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Abstract 

Loops in programs are the source of many 
optimizations leading to performance improvements, 

particularly on modern high-performance architectures as 

well as vector and multithreaded systems. Among the 

optimization techniques, loop peeling is an important 
technique that can be used to parallelize computations. 

The technique relies on moving computations in early 

iterations out of the loop body such that the remaining 

iterations can be executed in parallel. A key issue in 
applying loop peeling is the number of iterations that must 

be peeled off from the loop body. Current techniques use 

heuristics or ad hoc techniques to peel a fixed number of 

iterations or a speculated number of iterations. To our 
knowledge, no formal or systematic technique that can be 

used by compilers to determine the number of iterations 

that must be peeled off based on the program 

characteristics. In this paper we introduce one technique 
that uses variable dependence analysis for identifying the 

number of iterations to be peeled off. Our goal is to find 

general techniques that can accurately determine the ideal 

number of iterations for loop peeling, while working 
within the context of other loop optimizations including 

code motion. 

 
 

1: Introduction 

 
Modern computer systems exploit both instruction 

level parallelism (ILP) and thread (or task) level 

parallelism. Superscalar and VLIW systems rely on ILP 

while multi-threaded and multiprocessor systems rely on 
thread level parallelism. In order to fully benefit from ILP 

or thread level parallelism (or both), compilers must 

perform complex analyses to identify and schedule code 

for the architecture. Typically compilers focus on loops 
for finding parallelism in programs [24]. Sometimes it is 

necessary to rewrite (or reformat) loops such that loop 

iterations become independent of each other, permitting 

parallelism. Loop peeling is one such technique [3, 15, 
23]. When a loop is peeled, a small number of early 

iterations are removed from the loop body and executed 

separately (before the start of the loop). If only one 

iteration is peeled, a common case, the code for that 

iteration can be enclosed within a conditional statement. If 
more than one iteration is peeled, it may be possible to 

use a separate loop for these iterations. The main purposes 

of this technique is for removing dependencies created by 

the early iterations on the remaining iterations, thereby 
enabling parallelization; and for matching the iteration 

control of adjacent loops to enable fusion. The loop in 

Figure 1(a) is not parallelizable because of a flow 

dependence between iteration i=1 and iterations i=2…n. 
Peeling the first iteration makes the remaining loop iteration 
fully parallel, as shown in Figure 1(b). Using vector 

notation (for processors), the loop in Figure 1(b) can be 

rewritten as: a(2:n):=a(1)+b(2:n). That is to say, n-1 
assignments in n-1 iterations of the loop can be executed 
in parallel. 

  

 DO i = 1 TO n  
        a[i] := a[1] + b[i];  

 ENDDO;    
  (a) original loop    

 

 IF (1 <= n) THEN  
        a[1] := a[1] + b[1]; 

 ENDIF; 
 DO i = 2 TO n  
        a[i] := a[1] + b[i]; 

 ENDDO; 
(b) after peeling one iteration from the original loop 

 

    Figure 1. First example of loop peeling. 
 

The loop in Figure 2(a) is not parallelizable because of 

possible flow dependences between iterations. Peeling off the 

first iteration, once again, makes the loop parallel as shown in 
Figure 2(b). The loop in Figure 2(b) can be written as a 

vector assignment: a(2:n):=a(1)+b(2:n).  
The loop in Figure 3(a) is not parallelizable because 

variable wrap is neither a constant nor a linear function of 

induction variable i. Peeling off the first iteration allows the 

rest of loop to be vectorizable, as shown in Figure 3(b). The 
loop in Figure 3(a) can be rewritten as a vector 

assignment: b(2:n):=a(2:n)+a(1:n-1). The code shown in 
Figure 3(a) is an example using an array to simulate a 

cylindrical coordinate system where the left edge of the 



  

array must be adjacent to its right edge. Here, wrap is 

used as a wraparound variable.  
 

DO i = 1 TO n      
        a[i] := a[j] + b[i];  
        j := 1;  

 ENDDO;   
(a) original loop  
 

 IF (1 <= n) THEN 
        a[1] := a[j] + b[1]; 
        j := 1; 

 ENDIF; 
 DO i = 2 TO n  
        a[i] := a[1] + b[i]; 

 ENDDO; 
(b) after peeling one iteration from the original loop  

 

   Figure 2. Second example of loop peeling. 
 

