Scalability Of Scheduled Dataflow Architecture (SDF)
With Register Contexts

Joseph M. Arul
Fu Jen Catholic University, Taiwan

and

Krishna M. Kavi
University of North Texas, USA

Abstract

Our new architecture, known as Scheduled DataFlow
(SDF) system deviates from current trend of building
complex hardware to exploit Instruction Level
Parallelism (ILP) by exploring a simpler, yet
powerful execution paradigm that is based on
dataflow, multithreading and decoupling of memory
accesses from execution. A program is partitioned
into non-blocking threads. In addition, all memory
accesses are decoupled from the thread’s execution.
Data is pre-loaded into the thread’s context
(registers), and all results are post-stored after the
completion of the thread’s execution. Even though
multithreading and decoupling are possible with
control-flow architecture, the non-blocking and
functional nature of the SDF system make it easier to
coordinate the memory accesses and execution of a
thread. In this paper we show some recent
improvements on SDF implementation, whereby
threads exchange data directly in register contexts,
thus eliminating the need for creating thread frames.
Thus it is now possible to explore the scalability of
our architecture’s performance when more register
contexts are included on the chip.

Scheduled
superspeculative,

Dataflow Architecture,
Multithreaded

Keywords:
Superscalar,
architectures.

1. Introduction

In today’s computer industry, von Neumann or
control flow architecture, which dates back to 1946,
still dominates the programming model. In order to
overcome performance limitations of this model,
modern architectures rely on instruction-level
parallelism [1], by executing multiple instructions
every cycle, often executing instruction in an order
other than that specified by the program.
Alternatively, multiple independent instructions can
be packed into a wide instruction word (VLIW) so

that the component instructions can be executed
simultaneously. In order to increase the number of
instructions that can be issued (either statically or
dynamically), speculative execution is often
employed [2]. The single threaded programming
model limits the instruction-level parallelism that can
be exploited in modern processors. Smith, in [3]
promotes building general-purpose micro
architectures composed of small, simple,
interconnected processors (or execution engines)
running at very high clock frequencies. Smith
advocates a shift from instruction-level parallelism to
instruction-level distributed processing with more
emphasis on inter-instruction communication along
with dynamic optimization and a tight interaction
between hardware and low-level software [3].

Dataflow architecture [4, 5, 6] is an alternative
to the von Neumann model. However previous
attempts to develop practical systems based on
dataflow model have failed for numerous reasons
[15]. Hybrid models that combine the two alternatives
have also been explored. Our SDF architecture can be
viewed as a new hybrid approach. SDF also presents
an alternative to the instruction level parallelism,
albeit different from Smith’s instruction level
distributed processing.

The memory hierarchies present yet another
challenge in the design of high-performance
processors, since multiple levels of the hierarchy may
need to be traversed to obtain a data value.
Decoupling of memory accesses from execution can
alleviate the memory-CPU performance gap [7]. The
main feature of this decoupling is to separate the
operand accesses from execution. We believe that to
fully benefit from decoupling we must employ
multithreading with multiple register contexts such
that several threads are ready to execute. Our SDF
combines decoupling with non-blocking
multithreading. This architecture differs from other

multithreaded architectures by using non-blocking
threads and the instructions of a thread obey dataflow
(or functional) properties. The deviation of the
decoupled Scheduled DataFlow (SDF) system from
“pure” dataflow is a deviation from data driven
execution (or token driven execution) that is
traditionally used for its implementation. Section 2
will present the background and related research. In
Section 3 we describe our new model of architecture
and briefly summarize our threaded code generation.
Section 4 describes the comparison of SDF with that
of superscalar architecture and VLIW. Concluding
remarks and future work will be presented in the last
section.

