

A Technique for Variable Dependence Driven Loop Peeling

Litong Song � Krishna M Kavi

Dept. Computer Science

University of North Texas

Abstract

Loops in programs are the source of many
optimizations leading to performance improvements,

particularly on modern high-performance architectures as

well as vector and multithreaded systems. Among the

optimization techniques, loop peeling is an important
technique that can be used to parallelize computations.

The technique relies on moving computations in early

iterations out of the loop body such that the remaining

iterations can be executed in parallel. A key issue in
applying loop peeling is the number of iterations that must

be peeled off from the loop body. Current techniques use

heuristics or ad hoc techniques to peel a fixed number of

iterations or a speculated number of iterations. To our
knowledge, no formal or systematic technique that can be

used by compilers to determine the number of iterations

that must be peeled off based on the program

characteristics. In this paper we introduce one technique
that uses variable dependence analysis for identifying the

number of iterations to be peeled off. Our goal is to find

general techniques that can accurately determine the ideal

number of iterations for loop peeling, while working
within the context of other loop optimizations including

code motion.

1: Introduction

Modern computer systems exploit both instruction

level parallelism (ILP) and thread (or task) level

parallelism. Superscalar and VLIW systems rely on ILP

while multi-threaded and multiprocessor systems rely on
thread level parallelism. In order to fully benefit from ILP

or thread level parallelism (or both), compilers must

perform complex analyses to identify and schedule code

for the architecture. Typically compilers focus on loops
for finding parallelism in programs [24]. Sometimes it is

necessary to rewrite (or reformat) loops such that loop

iterations become independent of each other, permitting

parallelism. Loop peeling is one such technique [3, 15,
23]. When a loop is peeled, a small number of early

iterations are removed from the loop body and executed

separately (before the start of the loop). If only one

iteration is peeled, a common case, the code for that

iteration can be enclosed within a conditional statement. If
more than one iteration is peeled, it may be possible to

use a separate loop for these iterations. The main purposes

of this technique is for removing dependencies created by

the early iterations on the remaining iterations, thereby
enabling parallelization; and for matching the iteration

control of adjacent loops to enable fusion. The loop in

Figure 1(a) is not parallelizable because of a flow

dependence between iteration i=1 and iterations i=2…n.
Peeling the first iteration makes the remaining loop iteration
fully parallel, as shown in Figure 1(b). Using vector

notation (for processors), the loop in Figure 1(b) can be

rewritten as: a(2:n):=a(1)+b(2:n). That is to say, n-1
assignments in n-1 iterations of the loop can be executed
in parallel.

 DO i = 1 TO n
 a[i] := a[1] + b[i];

 ENDDO;
 (a) original loop

 IF (1 <= n) THEN
 a[1] := a[1] + b[1];

 ENDIF;
 DO i = 2 TO n
 a[i] := a[1] + b[i];

 ENDDO;
(b) after peeling one iteration from the original loop

 Figure 1. First example of loop peeling.

The loop in Figure 2(a) is not parallelizable because of

possible flow dependences between iterations. Peeling off the

first iteration, once again, makes the loop parallel as shown in
Figure 2(b). The loop in Figure 2(b) can be written as a

vector assignment: a(2:n):=a(1)+b(2:n).
The loop in Figure 3(a) is not parallelizable because

variable wrap is neither a constant nor a linear function of

induction variable i. Peeling off the first iteration allows the

rest of loop to be vectorizable, as shown in Figure 3(b). The
loop in Figure 3(a) can be rewritten as a vector

assignment: b(2:n):=a(2:n)+a(1:n-1). The code shown in
Figure 3(a) is an example using an array to simulate a

cylindrical coordinate system where the left edge of the

array must be adjacent to its right edge. Here, wrap is

used as a wraparound variable.

DO i = 1 TO n
 a[i] := a[j] + b[i];
 j := 1;

 ENDDO;
(a) original loop

 IF (1 <= n) THEN
 a[1] := a[j] + b[1];
 j := 1;

 ENDIF;
 DO i = 2 TO n
 a[i] := a[1] + b[i];

 ENDDO;
(b) after peeling one iteration from the original loop

 Figure 2. Second example of loop peeling.