 

 DO i = 1 TO n        
          b[i] := a[i] + a[wrap];  
          wrap := i;   
 ENDDO       

(a) original loop    

 

 IF (1 <= n) THEN 
          b[i] := a[i] + a[wrap]; 
          wrap := i; 
 ENDIF; 
 DO i = 2 TO n  
          b[i] := a[i] + a[i-1]; 
 ENDDO 
  (b) after peeling one iteration from the original loop 

 

     Figure 3. Second example of loop peeling. 

 
In the examples shown here, the number of iterations 

that must be peeled off to achieve parallel (or vector) 

execution of the loops is 1. In general, however, more 

than one iteration may have to be peeled off, and the issue 
addressed in this paper is how to determine the 

“optimum” (i.e., least) number of iterations that must be 

peeled off. To our knowledge, conventional techniques 

fall into one of two kinds: (i) peel off a fixed number of 
iterations, (ii) peel off a predicted or speculated number of 

iterations. There exists no formal or systematic techniques 

that rely on static properties of programs to guide loop 

peeing.  
Two case of loop peering can be distinguished.  

• If the subscript expressions of array references are 

constant or linear expressions of the induction variable, 

then loop peeling can be carried out by analyzing the 
dependence between array references in different 

iterations. Figure1 is an example such a case. It should 

be noted, that some dependences might lead to cases 
where the loop cannot be made parallel by peeling 

loop iterations. Note that a loop might not need peeling 

at all in this case. 

• If a subscript expression of array reference is neither 
constant nor linear expression of induction variable, 

when possible, loop iterations may be peeled off until 

this subscript expression either becomes a constant or 

a linear expression of induction variable. When this 
occurs, the remaining iterations of the loop satisfy the 

conditions of case 1 above. Figures 2 and 3 are 

examples of this case. 

In case 1, loop peeling is based on the dependencies 
between array references in different iterations, which can 

be analyzed at compile time since the subscript expression 

of all array reference are constant or a linear expressions 

of the induction variable. Thus we will not address this 
case and concentrate only on the second case in the 

remainder of the paper. More specifically, we present a 

novel technique called variable dependence driven loop 

peeling, aimed at finding a general and systematic way to 
determine the number of loop iterations that must be 

peeled off to convert case 2 loops into case 1 loops.  

 

2: Single Static Assignment 

 

This section summarizes the single static assignment 

form. Variables inside a loop may be assigned a value more 

than once and those assignments may have different 
properties. In order to perform dependency analyses, it is 

necessary to distinguish the assignment, and we use the 

well-known single static assignment (SSA) [9] for this 

purpose. SSA form is a program representation in which 
every variable is assigned only once, and every use of the 

variable is defined by that assignment. Most compilers use 

SSA representations for performing optimizations. An 

efficient algorithm that converts a program into SSA form 
with linear time complexity (in term of the size of the 

original program) was presented [8]. Note that this 

intermediate form is only used for program analysis and it 

will be converted back to original syntax after optimization. 
In the remainder of this paper, we will assume that all source 

programs are represented in SSA form. 

 

3: Quasi-Invariant Variables and 

Quasi-Induction Variables 

 
The invariant variables of a loop are those variables 

whose values are invariant in all the iterations of the loop. 

The induction variable of a loop is a variable whose 

values in successive iterations form an arithmetic 



  

progression. The most obvious example of an induction 

variable is the index variable of a loop. Induction 
variables are often used in array subscript expressions. In 

this paper we present two notions:  

• Quasi-invariant variables: those variables that are 

assigned inside a loop and will become invariant after a 
small number of iterations of the loop. 

• Quasi-induction variables: those variables that are 

assigned inside a loop and will become linear expressions 

of induction variable after a small number of iterations of 
the loop.  

Now we can introduce two related notions:  

• The peeling length of a quasi-invariant variable: if a 

quasi-invariant variable of a loop becomes invariant after 
at least n iterations of the loop, then n is the peeling 

length of the variable. 

• The peeling length of a quasi-induction variable: if a 

quasi-induction variable of a loop becomes a linear 
expression of the induction variable after at least n 

iterations of the loop, then n is the peeling length of the 

variable. 