2. Background and Related Research

Even though dataflow architecture provided
the natural elegance of eliminating anti- and output-
dependencies, it performed poorly on sequential code.
In an eight-stage pipeline machine such as Monsoon,
an instruction of the same thread can only be issued
to the dataflow pipeline after the completion of its
predecessor instruction. Besides, the token matching,
waiting-matching store, introduced more bubbles or
stalls in the execution stage(s) of the dataflow
machines. In order to overcome these drawbacks,
researchers explored hybrid of dataflow/control-flow
models along with multithreaded execution. In such
models several tokens within a dataflow graph are
grouped together as a thread to be executed
sequentially under its own private program counter
control, while activation and synchronization of
threads are data-driven. Such hybrid [8, 9, 11, 12]
architectures deviate from the original model, where
the instructions fetch data from memory or registers
instead of having instructions deposit operands
(tokens) in "operand receivers" of successor
instructions. The architecture presented in this paper,
SDF, is one such hybrid architecture, designed to
overcome the limitations of pure dataflow model as
well as those described in section 1 (that pertain to
control flow models). Its features include decoupling
of memory accesses from execution pipeline, non-
blocking multithreading, dataflow program paradigm
and scheduling of instructions in a control-flow like
manner.

Simultaneous Multithreading (SMT) [10] allows
multiple independent threads to issue instructions
each cycle to a superscalar processor. SMT attempts
to combine thread level parallelism and instruction
level parallelism when running multiple applications
on the same processor. Thus, all the available threads
compete for and share all of the superscalar's
resources every cycle. Each application may exhibit
different amounts of parallelism. The choice of
implementing Instruction Level Parallelism (ILP) or

Thread Level Parallelism (TLP) depends on the
application and data. When per thread ILP is limited,
TLP can achieve more parallelism. By combining ILP
and TLP, SMT claims to achieve greater throughput
and significant program speedups. SMT research also
studies how TLP stresses other hardware structures
such as memory system, branch prediction and cache
misses. SMT has the advantage of flexible usage of
TLP and ILP, fast synchronization, and a shared L1
cache over functional units. Although SDF does not
rely on ILP, we contend that the decoupling and non-
blocking models lead to fine-grained threads, yielding
effectively similar performance gains as when ILP
within coarse-grained threads are exploited.

3. Scheduled Dataflow (SDF) Execution model and
Code Generation

In this section we briefly describe the
Scheduled Dataflow architecture model and its code
generation. For the conventional multiprocessor
system, the program is explicitly partitioned into
processes based on programming constructs such as
loops, procedures, etc. In order to run the program on
SDF, the program must explicitly be partitioned into
threads of a sufficient granularity to balance TLP
with the overheads of creating threads. A compiler
must generate a number of code blocks, where each
code block consists of several instructions from one
or more threads that can be executed to completion
either on Synchronization Processor (SP) or
Execution Processor (EP) without interruption.
Synchronization Count (SC) is the number of inputs
needed for a thread before it can be scheduled for
execution. A Frame is allocated when a thread is
created. All data needed for the thread, including SC,
is stored in the frame memory. When a thread
receives the needed inputs, the Pre-load code of the
thread moves the data from the frame memory into
the register context allocated to the thread. Post-store
code of a thread stores data from a thread’s registers
into the frame memories of awaiting threads. The SP
is responsible for the pre-load and post-store portions
of the code. Once a thread’s registers are loaded with
input data, it executes on EP without blocking or
accessing memory.

In this paper we present a new optimization to
the above sequence of activities. When a thread is
created, we will first check to see if the thread can be
allocated a register context directly (instead of
allocating a frame memory). It will then be possible
for the thread to receive inputs directly in its registers
(instead of first receiving in its frame memory and
then moving the data into registers during the pre-
load portion of the code). However if no register
context is available on a thread creation, we will
allocate a frame as in the original SDF

implementation. In this event, a thread receives inputs
in its frame memory. Our goal is to explore how the
performance of SDF changes with the number of
register contexts. This provides multiple scalability
options within the SDF architecture: the architecture
can be scaled using multiple SPs and EPs, as well as
with multiple register sets.