 DO i = 1 TO n
 b[i] := a[i] + a[wrap];
 wrap := i;
 ENDDO

(a) original loop

 IF (1 <= n) THEN
 b[i] := a[i] + a[wrap];
 wrap := i;
 ENDIF;
 DO i = 2 TO n
 b[i] := a[i] + a[i-1];
 ENDDO
 (b) after peeling one iteration from the original loop

 Figure 3. Second example of loop peeling.

In the examples shown here, the number of iterations

that must be peeled off to achieve parallel (or vector)

execution of the loops is 1. In general, however, more

than one iteration may have to be peeled off, and the issue
addressed in this paper is how to determine the

“optimum” (i.e., least) number of iterations that must be

peeled off. To our knowledge, conventional techniques

fall into one of two kinds: (i) peel off a fixed number of
iterations, (ii) peel off a predicted or speculated number of

iterations. There exists no formal or systematic techniques

that rely on static properties of programs to guide loop

peeing.
Two case of loop peering can be distinguished.

• If the subscript expressions of array references are

constant or linear expressions of the induction variable,

then loop peeling can be carried out by analyzing the
dependence between array references in different

iterations. Figure1 is an example such a case. It should

be noted, that some dependences might lead to cases
where the loop cannot be made parallel by peeling

loop iterations. Note that a loop might not need peeling

at all in this case.

• If a subscript expression of array reference is neither
constant nor linear expression of induction variable,

when possible, loop iterations may be peeled off until

this subscript expression either becomes a constant or

a linear expression of induction variable. When this
occurs, the remaining iterations of the loop satisfy the

conditions of case 1 above. Figures 2 and 3 are

examples of this case.

In case 1, loop peeling is based on the dependencies
between array references in different iterations, which can

be analyzed at compile time since the subscript expression

of all array reference are constant or a linear expressions

of the induction variable. Thus we will not address this
case and concentrate only on the second case in the

remainder of the paper. More specifically, we present a

novel technique called variable dependence driven loop

peeling, aimed at finding a general and systematic way to
determine the number of loop iterations that must be

peeled off to convert case 2 loops into case 1 loops.

2: Single Static Assignment

This section summarizes the single static assignment

form. Variables inside a loop may be assigned a value more

than once and those assignments may have different
properties. In order to perform dependency analyses, it is

necessary to distinguish the assignment, and we use the

well-known single static assignment (SSA) [9] for this

purpose. SSA form is a program representation in which
every variable is assigned only once, and every use of the

variable is defined by that assignment. Most compilers use

SSA representations for performing optimizations. An

efficient algorithm that converts a program into SSA form
with linear time complexity (in term of the size of the

original program) was presented [8]. Note that this

intermediate form is only used for program analysis and it

will be converted back to original syntax after optimization.
In the remainder of this paper, we will assume that all source

programs are represented in SSA form.

3: Quasi-Invariant Variables and

Quasi-Induction Variables

The invariant variables of a loop are those variables

whose values are invariant in all the iterations of the loop.

The induction variable of a loop is a variable whose

values in successive iterations form an arithmetic

progression. The most obvious example of an induction

variable is the index variable of a loop. Induction
variables are often used in array subscript expressions. In

this paper we present two notions:

• Quasi-invariant variables: those variables that are

assigned inside a loop and will become invariant after a
small number of iterations of the loop.

• Quasi-induction variables: those variables that are

assigned inside a loop and will become linear expressions

of induction variable after a small number of iterations of
the loop.

Now we can introduce two related notions:

• The peeling length of a quasi-invariant variable: if a

quasi-invariant variable of a loop becomes invariant after
at least n iterations of the loop, then n is the peeling

length of the variable.

• The peeling length of a quasi-induction variable: if a

quasi-induction variable of a loop becomes a linear
expression of the induction variable after at least n

iterations of the loop, then n is the peeling length of the

variable.

For example, variable j in Figure 2(a) is a
quasi-invariant variable, and wrap in Figure 3(a) is a

quasi-induction variable. Furthermore, the peeling length

of both j and wrap is 1. We will present more formal
definitions of these notions in section 6. We will use these

notions in determining the number of iterations to peel off

so that all quasi-invariant become invariant and all

quasi-induction variables become linear expressions of
induction variables. Now the challenge is:

• How to effectively identify quasi-invariant and

quasi-induction variables?