For example, variable j in Figure 2(a) is a 
quasi-invariant variable, and wrap in Figure 3(a) is a 

quasi-induction variable. Furthermore, the peeling length 

of both j and wrap is 1. We will present more formal 
definitions of these notions in section 6. We will use these 

notions in determining the number of iterations to peel off 

so that all quasi-invariant become invariant and all 

quasi-induction variables become linear expressions of 
induction variables. Now the challenge is:  

• How to effectively identify quasi-invariant and 

quasi-induction variables? 

• How to efficiently compute the peeling lengths of these 
variables? 

To deal with the two issues, we introduce a few new 

terms in the next section.  

 

4: Variable Dependence 

 

Compiler relies heavily on both control and data 

dependence analyses for performing optimizations [4, 23]. 

Among the types of dependencies, we recognize three forms: 
true dependence, anti-dependence and output dependence. 

Typically these terms relate to dependencies among 

statements. For our purpose it is necessary to detect 

dependencies among variables (instead of statements), hence 
we introduce two new definitions for data dependencies and 

two definitions for control dependencies.  

Definition 1 (true-reference dependence) If the assignment 

to a variable var1 reads a variable var2 which has been 
written before in the sense of static semantics, then var1 
has a true-reference dependence to var2 (denoted by 
var2�var1). 

For example, if we have statements: x:=a+b; y:=x+z; 
then y has a true-reference dependence to x (x�y). 
Definition 2 (anti-reference dependence) If the assignment 

to a variable var1 reads a variable var2 which will be 
written afterwards in the sense of static semantics, then 

var1 has a anti-reference dependence to var2 (denoted by 
var2�var1). 

For example, if we have statements: y:=x+z; x:=a+b; 
then y has an anti-reference dependence to x (x�y). 
Definition 3 (true-control dependence) If there is an 

assignment to a variable var1 within arbitrary branch of a 
conditional, and the test expression of this conditional 

reads a variable var2 which has been written before in the 
sense of static semantics, then var1 has a true-control 
dependence to var2 (denoted by var2 � var1). 

For example, if we have statements: x:=a+b; IF x= c 
THEN y:=d; ENDIF; then y has a true-control 

dependence to x (x�y). 
Definition 4 (anti-control dependence) If there is an 

assignment to a variable var1 within arbitrary branch of a 
conditional, and the test expression of this conditional 

reads a variable var2 which will be written afterwards in 
the sense of static semantics, then var1 has a anti-control 
dependence to var2 (denoted by var2�var1). 

For example, if we have statements: IF x=c THEN 
y:=d; ENDIF; x:=a+b; then y has an anti-control 

dependence to x (x�y). 
 

5: Variable Dependence Graph 

 

After deriving the four dependences among variables 

assigned inside a loop, we can construct a directed graph 

called variable dependence graph. 
Definition 5 (variable dependence graph) The variable 

dependence graph (DRG) of a loop (denoted by loop) is a 

directed graph where Node(loop)={var | var is a variable 
assigned inside loop}; Edge(loop)= 
{directed line � from node var1 to node var2 | 

(var1∈IV)∧((var1�var2)∨(var1�var2)) } 

∪{directed line � from node var1 to node var2 | 

(var1∈IV)∧((var1�var2)∨(var1�var2)) } 

∪{directed line � from node var1 to node var2 | 

(var1∉IV)∧(var1�var2) } 

∪{directed line � from node var1 to node var2 | 

(var1∉IV)∧(var1�var2) } 

∪{directed line � from node var1 to node var2 | 

(var1∉IV)∧(var1�var2) } 

∪{directed line � from var1 to var2 | 

(var1∉IV)∧(var1�var2) } 
Where IV indicates the set of induction variables. 

Using the variable dependence graph, we can not only 
identify quasi-invariant variables and quasi-induction 

variables, but also compute their peeling lengths. 



  

 

6: Quasi-Invariant/Quasi-Induction Variables 

and Their Peeling Lengths 

 

In section 3 we gave an informal definition for 

quasi-invariant and quasi-induction variables. With the 

introduction of the variable dependence graph, we can 
present a more formal definition for these terms; the 

formal definition themselves describe algorithms for 

identifying them.  

 

6.1: Quasi-Invariant Variables and Their Peeling 

Lengths 

 

Definition 6 (quasi-invariant variable) For any variable 

node on the variable dependence graph of a loop, if among 
all the paths ending in this node, there is no path which 

contains a node that is a node on a strongly connected path, 

then we say this variable is a quasi-invariant variable. 