To understand the difference between the use
of frame memory (using FALLOC on thread creation)
and registers (using RALLOC) on thread creation,
consider the following code examples. In Figure 1,
each of the threads consists of a pre-load, execute and
post-store sections. Thread one (main) stores the data
for thread two (loop) in the frame allocated when
FALLOC RR4, R10 is executed. The pointer to the
frame memory is returned in R10; R4 contains the
address of the first instruction for loop thread, while
R5 contains the synchronization count for loop (note
the notation RRn refers to an even-odd pair of
registers n and n+1). The STORE instructions of main
thread reflect the passing of data to loop thread.

Since SDF is a non-blocking multithreaded
architecture, it is necessary for the main thread to
create an additional thread (see FALLOC RR4, R11)
that waits for the results form the loop thread.

/[Thread One
code main
LOAD RFP|2, R2
PUTR1 midmain
FORKEP R1
STOP
midmain: PUTR1 loop
MOVE R1, R4
PUTR15
FALLOC RR4, R10 ; frame allocated
PUTR1 result ; allocated with the
MOVE R1, R4 ; frame memory
PUTR1 1
MOVE R1, R5
FALLOC RR4, R11 ; thread to create the
PUTR1 finmain : result
FORKSP
STOP
finmain: STORE R11, R10|2 ;store the return pointer
PUTR1 1
STORE R1, R10|3 ;store the SC for the return
STORE RO, R10J4 ; store i value
STORE R2, R10|5 ; store N value
STORE RO, R10|6 ; store the result as 0

/I Thread two (loop)
code loop

LOAD RFP|2, R2
LOAD RFP|3, R3 ; Load return SC
LOAD RFP|4, R4 ; Load i value
LOAD RFP|5, R5 ; Load N value
LOAD RFP|6, R6 ; Load result=0
PUTR1 midloop

FORKEP R1

; Load return ptr

STOP
midloop: [If i< N; then call another loop thread and
increase the i value]

PUTR1 finloop

FORKEP R1

STOP

finloop: [depending on the if condition return the result to
the thread called]

/[Thread three

code result

[The result is read and displayed]

Figure 1. Usage of FALLOC and STORE
instructions.

In the second code example shown in Figure 2,
we try to allocate register context when a thread is
created using RALLOC. Thus the instruction
RALLOC RR4, R10 in Figure 2 allocates a register
set for the loop thread (the register set number is
returned in R10). Now the main thread stores data for
the loop thread directly in the allocated registers as
shown by the RSTORE instructions in Figure 2. Here
we eliminated the pre-load code for loop thread. In
this example since we are creating only 2 threads (and
at any given time there are at most 3 register sets
needed), we will assume RALLOC will be successful
in allocating a register set. However, in realistic
programs, we need to fall back to creating threads
using FALLOC when RALLOC fails to allocate
register sets. This will increase the code size;
however, it permits the exploration of the scalability

of SDF as more register contexts are allocated.

/[Thread One
code main
LOAD RFP|2, R2
PUTR1 midmain
FORKEP R1
STOP
midmain: PUTR1 midloop
MOVE R1, R4
PUTR15
MOVE R1, R5
RALLOC RR4, R10 ; thread allocated
PUTR1 midresult ; allocated with the frame
MOVE R1, R4
PUTR11
MOVE R1, R5
RALLOC RR4, R11 ; thread to receive the
PUTR1 finmain ; result
FORKSP R1
STOP
finmain: RSTORE R11, R10|2 ; store the return ptr
PUTR11
RSTORE R1, R10|3 ; store the SC for the ret
RSTORE RO, R10j4 ; store i value
RSTORE R2, R10|5 ; store N value

RSTORE RO, R10|6 ; store the result as 0
FFREE
STOP
/[Thread two adds one to N
[This portion of the code is eliminated]
midloop: [If i<n then call another loop
thread and increase the i value]
PUTR1 finloop
FORKSP R1
STOP
finloop: [depending on the if condition
return the result to the thread called]
/l Thread three
code result
[The result is read and displayed]