• How to efficiently compute the peeling lengths of these
variables?

To deal with the two issues, we introduce a few new

terms in the next section.

4: Variable Dependence

Compiler relies heavily on both control and data

dependence analyses for performing optimizations [4, 23].

Among the types of dependencies, we recognize three forms:
true dependence, anti-dependence and output dependence.

Typically these terms relate to dependencies among

statements. For our purpose it is necessary to detect

dependencies among variables (instead of statements), hence
we introduce two new definitions for data dependencies and

two definitions for control dependencies.

Definition 1 (true-reference dependence) If the assignment

to a variable var1 reads a variable var2 which has been
written before in the sense of static semantics, then var1
has a true-reference dependence to var2 (denoted by
var2�var1).

For example, if we have statements: x:=a+b; y:=x+z;
then y has a true-reference dependence to x (x�y).
Definition 2 (anti-reference dependence) If the assignment

to a variable var1 reads a variable var2 which will be
written afterwards in the sense of static semantics, then

var1 has a anti-reference dependence to var2 (denoted by
var2�var1).

For example, if we have statements: y:=x+z; x:=a+b;
then y has an anti-reference dependence to x (x�y).
Definition 3 (true-control dependence) If there is an

assignment to a variable var1 within arbitrary branch of a
conditional, and the test expression of this conditional

reads a variable var2 which has been written before in the
sense of static semantics, then var1 has a true-control
dependence to var2 (denoted by var2 � var1).

For example, if we have statements: x:=a+b; IF x= c
THEN y:=d; ENDIF; then y has a true-control

dependence to x (x�y).
Definition 4 (anti-control dependence) If there is an

assignment to a variable var1 within arbitrary branch of a
conditional, and the test expression of this conditional

reads a variable var2 which will be written afterwards in
the sense of static semantics, then var1 has a anti-control
dependence to var2 (denoted by var2�var1).

For example, if we have statements: IF x=c THEN
y:=d; ENDIF; x:=a+b; then y has an anti-control

dependence to x (x�y).

5: Variable Dependence Graph

After deriving the four dependences among variables

assigned inside a loop, we can construct a directed graph

called variable dependence graph.
Definition 5 (variable dependence graph) The variable

dependence graph (DRG) of a loop (denoted by loop) is a

directed graph where Node(loop)={var | var is a variable
assigned inside loop}; Edge(loop)=
{directed line � from node var1 to node var2 |

(var1∈IV)∧((var1�var2)∨(var1�var2)) }

∪{directed line � from node var1 to node var2 |

(var1∈IV)∧((var1�var2)∨(var1�var2)) }

∪{directed line � from node var1 to node var2 |

(var1∉IV)∧(var1�var2) }

∪{directed line � from node var1 to node var2 |

(var1∉IV)∧(var1�var2) }

∪{directed line � from node var1 to node var2 |

(var1∉IV)∧(var1�var2) }

∪{directed line � from var1 to var2 |

(var1∉IV)∧(var1�var2) }
Where IV indicates the set of induction variables.

Using the variable dependence graph, we can not only
identify quasi-invariant variables and quasi-induction

variables, but also compute their peeling lengths.

6: Quasi-Invariant/Quasi-Induction Variables

and Their Peeling Lengths

In section 3 we gave an informal definition for

quasi-invariant and quasi-induction variables. With the

introduction of the variable dependence graph, we can
present a more formal definition for these terms; the

formal definition themselves describe algorithms for

identifying them.

6.1: Quasi-Invariant Variables and Their Peeling

Lengths

Definition 6 (quasi-invariant variable) For any variable

node on the variable dependence graph of a loop, if among
all the paths ending in this node, there is no path which

contains a node that is a node on a strongly connected path,

then we say this variable is a quasi-invariant variable.

Definition 7 (peeling length of quasi-invariant variable)

For any quasi-invariant variable var on a variable

dependence graph, the peeling length of var is defined as:
max{ length | length = the number of edge �
(anti-reference dependence) and edge � (anti-control

dependence) on a path ending in var }.