Definition 7 (peeling length of quasi-invariant variable) 

For any quasi-invariant variable var on a variable 

dependence graph, the peeling length of var is defined as: 
max{ length | length = the number of edge � 
(anti-reference dependence) and edge � (anti-control 

dependence) on a path ending in var }.  
 

6.2: Quasi-Induction Variables and Their Peeling 

Lengths 

 
In this subsection, let us investigate quasi-induction 

variables and their peeling lengths. For any variable 

assigned inside a loop, it must be either a quasi-invariant 

variable or a variant variable. We can further distinguish 
three kinds of variant variables: (i). induction variables; 

(ii). quasi-induction variables; (iii). others. Identification 

of induction variable has been studied by many others and 

thus omitted in this paper and we will assume that 
induction variables have been identified. Our goal is the 

identification of quasi-induction variables. Before 

formally defining quasi-induction variables, we must 

clarify a case arising in conditionals. Within a loop, if the 
test expression of a conditional uses a variant variable, 

then all variables assigned inside all branch paths of this 

conditional are not quasi-induction variables, since in our 

definition, a reference to a quasi-induction variable can be 
replaced by a linear function of the induction variable 

after a small number of loop iterations.  

Definition 8 (quasi-induction variable) Let induction 

variable be a quasi-induction variable. For any variant 
variable node on the variable dependence graph of a loop, 

if, any path ending in this node, contains only 

quasi-induction or quasi-invariant variables, and contains 

neither a � edge (true-control dependence) nor an � edge 
(anti-control dependence) that starts from a variant 

variable node, then we say this variable is a 

quasi-induction variable. 

Definition 9 (peeling length of quasi-induction variable) 

For any quasi-induction variable var on a variable 

dependence graph, the peeling length of var is defined as: 
max{ length | length = the number of edge � 
(anti-reference dependence) and edge � (anti-control 

dependence) on a path that ends in var and contains at 
most one induction variable node. }. 

 

7: Algorithms 

 
The main work of this paper is divided into a couple 

of phases as follows: 

• Quasi-invariance and quasi-induction analysis;  

• Detecting the dependences among variables; 

• Identifying quasi-invariant variables and 

quasi-induction variables, and computing their 

peeling lengths; 

• Loop peeling; 
We have discussed how to detect the dependences 

among variables. Based on the dependences among variables, 

we present two efficient algorithms to identify 

quasi-invariant variables and quasi-induction variables, and 
to compute their peeling lengths, respectively. The first 

algorithm exploits the well-known algorithm presented by 

Warshall [22]. The time complexities of Warshall algorithm 

is O(n
3
) in the worst case, where n is the number of the 

variables assigned inside a given loop. When computing the 

peeling lengths of quasi-invariant variables and 
quasi-induction variables, we can exploit the well-known 

algorithm of Floyd [10] for computing the shortest distance 

between a pair of nodes on a directed graph. Since the 

second algorithm is a variation of Floyd’s algorithm, its 

worst-case time complexity is O(n
3
). Because the main focus 

of computing peeling lengths should be the anti-dependences 
between variables, we set the length of each anti-dependence 

edge to 1 and that of each true-dependence edge to 0. Floyd’s 

algorithm was originally used to compute the shortest path 

between a pair of nodes on a directed graph, but we need to 
compute the longest path. The difference between longest 

and shortest path computations depends on whether the 

graph contains strongly connected subgraphs or not. When a 

directed graph contains no strongly connected subgraphs, 
then there is no difference between computing shortest and 

longest paths between a pair of nodes using Floyd’s 

algorithm. For a quasi-induction variable, if we delete the 

edges involving induction variables, then all paths ending in 
a quasi-induction variable do not contain strongly connected 

graphs.  
 



  

8: Loop Peeling 

 
When the two previous algorithms are applied we can 

identify the set of quasi-invariant variables and 

quasi-induction variables and compute their peeling lengths. 

All that remains now is to select the maximum of the peeling 
lengths as the number of iterations that must be peeled off to 

make the loop vectorizable. However, we converted the 

source program into SSA form for the purpose of 

quasi-invariant and quasi-induction variable analysis, it is 
necessary to convert the SSA form back into the source 

code before the loop peeling. The main issue to deal with 

is removal of the φ-functions by using variable renaming. 