Figure 2. Usage of FALLOC and STORE
instructions

3.1 Execution Pipeline

As can be seen from Figure 3, the execution
pipeline consists of four pipeline stages; instruction
fetch, decode, execute and write back. Instruction
fetch unit behaves like a traditional fetch unit, relying
on a program counter to fetch the next instruction.
Decode and register fetch unit obtains a pair of
registers that contains the two source operands for the
instruction. Execute unit executes the instruction and
sends the results to write-back unit along with the
destination register numbers. Write back unit writes
(up to) two values to the register file. In SDF
architecture, a pair of registers is viewed as source
operands for an instruction. Data is stored in either
the left or right half of a register pair by a previous
instruction. As can be seen, the execution pipeline
behaves more like a conventional pipeline (e.g.,
MIPS) while retaining the primary dataflow
properties (single assignment, and flow of data from
instruction to instruction). This eliminates the need
for complex hardware for detecting write-after-read
(WAR) and write-after-write (WAW) dependencies
and register renaming, as well as unnecessary thread
context switches on cache misses.

3.2 Synchronization Pipeline

As can be seen from Figure 4 below, the
synchronization pipeline consists of six stages:
instruction fetch, decode, effective address, memory
access, execute and write-back. As mentioned earlier,
the synchronization pipeline handles pre-load and
post-store instructions. The instruction fetch unit
retrieves an instruction belonging to the current
thread using Program Counter (PC). The decode unit
decodes the instruction and fetches register operands
(using a register set). The effective address unit
computes address for LOAD and STORE
instructions. LOAD and STORE instructions only

reference the frame memories of threads, using a
Frame Pointer (FP) and an offset into the frames; both
of which are contained in registers. The memory
access unit completess LOAD and STORE
instructions. Pursuant to a post-store, the
synchronization count of a thread is decremented.
The write-back unit completes LOAD (pre-load) and
I-FETCH instructions, by storing the values in
appropriate registers.

Ingtruction
Cache

ngiruction Decode ecute Write-Badl
Fetch Unit Unit Unit Unit

-

Pre-Loaded
R a5

Figure 3. General Organization of the Execution
Pipeline.

Figure 4. General Organization of the
Synchronization Pipeline.

4., Comparisons of SDF with Superscalar
architecture

Our previous papers (e.g., [14,15]) presented
some comparisons of SDF with a MIPS like DLX,
superscalar and VLIW architectures. In this paper, we
will present some additional data along these lines,
but also emphasize the scalability of SDF as register
sets are added. Our contention is that SDF offers a
viable alternative to superscalars and VLIW models.
SDF architecture requires less complex hardware than
superscalars (since SDF performs no dynamic
instruction scheduling), and require no extra-ordinary
techniques to utilize all instruction slots as needed in
VLIW systems. And we will show that SDF scales
better than superscalars and VLIW as more functional
units and more register sets are added. In our
experiments we set the number of functional units the
same in SDF, superscalar and VLIW systems. For the
superscalar, both in-order and out-of-order instruction
issue are utilized. For the superscalar system, both

Table 1. SDF Versus Superscalar for the Program Matrix Multiply.

Data Size SDF SS-10 $S-00 SDF-SS-10 SDF-SS-00
(Cycles) (Cycles) (Cycles) Speedup Speedup

50*50 1,720,885 1,968,235 1,174,250 1.1438 0.6824

100*100 13,318,705 15,434,835 9,170,850 1.1589 0.6886

150*150 44,453,530 51.811.474 30.747.479 1.1656 0.6917

instruction fetch and decode width and instruction
issue width are set to eight. Register Update Unit
(RUU) and Load/Store Queue (LSQ) are set to 32.
The SDF system does not perform any dynamic
instruction scheduling, eliminating complex hardware
(e.g. scoreboards or reservation stations). At present,
the SDF system uses no branch prediction. It is also
important to note that the Simplescalar tool set!
performs extensive optimizations and dynamic
instruction scheduling. Several benchmarks were
used to collect data and compare the performance of
SDF and superscalar architecture. Matrix
multiplication program will be used to explain in
detail the performance of this architecture and its
characteristics. The data shown in Table 1 is obtained
when 10 concurrent threads are spawned in SDF.