6.2: Quasi-Induction Variables and Their Peeling

Lengths

In this subsection, let us investigate quasi-induction

variables and their peeling lengths. For any variable

assigned inside a loop, it must be either a quasi-invariant

variable or a variant variable. We can further distinguish
three kinds of variant variables: (i). induction variables;

(ii). quasi-induction variables; (iii). others. Identification

of induction variable has been studied by many others and

thus omitted in this paper and we will assume that
induction variables have been identified. Our goal is the

identification of quasi-induction variables. Before

formally defining quasi-induction variables, we must

clarify a case arising in conditionals. Within a loop, if the
test expression of a conditional uses a variant variable,

then all variables assigned inside all branch paths of this

conditional are not quasi-induction variables, since in our

definition, a reference to a quasi-induction variable can be
replaced by a linear function of the induction variable

after a small number of loop iterations.

Definition 8 (quasi-induction variable) Let induction

variable be a quasi-induction variable. For any variant
variable node on the variable dependence graph of a loop,

if, any path ending in this node, contains only

quasi-induction or quasi-invariant variables, and contains

neither a � edge (true-control dependence) nor an � edge
(anti-control dependence) that starts from a variant

variable node, then we say this variable is a

quasi-induction variable.

Definition 9 (peeling length of quasi-induction variable)

For any quasi-induction variable var on a variable

dependence graph, the peeling length of var is defined as:
max{ length | length = the number of edge �
(anti-reference dependence) and edge � (anti-control

dependence) on a path that ends in var and contains at
most one induction variable node. }.

7: Algorithms

The main work of this paper is divided into a couple

of phases as follows:

• Quasi-invariance and quasi-induction analysis;

• Detecting the dependences among variables;

• Identifying quasi-invariant variables and

quasi-induction variables, and computing their

peeling lengths;

• Loop peeling;
We have discussed how to detect the dependences

among variables. Based on the dependences among variables,

we present two efficient algorithms to identify

quasi-invariant variables and quasi-induction variables, and
to compute their peeling lengths, respectively. The first

algorithm exploits the well-known algorithm presented by

Warshall [22]. The time complexities of Warshall algorithm

is O(n
3
) in the worst case, where n is the number of the

variables assigned inside a given loop. When computing the

peeling lengths of quasi-invariant variables and
quasi-induction variables, we can exploit the well-known

algorithm of Floyd [10] for computing the shortest distance

between a pair of nodes on a directed graph. Since the

second algorithm is a variation of Floyd’s algorithm, its

worst-case time complexity is O(n
3
). Because the main focus

of computing peeling lengths should be the anti-dependences
between variables, we set the length of each anti-dependence

edge to 1 and that of each true-dependence edge to 0. Floyd’s

algorithm was originally used to compute the shortest path

between a pair of nodes on a directed graph, but we need to
compute the longest path. The difference between longest

and shortest path computations depends on whether the

graph contains strongly connected subgraphs or not. When a

directed graph contains no strongly connected subgraphs,
then there is no difference between computing shortest and

longest paths between a pair of nodes using Floyd’s

algorithm. For a quasi-induction variable, if we delete the

edges involving induction variables, then all paths ending in
a quasi-induction variable do not contain strongly connected

graphs.

8: Loop Peeling

When the two previous algorithms are applied we can

identify the set of quasi-invariant variables and

quasi-induction variables and compute their peeling lengths.

All that remains now is to select the maximum of the peeling
lengths as the number of iterations that must be peeled off to

make the loop vectorizable. However, we converted the

source program into SSA form for the purpose of

quasi-invariant and quasi-induction variable analysis, it is
necessary to convert the SSA form back into the source

code before the loop peeling. The main issue to deal with

is removal of the φ-functions by using variable renaming.

For any φ-variable var (say defined as var:=φ(x, y)), each
reference to var is actually a reference to x or y. To
preserve the correctness of semantics, we must use a same

name for variables var, x and y such that each reference
to var will actually be a reference to x or y. The following
two cases must be considered.

• Either x or y is a φ-variable. If either x or y is a

φ-variable, we have a recursive substitution until no

new φ-variables are encountered.

• var is an operand of another φ-variable. If var is an

operand of another φ-variable (e.g., u:=φ(v, var)), u, v
and var should also be renamed using the same name.
The process continues recursively until no new

φ-variables are encountered.