For any φ-variable var (say defined as var:=φ(x, y)), each 
reference to var is actually a reference to x or y. To 
preserve the correctness of semantics, we must use a same 

name for variables var, x and y such that each reference 
to var will actually be a reference to x or y. The following 
two cases must be considered. 

• Either x or y is a φ-variable. If either x or y is a 

φ-variable, we have a recursive substitution until no 

new φ-variables are encountered. 

• var is an operand of another φ-variable. If var is an 

operand of another φ-variable (e.g., u:=φ(v, var)), u, v 
and var should also be renamed using the same name. 
The process continues recursively until no new 

φ-variables are encountered. 

After peeling, the assignment to each quasi-invariant 
variable can be removed and its value can be directly used 

within the remaining loop, since the variable has turned 

into invariant (this can also be called loop quasi-invariant 

code motion [18, 19]: an extension of loop invariant code 
motion). It should be noted that some quasi-invariant 

variables could have been removed earlier as long as their 

peeling lengths are less than the peeling length of the 

loop. 
 

9: Related Work 

 

As two code motion techniques, loop peeling and 
loop invariant code motion have widely been studied and 

used in compilers. For a survey of these and other source 

level optimization can be found in [3]. Loop peeling was 

originally mentioned in [12], and automatic loop peeling 
techniques were discussed in [13]. August [2] showed 

how loop peeling could be applied in practice, and 

elucidated how this optimization alone may not increase 

program performance, but may expose opportunities for 
other optimization leading to performance improvements. 

August used only heuristic loop peeling techniques. We 

feel that when applied to new and innovative architectures 

such as the SDF [11] (Scheduled Dataflow architecture, a 
decoupled memory/execution, multithreaded architecture 

using non-blocking threads), our loop peeling approaches 

may prove to be of significant importance. 
Loop invariant code motion was originally mentioned 

in [1, 7]. When an invariant computation appears inside a 

loop, a compiler can move that computation to outside the 

loop. The notion of quasi-invariant grew out of our work 
on partial evaluation [17]. Loop quasi-invariant code 

motion is an extension of loop invariant code motion, 

which hoists invariant code to outside of loops by 

peeling/unfolding loops for a small number of iterations. 
A recently developed transformation is partial redundancy 

elimination (PRE), which is a global optimization 

technique, generalizing the removal of common 

sub-expressions and loop-invariant computations. Initial 
implementation of PRE failed to completely remove the 

redundancies [16, 21]. More recent PRE algorithms based 

on control flow restructuring [5, 20] can achieve a 

complete PRE and are capable of eliminating loop 
quasi-invariant code. However, these techniques have 

exponential (worst-case) time complexity as well as code 

size explosion resulting from replication of the code. Our 

technique statically determines a finite fixed point of 
computations induced by assignments, loops and 

conditionals and tries to compute the optimal peeling 

length to get maximal code motion and parallelization. 

Moreover, our algorithm has a polynomial time 
complexity. Many optimization techniques can be 

formalized conveniently using single static assignments, 

including the elimination of partial redundancies [16], 

constant propagation [6, 14], and code motion [9]. We 
followed the same approach to express our loop 

optimization technique. 

 

10: Conclusion 

 

In this paper, we presented a technique for variable 

driven loop peeling, which is based on a static analysis for 

loop quasi-invariant variables, quasi-induction variables 
and their peeling lengths. Our analysis tries to determine 

the optimal peeling length needed to parallelize loops. To 

the best our knowledge, this is the first attempt of 

systematically making use of static properties of a loop. 
When we peel off a loop for parallelization, not only each 

quasi-induction variable becomes a linear function of an 

induction variable, but also each quasi-invariant variable 

becomes an invariant variable of the loop. So, besides 
loop peeling, this technique can be used for loop 

quasi-invariant code motion, which is well-suited as 

supporting transformation in compilers, partial evaluators, 

and other program transformers. Our technique has the 
potential to increase the accuracy of program analyses and 

to expose newer program optimizations (e.g., branch 

predication: it is an extremely valuable tool in extracting 

instruction-level parallelism from programs.), which are 



  

of central importance to many compilers and program 

transformations. The algorithms presented in this paper 
use the infrastructure already present in many compilers, 

such as dependence graphs and single static assignments. 

Thus they do not require fundamental changes to existing 

systems. The application of this technique to our ongoing 
compiler for the multithreaded architecture SDF, and 

larger practical programs is hoped to reveal the 

significance of the work presented here. 
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