAN
005 T

0

1 2 4 8 1
Figure 14(a). Significance of Process Threshold

6

Instruction Cache = 1K; Operand Cache = 2K

05 T Associativity = 2; Superblock Associativity = 4
’ Working-set Associativity = 4
04 T | —®— teoft
—{J— loop5 P
4| —— tmult
2 0.3 O mam ‘/D
‘é random
o 1
F]
0.1 O
1 l 1]
0 T 1 T 1
1 2 4 8 16

Process Threshold

Figure 14(b). Significance of Process Threshold

The best value for the threshold depends on the
number of superblocks that can be held in the
operand cache; for a k-way, N set cache, the
process threshold should be N*k. For example, in
Figure 14(a), we find that the cut off value is 8
where the number of super blocks used was 8;
while this is 4 in Figure 14(b). Increasing the
number of active contexts (e.g. loop iterations or
processes) beyond this threshold degrades the
performance.

Effect of Replacement Strategies. As described in
Section 3.3.1, we explored performance gains that
can be achieved by using dead-context replacement
for superblocks and used-words replacement for
working sets. The dead-context replacement policy
shows significant improvements for small caches
(as much as 70% fewer superblock misses when
compared to random replacement policy, for 2K or
smaller caches) [Shanmugam 93].

For working set replacement (within a superblock)
we experimented with a "used-words" policy.
Here, a working set (if one exists) that contains
operand locations that have already been used by
instructions are replaced. Figure 15 shows the
percentage of operand cache misses that can be
satisfied by used-words.

The improvement resulting from the used words
policy leads us to believe that dataflow systems
can be made to reuse operand cache memory
locations for matching operands of more than one
instruction within aframe. In other words, in stead
of replacing used words in a frame, they can be
reused for storing and matching other operands. A
significant number of operand cache misses can
then be eliminated. Reusing operand locations is
akin to the use of registers to keep temporary
variables during a computation, bringing the
dataflow processor even closer to von Neumann
architecture.

Instruction Cache = 1K, Associativity = 2;
Block size = 1; Working Set size=1
Superblock Associativity = 1

Working Set Associativity = 2

(o]
o

[e]
o

B feo fit

~
o O

[loop5

o

[@ matmult

o

[} random

o

PN Wb a o
o

o

% of cache misses satisfied by
used word replacement

o

1 2 4 8 16
Operand Cache Size

Figure 15. Significance of Used-Word
Replacement Policy

5.3. Throughput improvement with cache.
Next, we experimented with throughput
improvement resulting from various operand cache
sizes. Since code size is small and since the
instruction cache misses are very rare, we did not
experiment with various instruction cache sizes. In
our experiments we assumed that memory accesses
require 6 cycles as compared 2 cycle access to
cache memories. Figure 16 shows the gains
(reduction in execution times) that can be achieved
using cache memories when compared to a system
with no operand cache memory. We believe that
performance can be further improved with reusing
operand locations.

& %
u 0
_ 5 -
. Iml
S .
\C’ n
‘©
g Instruction Cache = 1K
2 1 —B—— feo fft Associativity = 2; o
220 0 loops Superplock As;omgtlylt_y =4
3 . Working-set Associativity = 2
£ matmult Process Threshold = 8
100 T —O— random
O]] l]
1 2 4 8 16

Operand cache size (KBytes)
Figure 16. Uniprocessor Throughput Gains Vs.
Operand Cache Size

5.4. 1-Structure Cache Performance.

In order to investigate the significance of the I-
Structure cache we have extended our experiments
by implementing a 4 processor ETS system sharing
the I-Structure memory. As described in Section 4,
each processor contains an instruction cache, an
operand cache and an I-structure cache. Figure 17
shows the miss ratios as the IS cache size is
increased.

Instruction Cache = 1K; Operand Cache = 2K
Associativity = 2; Superblock Associativity = 4

0.45 2. |S-Cache Associativity = 1; Protocol = Directory
' NCache Block Size = 16

Working-set Associativity = 2; Process Threshold = 8

feo.fft
—{}— loop5

— matmult

——Q—— random

0.25

0.15
0.1

0.05

Miss ratio

o o

N w
——+——+—+—m

1 2 4 8 16
|-structure cache size(KBytes)

Figure 17. IS-Cache Size Vs. Miss Ratio

The sizes shown are per processor cache. The miss
ratio for |S-Cache does not depend on the protocol
used (viz., directory vs. snhoopy); only the
throughput depends on the protocol.

Figure 18 shows the results obtained by varying
the associativity of 1S-Cache. As can be seen,
direct mapped caches are better suited for IS
Structures. We believe that separate direct mapped
caches for arrays are beneficial even in
conventional architectures.