After peeling, the assignment to each quasi-invariant
variable can be removed and its value can be directly used

within the remaining loop, since the variable has turned

into invariant (this can also be called loop quasi-invariant

code motion [18, 19]: an extension of loop invariant code
motion). It should be noted that some quasi-invariant

variables could have been removed earlier as long as their

peeling lengths are less than the peeling length of the

loop.

9: Related Work

As two code motion techniques, loop peeling and
loop invariant code motion have widely been studied and

used in compilers. For a survey of these and other source

level optimization can be found in [3]. Loop peeling was

originally mentioned in [12], and automatic loop peeling
techniques were discussed in [13]. August [2] showed

how loop peeling could be applied in practice, and

elucidated how this optimization alone may not increase

program performance, but may expose opportunities for
other optimization leading to performance improvements.

August used only heuristic loop peeling techniques. We

feel that when applied to new and innovative architectures

such as the SDF [11] (Scheduled Dataflow architecture, a
decoupled memory/execution, multithreaded architecture

using non-blocking threads), our loop peeling approaches

may prove to be of significant importance.
Loop invariant code motion was originally mentioned

in [1, 7]. When an invariant computation appears inside a

loop, a compiler can move that computation to outside the

loop. The notion of quasi-invariant grew out of our work
on partial evaluation [17]. Loop quasi-invariant code

motion is an extension of loop invariant code motion,

which hoists invariant code to outside of loops by

peeling/unfolding loops for a small number of iterations.
A recently developed transformation is partial redundancy

elimination (PRE), which is a global optimization

technique, generalizing the removal of common

sub-expressions and loop-invariant computations. Initial
implementation of PRE failed to completely remove the

redundancies [16, 21]. More recent PRE algorithms based

on control flow restructuring [5, 20] can achieve a

complete PRE and are capable of eliminating loop
quasi-invariant code. However, these techniques have

exponential (worst-case) time complexity as well as code

size explosion resulting from replication of the code. Our

technique statically determines a finite fixed point of
computations induced by assignments, loops and

conditionals and tries to compute the optimal peeling

length to get maximal code motion and parallelization.

Moreover, our algorithm has a polynomial time
complexity. Many optimization techniques can be

formalized conveniently using single static assignments,

including the elimination of partial redundancies [16],

constant propagation [6, 14], and code motion [9]. We
followed the same approach to express our loop

optimization technique.

10: Conclusion

In this paper, we presented a technique for variable

driven loop peeling, which is based on a static analysis for

loop quasi-invariant variables, quasi-induction variables
and their peeling lengths. Our analysis tries to determine

the optimal peeling length needed to parallelize loops. To

the best our knowledge, this is the first attempt of

systematically making use of static properties of a loop.
When we peel off a loop for parallelization, not only each

quasi-induction variable becomes a linear function of an

induction variable, but also each quasi-invariant variable

becomes an invariant variable of the loop. So, besides
loop peeling, this technique can be used for loop

quasi-invariant code motion, which is well-suited as

supporting transformation in compilers, partial evaluators,

and other program transformers. Our technique has the
potential to increase the accuracy of program analyses and

to expose newer program optimizations (e.g., branch

predication: it is an extremely valuable tool in extracting

instruction-level parallelism from programs.), which are

of central importance to many compilers and program

transformations. The algorithms presented in this paper
use the infrastructure already present in many compilers,

such as dependence graphs and single static assignments.

Thus they do not require fundamental changes to existing

systems. The application of this technique to our ongoing
compiler for the multithreaded architecture SDF, and

larger practical programs is hoped to reveal the

significance of the work presented here.

References

 [1] Aho A. V., Sethi R., Ullman J. D., “Compilers: Principles,

Techniques, and Tools”, Addison-Wesley, Reading, Mass,

1986.

 [2] August D. I., “Hyperblock performance optimizations for ILP

processors”, M.S. thesis, Department of Electrical and

ComputerEngineering, University of Illinois, Urbana, IL,

1996.

 [3] Bacon D. F., and Graham S. L., “Compiler transformations

for high-performance computing”, ACM Computing

Surveys, December 1994, Vol. 26, No. 4, pp.345-420.