As seen in the table, the SDF system
outperforms in-order superscalar system (SS-10) for
all data sizes. Since in this experiment we used only 2
functional units (1SP and 1EP), SDF cannot cope
with the thread level parallelism available in the
program. However, the compiler for superscalar
architecture was able to exploit the ILP available in
the application to achieve higher out-of-order
instruction issue rates (columns labeled SS-OO in
Tables 1-3). In the next experiment we will show that
as more functional units are added, and if the
application exhibits thread level parallelism, SDF

outperforms superscalar systems. Tables 2 and 3
show the comparison of SDF with superscalar system
as more functional units are added. Superscalar does
not scale well with increased number of functional
units and the scalability is limited by instruction
fetch/decode window size and the RUU size. It
should be remembered that the instruction issue
hardware is the most complex (and power hungry)
component of modern architectures [18]. The SDF
system relies primarily on thread level parallelism,
and the decoupling of memory accesses from
execution.

As more SPs and EPs are added
(correspondingly more integer and floating point
functional units in superscalar), the SDF system
outperforms superscalar architecture, even when
compared to complex out-of-order scheduling used
by the superscalar system (SS-O0). The SDF system
performance overtakes that of the out-of-order
superscalar architecture with 3 SPs and 3 EPs
(corresponding to 3 INT and 3 FP ALUs in the
superscalar system). In fact, adding more functional
units in the superscalar system requires more complex
issue hardware for finding dynamic instructions to
schedule and requires larger instruction issue/decode
widths as well as renaming registers. In the SDF
system adding more SP and more EP does not
complicate the system since there is no dynamic

Table 2.SDF Versus Superscalar for Matrix Multiplication of Different Data sizes

Superscalar SDF Superscalar SDF Supserscalar SDF Superscalar SDF
(cycles) (cycles) (cycles) (cycles) (cycles) (cycles) (cycles) (cycles)
Data 2INT ALU 2SP 2INT ALU 2SP 3INT ALU 3SP 3INT ALU 3sP
size 1FP ALU 1EP 2FP ALU 2EP 2FP ALU 2EP 3FP ALU 3EP
50*50 10| 1,890,104 1,504,297 1,890,104 860,782| 1,867,200 756,707 | 1,867,200 574242
(o]0} 712,396 712,396 706,877 706,877
100*100 10 | 14,824,104 11,843,442 | 14,824,104 6,660,012(14,633,700 5,941,602 |14,633,700 4,402,772
OO| 5,532,202 5,632,202 5,511,587 5,511,587
150*150 10 (49,763,150 39,762,487 | 49,763,150 22,227,742 49,110,246 19,924,912 49,110,246 14,819,482
00| 18,514.510 18,514,510 18,468,811 18,468,409

! http:/fwww.cs.wisc.edu/~mscalar/simplescalar.html

instruction scheduling involved. Table 3 clearly
shows the scalability of SDF as compared to

Table 3. SDF Versus Superscalar for Matrix Multiplication with more than 6 Functional Units