Instruction Cache = 1K; Operand Cache = 2K
Associativity = 2; Superblock Associativity = 4
Working-set Associativity = 2

Process Threshold = 8

057 16K .
IS-Cache = 16K; IS-Block Size= 16 .
0.4 1 Protocol = Directory ‘/
9 2 4
50. -
7] | feo.fft
s —F+— loop5
— matmult
——Q—— random
1 1
8 16

I-structure cache associativity

Figure 18. | S-Cache Associativity Vs Miss Ratio

Figure 19 shows that the block size of an I-
Structure cache has very little impact on the miss
ratio..

Intuition makes us believe that the block size
should depend on how loop iterations are all ocated
to processors. For example if severa consecutive
iterations are assigned to the same processor, larger
block size may produce better hit ratio. At present
our results do not bear this primarily because the
benchmarks chosen have very simple dependencies
(iteration i depends on iteration i-c for some
constant). It should be noted that increasing the
block size leads to higher miss penalties

32

Instruction Cache = 1K; Operand Cache = 2K
Associativity = 2; Superblock Associativity = 4
Working-set Associativity = 2; Process Threshold = 8
IS-Cache = 8K;; IS-Cache Associativity = 1

Protocol = Directory

—mt

*

[m]

M
L

[»

©
=
D
O—!
1—

A

=0.08 1 — feo it

—F—— loop5
0.04 T —® matmult

random

1 2 4 8
Block size

Figure 19. |S-Cache Block Size Vs Miss Ratio

Figure 20 shows the throughput gains (reduction in
execution times) obtained from using 1S-Cache
memories in both the directory-based and snoopy-
based approaches. The improvements are shown as
a percentage gain when compared to a
multiprocessor ETS system with no 1S-Cache
memory. We assume that it takes 12 cycle to
access the shared (remote) |-Structure memory.
Snoopy protocol consistently behaves better
because of the smaller latency required as
compared to directory protocol. In directory
approach, the latency is at least a round trip delay
to the remote memory. In snoopy protocol, the
latency can be much smaller when the snooping is
successful (see Section 4.1.2).

Instruction Cache = 1K; Operand Cache = 2K
Associativity = 2; Superblock Associativity = 4
Working-set Associativity = 2; Process Threshold
= 8; IS-Cache = 16K; IS-Cache Associativity = 1;
Block size =16

Directory

Snoopy

B
o

N
o

Gain in throughput(%)
w
o

=
o

o

feo.fft loop5 matmult random

Programs

Figure 20. Throughput Gainsfrom using alS-
Cache

Figure 21 shows the significance of IS-Cache size
on performance gains for one of the benchmarks.
This graph shows that snoopy protocol performs
better than directory protocol for small cache

16

memories (thisis expected since caches snoop only
on a small subset of entries in their cache
memories).

Instruction Cache = 1K; Operand Cache = 2K
Associativity = 2; Superblock Associativity = 4

— Working-set Associativity = 2; Process Threshold = 8
’\360 |S-Cache = 16K ; |S-Cache Associativity = 1; D/;
S__ 1 Blocksize=16 /
£50 %I
8 4
<|)40 C ; E|.
o B
<30 —m
e Directory
520
S_’ 10 1 Snoopy

o
[y
oo 4

I-structure cache size

Figure 21. Snoopy Vs Directory

While all cache memories (instruction, operand
and I-Structure) improve performance, we feel that
the 1S-Cache is the most significant contributor to
the performance gain in. Thisis primarily because
of the improvements in latencies while accessing
remote |-Structure elements. We have already
shown the throughput gains obtained by using
operand cache memories, in uniprocessor
environment (Figure 16). These performance gains
will scale with the number of processors.

6. SUMMARY AND FUTURE DIRECTIONS.

In this paper we have described how instruction,
operand and |-Structure cache memories can be
designed with multi-threaded dataflow systems.
We have studied cache design issues that are
applicable to both conventional and dataflow
architecture and design issues that are specific to
dataflow model. As new generation architectures
are combining dataflow and control flow
paradigms to achieve higher performance, we
believe that our study can play arole in designing
cache memories for such systems. We feel that
conventional architecture can also benefit from two
level addressing for operands whereby the address
space can be divided into threads (or contexts) and
smaller addresses can be used for accessing data
within a context.

We have shown how directory and snhoopy
protocols can be used to improve the performance
of I-Structure cache memories in multiprocessor
environment. The idea of including a separate
cache memory for storing arrays (and other data
structures) may be interesting to consider even in
conventional architectures, since the locality
patterns of such data objects are more predictable
than other operands. As shown in our experiments,

[-Structure caches behave more like instruction
caches and hence direct mapping (with possibly
small miss or victim caches) may be more
appropriate for such data objects than set-
associative caches. Software methods for
improving cache performance in conventional
systems have produced very promising results
([Lam 91], [Porterfield 89]). We feel that compile-
time analysis can also improve the cache
performance in dataflow architecture. We plan to
investigate issues related to "reusing" operand
locations, scheduling loop iterations on multiple
processors to optimize the |S-Cache performance,
and to optimize the number of active contextsin a
processor and minimize trashing of cache memory
blocks.