 [4] Banerjee, U., “An introduction to a formal theory of

dependence analysis”, Journal of Supercomput. Vol. 2, No.2,

1988, pp.133-149.

 [5] Bodik R., Gupta R., Soffa M. L., “Complete removal of

redundant expressions”, Prod. ACM Conf. On

Programming Language Design and Implementation,

pp.1-14, ACM Press, 1998.

 [6] Bulyonkov M. A., Kochetov D. V., “Practical aspects of

specialization of Algol-like programs”, eds. Dancy O.,

Clck R., Thiemann P., “Partial Evaluation”, Proceedings.

LNCS, Vol. 1110, pp.17-32, Springer-Verlag, 1996.

 [7] Cocke J., Schwartz J. T., “Programming languages and their

compilers (preliminary notes)”, 2nd ed. Courant Institute of

Mathematical Science, New York University, New York.

 [8] Cytron R., Ferrante J., “Efficiently computing static single

assignment form and the control dependence graph”, ACM

TOPLAS, October, 1991, Vol. 13, No. 4, pp.451-490.

 [9] Cytron R., Lowry A., Zadeck F. K., “Code motion of

control structures in high-level languages”, Conference

Record of the 13th ACM Symposium on Principle of

Programming Languages, pp.70-85, ACM Press, 1986

[10] Floyd R. W., “Algorithm 97: shortest path”,

Communications of the ACM, 1962, Vol. 5, No. 6, pp.345.

[11] Kavi K. M., Giorgi R. and Arul J., “Scheduled Dataflow:

Execution paradigm, architecture and performance

evaluation”, IEEE Transactions on Computer, Vol. 50, No. 8,

pp.834-846, Aug. 2001.

[12] Lin D. C., “Compiler support for predicated execution in

superscalar processors”, M.S. thesis, Department of Electrical

and Computer Engineering, University of Illinois, Urbana, IL,

1992.

[13] Mahlke S. A., “Exploiting instruction level parallelism in the

presence of conditional branches”, Ph.D. thesis, Department

of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1995.

[14] Metzger R., Stroud S., “Interprocedual constant propagation:

An empirical study”, ACM Letters on Programming

Languages and Systems, Vol. 2, No.1, pp.213-232, 1993.

[15] Padua D. A., and Wolfe M. J., “Advanced compiler

optimizations for supercomputers”, Communications of

the ACM, December 1986, Vol. 29, No. 12, pp.1184-1201.

[16] Rosen B. K., Wegman M. N., and Zadeck F. K., “Global

value numbers and redundant computations”, Conference

Record of the 15th ACM Symposium on Principles of

Programming Languages, ACM Press, 1988, pp.12-27.

[17] Song L., “studies on termination methods of partial

evaluation”, Ph.D. thesis, Department of Computer Science,

Waseda University, Tokyo, Japan, 2001.

[18] Song L., Futamura Y., Glück R., and Hu Z., “Loop

Quasi-Invariant Code Motion”, IEICE Transactions on

Information & System, October 2000, Vol. E83-D, No. 10:

pp.1841-1850.

[19] Song L., Futamura Y., Glück R., and Hu Z., “A Loop

Optimization Technique Based on Quasi-Invariance”,

Proceedings of IFIP Conference on Software: Theory and

Practice (16th World Computer Congress 2000), Beijing,

August 2000, pp.80-90.

[20] Steffen B., “Property oriented expansion”, Symposium on

Static Analysis, LNCS 1145, pp.22-41, Springer-Verlag,

1996.

[21] Steffen B., Knoop J., Rüthing O., “The value flow graph: A

program representation for optimal program transformations”,

ed. Jones N. D., ESOP’90, LNCS 432, pp.389-405,

Springer-Verlag, 1990.

[22] Warshall S., “A theorem on Boolean matrices”, Journal of the

ACM, January 1962, Vol. 9, No. 1, pp.11-12.

[23] Wolfe, M. J., “Optimizing supercompilers for

supercomputers”, Research Monographs in Parallel and

Distributed Computing, MIT Press, Cambridge, Mass.

[24] Zima H., and Chapman B., “Supercompiler for parallel and

vector computers”, Frontier, Series, ACM Press, 1990.