Superscalar SDF Superscalar Supserscalar SDF Superscalar SDF
(cycles) (cycles)| (cycles) (cycles) (cycles) (cycles) | (cycles) (cycles)
Data 4INT ALU 4SP 4INT ALU 5INT ALU 5SP 5INT ALU 5SP
size 3FP ALU 3EP 4FP ALU 4FP ALU 4EP 5FP ALU 5EP
50*50 10 | 1,867,200 507,197| 1,867,200 430,957| 1,867,200 381,247| 1,867,200 345,027
(0]) 680,321 680,321 680,321 680,321
100*100 10 (14,633,700 3,970,682 | 14,633,700 3,330,992| 14,633,700 2,982,702 14,633,700 2,665,472
OO| 5,306,381 5,306,381 5,306,380 5,306,380
150*150 10 (49,110,246 13,308,457| 49,110,246 11,115,592| 49,110,246 9,990,607 49,110,246 8,894,002
00 |17,782.453 17,782,453 17,782,453 17,782,453

superscalar system (where no performance gains can
be seen as more functional units are added).

4.1. Comparison of SDF with VLIW

This section presents the performance of the
SDF system as compared with VVLIW architectures as
facilitated by the Texas Instruments TMX3206000?
VLIW processor simulator tool-set (which includes
an optimizing compiler and profiling tool), and the
Trimaran infrastructure. For these two systems
(VLIW and SDF), instruction execution and memory
access cycles are set to match. The SDF system
utilizes 8 functional units (4 SPs and 4 EPs) as
compared to the 8-wide VLIW architecture. The SDF
system also is compared with the Trimaran simulator
using default configurations and optimizations (using
a total of 9 functional units, a maximum loop
unrolling of 32, and several other complex
optimizations). Table 4 presents the data for matrix
multiplication. TMS ‘C6000 does not perform well
because the optimized version relies on the unrolling
of only 5 iterations (unlike Trimaran, which uses 32
iterations). The SDF system achieves better
performance than TMS ‘C6000 because it relies on
thread level parallelism. The SDF system used 10

active threads for data shown in Table 4.

4.2. Scalability of SDF with Register Contexts

As indicated in Section 3. 1 (Figures 1 and 2),
the original SDF (the data shown thus far in Tables 1-
4) used frame memories for storing data for threads.
This requires “pre-loading” of data from the frame
memory into the register context of threads (after a
thread’s synchronization requirements are satisfied,
and a register context is allocated to the enabled
thread). Instead, we could allocate register contexts
for thread on creation so that data can be directly
stored in the registers of the thread, thus eliminating
memory accesses for storing and loading data. This is
possible if sufficient register contexts are available to
support the thread level parallelism exhibited by the
application. When sufficient register sets are not
available, we will fall back to the use of frame
memories. This causes some overhead in first trying
to allocate register sets and then allocating frames.
The code size will also increase.

The data in Table 5 shows the scalability of
SDF with more register sets. The data needs very
careful examination. We varied the data size, number
of functional units, TLP (by spawning different

Table 4. Comparing SDF with VLIW (Matrix Multiplication).

Matrix Multiplication
Data SDF Trimaran TMS “C6000 SDF/Trimaran | SDF/TMX ‘C6000
Size
50*50 430957 331910 1033698 1.29841523 0.416908033
100*100 3330992 2323760 16199926 1.43344924 0.205617729
150*150 | 11115592 4959204 86942144 2.24140648 0.127850447

2 TMS320C6000 DSP Code Composer Studio by Texas

Instruments

number of threads) and register sets. When only one

http://www.ti.com/sc/docs/tools/dsp/6ccsfreetool.html

Table 5. Limited Register sets usage and the thread allocation of Matrix Multiplication.

N=50 1 Thread 2 Threads 5 Threads
1SP 1EP 4985034 (3 Reg.Set) 2381565 (12 Reg.Set) 2330723 (70Reg.Set)
2SP 2EP 4985911 (") 1246765 (") 1166734 (")
3SP 3EP 4985011 (") 916006 (") 778910 (")
4SP 4EP 4985011 (") 810961 (") 585357 (")
N=100 1 Thread 2 Threads 5 Threads
1SP 1EP | 38929984 (3 Reg.Set) 18581732 (12 Reg.Set) 18369157 (70Reg.Set)
2SP 2EP | 38929961 (") 9582703 (") 9186942 (")
3SP 3EP | 38929961 (") 7069808 (") 6126821 (")
4SP 4EP | 38929961 (") 6164461 (") 4597262 (")
N=150 1 Thread 2 Threads 5 Threads
1SP 1EP | 130334934 (3 Reg.Set) 62194407 (12 Reg.Set) 61689117 (64Reg.Set)
2SP 2EP 31862481 (") 30847669 (")
3SP 3EP 23473169 (") 20568612 (")
4SP 4EP 20445811 (") 15430183 (")