It isnot our abjective to claim that our experiments
are either exhaustive or conclusive; only that they
are a start. There are several inter-related
parameters that together influence the overall
performance of multi-processor systems. We hope
to continue our studies by expanding the
benchmarks to extrapolate our results to large scale
systems. This will then allow us to investigate
compiler optimizations that can extract optimum
performance for agiven set of cache designs.

7. REFERENCES.

[Abraham 94] E. Abraham. "Cache memories for
multiprocessor dataflow architecture”, MS
Thesis, Dept. of CSE, UTA, Dec. 1994.

[Arvind 86] Arvind and D. E. Culler. “"Dataflow
Architectures’, in Annual reviews in computer
science, (1986). vol. 1, pp. 225-253.

[Arvind 89] Arvind and R.S. Nikhil. "Can
Dataflow subsume von Neumann
Computing?'. Proc. 16th Annl. Intl. Symp. on
Computer Architecture, May 1989, pp. 262-
272.

[Culler 93] D.E. Culler et. a. "TAM - a compiler
controlled threaded abstract machine",
Journal of Parallel and Distributed
Computing, 18 (3), pp. 347-3/0 (1993).

[Feo 90] J.T. Feo, D.C. Cann and R.R. Oldehoeft.
"A report on Sisal language project”, Journal
of Parallel and Distributed Computing, Oct.
1990, pp. 349-366.

[Hicks 93] J. Hicks, D. Chiou, B.S. Ang and
Arvind. "Performance studies of the Monsoon
dataflow processor", Journal of Parallel and
Distributed Computing, 18(3) pp. 273-300
(1993).

[Hill 89] M.D. Hill and A.J. Smith. "Evaluating
associativity of CPU caches", |EEE

Transactions on Computers, Dec. 1989, pp.
1612-1630.

[lanucci 88] R.A. lanucci. Toward a
dataflow/von Nuemann Hybrid Architecture”,
Proc. 15th Annul. Intl. Symp. on Computer
Architecture, May 1988, pp. 131-140.

[Lam 91] M.S. Lam, E.E. Rothberg and M.E.
Wolf. "The cache performance and
optimizations of blocked algorithms",
Proceedings of ASPLOS 4, 1991, pp. 63-74.

[Lebeck 94] A.R. Lebeck and D.A. Wood. "Cache
profiling and the SPEC benchmarks: A case
study”, IEEE Computer , Oct. 1994, pp. 15-26.

[Lee 93] B. Lee and K.M. Kavi. ""Program
partitioning for multithreaded dataflow
computers', Proc. of 26th Hawaii
International Conference on System Sciences
(HICSS-26), Jan. 5-8, 1993, pp. |1 487-495.

[Lee 94] B. Lee. and A.R. Hurson. "Dataflow
architectures and multithreading”, |EEE
Computer, Aug. 1994, pp. 27-39.

[Papadopolous 90] G.M. Papadopolous and D.E.
Culler. "Monsoon: an Explicit Token-Store
Architecture”, The 17th Annl Intl. Symp. on
Computer _Architecture, June 1990, pp. 82-
0.

[Papadopolous 91]G.M. Papadopolous. I%le
mentation of a General Purpose Dataflow
Multiprocessor. MIT Press, 1991.

[Patadia 94] P. Patadia. "Design and evaluation of
|-structure cache memory for dataflow
multiprocessor environment”, MS Thesis,
Dept of CSE, UTA, Dec. 1994

[Porterfield 89] A. Porterfield. "Software methods
for improvement of cache performance on
supercomputer applications”, PhD thesis,
Dept. of Computer Science, Rice University,
1989.

[Przybylski 90] S. Przybylski. Cache and Memory
Hierarchy Design: A Performance-Directed
Approach. Morgan Kaufmann, San

Mateo,CA, 1990.

[Shanmugam 93] P. Shanmugam, S. Andhare, K.
Kavi, B. Shirazi and A. Hurson. "Cache
design for an ETS dataflow architecture”,
Proc. of the 5th IEEE Symp. on Parallel and
Distr. Processing, pp 45-50, Dec. 1993.

[Smith 82] A.J. Smith. "Cache Memories'. ACM
Computing Surveys, September 1982, pp.
473-530.

[Takesue 87] M. Takesue. "A unified resource
management and execution control
mechanism for Dataflow Machines"'. Proc.

14th Annl. Intl. Symp. on Computer
Architecture, June 1987, pp. 90-97.

[Takesue 92] M. Takesue. "Cache Memories for
Data Flow Architectures'. |EEE Transactions
on Computers, vol. 41, June 1992, pp. 66/7-
687

[Thoreson 87] S.A. Thoreson and A.N. Long. "A
Feasibility study of a Memory Hierarchy in
Data Flow Environment”. Proc. Intl.
Conference on Parallel Conference, June
1987, pp. 356-360.

[Tokoro 83] M. Tokoro, J.R. Jagannathan and H.
Sunahara. "On the working set concept for
data-flow machines’, Proc. 10th Annul. Intl.
Symp. on Computer Architecture, July 1983,
pp. 90-97.