thread is spawned (second column), no performance
improvements can be observed by increasing the
number of functional units (i.e., SPs and EPs). Also
no improvements in performance can be gained by
adding additional register sets, since the application
required only 3 register sets. When we increased the
TLP by spawning 2 threads for each of the 3 loops of
matrix multiplication (third column in Table 5), the
performance improvements can be observed with
additional functional units. Additional register sets
(beyond 12) will not increase the performance since
at this TLP only 12 register sets are needed. This
column of data also shows the scalability of SDF with
increased TLP and increased number of functional
units. The last column further demonstrates the
scalability of SDF. Here we spawned 5 threads at
each loop. This level of TLP requires a maximum of
127 register sets. The data in the fourth column of
Table 5 is for 64 register sets. It should be noted that
the increased number of register sets (from 3 in
second column, to 12 in third column to 64 in fourth
column) shows performance gains only with
increased TLP and increased number of functional
units. We plan to further investigate the performance
impacts of increasing TLP, functional units and
register sets.

5. Conclusion and Future work

The data comparing the SDF system with
multiple units of superscalar and VLIW shows that it
is possible to build a simple (no out-of-order
scheduling), cost effective machine when compared
to complex hardware technology needed in modern
superscalar and VLIW processors. Simple hardware
and exploiting multithreading, decoupling and
dataflow paradigm techniques can achieve this

reduction. The data shows that it is possible to build
an architecture with non-blocking threads and the
decoupling of execution from memory accesses.
Since the execution unit uses only registers, it
proceeds with no bubbles or stalls in the pipeline. The
hardware used in SDF can be much simpler. The SDF
system uses no dynamic instruction scheduling. The
hardware for dynamic instruction scheduling, such as
scoreboard and reservation stations are not required.
These hardware savings can be used to allocate more
register sets in order to take advantage of the
scalability of SDF as demonstrated in this paper. The
research also demonstrates the scalability of SDF as
more functional units are added to meet the TLP
available in the application. There are only 4 pipeline
stages in the EP and 6 in the SP. The shorter pipelines
can also benefit in case of branch mispredictions.
These pipelines also can be subdivided to increase
clock speed as is done in modern Pentium processors.
There are several projects for implementing multiple
processors on the same chip (CMP) as an effective
use of extra chip area. This is to take advantage of
inter and intra instruction level parallelism. In the
SDF system, the register sets are allocated to threads
and the threads are scheduled on different units at
different times. Such scheduling will be complex in
an on-chip microprocessor. Further experiments can
be performed with multiple processing elements with
multiple units of SPs and EPs. Since each thread
carries its own state (i.e., continuation) threads from
multiple applications (or user processes) can be
mixed freely on SDF. This will be very complex to
achieve in conventional multiprocessor system,
CMPs and SMTs. Currently a compiler for this
architecture is under development. In the future,
several benchmarks such as SPEC-2000 can be used

to show the improvements in the cycle count of the
overall architecture and its performance.

[1]

2.

[3].

[4]

[5].

(6]

[71

(8]

[al.

[10].

[11].

Reference
Wall D. W., “Limits on instruction-level parallelism,”
Proc. of 4™ Intl. Conf. on Architecture Support for
programming Languages and Operating Systems
(ASPLOS-4), April 1991, pp.176-188.
Sato, T., “Quantative evaluation of pipelining and
decoupling a dynamic instruction scheduling
mechanism,” Journal of Systems Architecture, Vol.
46, No.13, Nov. 2000, pp. 1231-1252.
Smith, J. E., “Instruction-level distributed
processing,” IEEE Computer, Vol.34, No.4, April
2001, pp. 59-65.
Kavi, K. M., and Shirazi, B., “Dataflow architecture:
Are dataflow computers commercially viable?,”
IEEE Potentials, Oct. 1992, pp. 27-30.
Papadopoulos, G. M., and Culler, D. E., “Monsoon:
An explicit token-store architecture,” Proc. of the 17"
Intl. Symposium on Computer Architecture (ISCA-
17), May 1990, pp. 82-91.
Papadopoulos, G. M., “Implementation of a general
purpose dataflow multiprocessor,” Tech. Report TR-
432, Laboratory for computer Science, MIT,
Cambridge, MA, Aug. 1988.
Smith, J. E., “Decoupled access/execute computer
architectures,” Proc. of the 9" Annual Symposium on
Computer Architecture, May 1982, pp. 112-119.
Arvind and Nikhil R. S., "Executing program on the
MIT Tagged-token dataflow architecture,” IEEE
Transactions on Computers, Vol. 39 No. 3, 1990, pp.
300-318.
Gao, G. R., "An efficient hybrid dataflow architecture
model,” Journal of Parallel and Distributed
Computing, Vol. 19, 1993, pp. 279-307.
Tullsen, D. M., Eggers, S. J.,, Levy, H. M., and Lo, J.
L., "Simultaneous multithreading: Maximizing on-
chip parallelism,” In Annual Intl. Symposium on
Computer Architecture (ISCA-22), June 1995, pp.
392-403.
Culler, D. E., Goldstein, S. C., Schauser, K. E., and
Eicken, T. V., "TAM - A compiler controlled

[12].

[13].

[14].

[15].

[16].

[17].

[18].

Threaded Abstract Machine," Journal of Parallel and
Distributed Computing 18, 1993, PP. 347-370.

Ang, B. S., Arvind and Chiou, D., "StarT- the next
generation: Integrating global caches and dataflow
architecture,” Technical Report 354, Laboratory for
Computer Science, MIT, Cambridge, MA, 1995.
Grlinewald, W. and Ungerer, T., "Towards extremely
fast context switching in a blockmultithreaded
processor,” Proc. of the 22" Euromicro Conf., Sept.
1996, pp. 592-599.

Kavi, K. M., Arul, J., and Giorgi, R., “Execution and
cache performance of the scheduled dataflow
architecture,” Journal of Universal Computer
Science, Special Issue on Multithreaded Processors
and Chip Multiprocessors, Vol. 6, No. 10, Oct. 2000,
pp. 948-968.

Kavi, K. M., Kim, H. S., Arul, J., and Hurson, A. R,,
“A decoupled scheduled dataflow multithreaded
architecture,” Proc. of the International Symposium
on Parallel Architectures Algorithms and Networks
(I-SPAN99), June 1999, pp. 138-143.

Lo. J. L., Eggers, S. J., Emer, J. S., Levy, H. M.,
Stamm, R. L., and Tullsen, D. M., “Converting
thread-level parallelism into instruction-level
parallelism via simultaneous multithreading,” ACM
Trans. on Computer Systems, Aug. 1997, pp. 332-
354.

Mitchell, N., Carter, L., Ferrante, J. and Tullsen, D.,
“ILP vs TLP on SMT,” Proc. of Supercomputing,
Nov. 1999.

Watson., I. and Gurd, J. R., “A prototype data flow
computer with token labeling,” Proc. of the National
Computer Conference, AFIPS Proceedings 48, 1979,
pp. 623-628.

Acknowledgement. Some of the original SDF work
was supported in part by a grant from the US
National Science Foundation, # CCR-9796310.

The authors wish to acknowledge the contributions of
Roberto Giorgi and Hyong-Shik Kim.

