
A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 173–184, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Non-blocking Multithreaded Architecture with
Support for Speculative Threads

Krishna Kavi1, Wentong Li1, and Ali Hurson2

1 University of North Texas
{kavi,wl}@cse.unt.edu

2 Missouri University of Science and Technology
hurson@mst.edu

Abstract. In this paper we provide both a qualitative and a quantitative evalua-
tion of a decoupled multithreaded architecture that uses non-blocking threads.
Our architecture is based on simple in-order pipelines and complete decoupling
of memory accesses from execution pipelines. We extend the architecture to
support thread level speculation using snooping cache coherency protocols. We
evaluate the performance gains from speculations by varying the number of
load/store instructions compared to computational instructions, miss speculation
rates and the degree of thread level speculation. Our architecture presents a vi-
able alternative to complex superscalar and super-speculative CPUs.

Keywords: Multithreaded Architectures, Cache Coherency, Thread Level
Speculation, Decoupled Architecture.

1 Introduction

Superscalar and VLIW architectures are the main architectural models used in com-
mercial processors. These models allow for more than one instruction to be issued on
every cycle. Modern processors expend large amounts of silicon area and transistor
budgets to achieve higher levels of performance with techniques such as out-of-order
execution, branch and value prediction and speculative instruction execution. It has
been shown that these techniques are approaching diminishing returns in terms of
further improving single processor performance [1]. This has led to an increased in-
terest in architectures that support concurrent processing, and multicore or chip multi-
processors (CMP) systems. The complexity of the underlying superscalar architecture
makes it harder to scale the clock frequency for these designs.

It appears that the dataflow computing paradigm is back in vogue, as an alternative to
superscalar models, as can be seen from recent architectural proposals including TRIPS
[3, 4] and Wavescalar [5]. However, implementing dataflow model at instruction level
(such as token driven models) requires complex hardware for communicating operands
among instructions. In contrast, our architecture uses dataflow like synchronization at the
thread-level, while using control flow semantics within a thread. This approach
minimizes instruction level communication, but permits for scalable implementations.
Our architecture should be also be contrasted with Wavescalar [5] that uses a complex
memory-ordering scheme that involves tagging each memory transaction with a

174 K. Kavi, W. Li, and A. Hurson

predecessor and successor memory access. We use epoch numbers with threads and
extend cache coherency protocols to achieve proper memory ordering.

Our architecture differs from other multithreaded architectures in two ways: i) our
threads are based on dataflow paradigm, and ii) we completely decouple all memory
accesses from execution pipeline. The underlying non-blocking thread model permits
for clean separation of memory accesses from execution (which is very difficult to
coordinate in other programming models). Data is pre-loaded into an enabled thread's
register context prior to its scheduling on the execution pipeline. After a thread
completes execution, the results are post-stored from its registers into memory. The
execution engine relies on control-flow like sequencing of instructions, but our
architecture performs no (dynamic) out-of-order execution and thus eliminates the
need for complex instruction issue and retiring hardware. These hardware savings
may be utilized to include either more processing units on a chip or more register sets
to increase the degree of multithreading. Moreover, it was stated that a significant
power is expended by instruction issue logic, and the power consumption increases
quadratically with the size of the instruction issue width [6], and thus our architecture
should be more energy efficient since we perform in-order instruction issue.

We are able to perform some quantitative evaluation of our architecture using
hand-coded programs. Our goal here is to provide both a quantitative (albeit limited in
scope) and a qualitative evaluation of our innovative architecture. In this paper we
extend our architecture to support speculative execution of threads using epoch
numbers and provide some preliminary quantitative analysis.

1.1 Related Research

Compilers extract parallelism by spawning multiple loop iterations concurrently, and
with hardware support for thread-level speculation (TLS) that enforces dynamic data
and control dependency checks, compilers can more aggressively exploit thread level
concurrency. Marcuello et. al., [7] proposed a multithread micro-architecture that
supports speculative thread execution within a single processor. This architecture
contains multiple instruction queues, register sets, and a very complicated multi-value
cache to support speculative execution of threads. Zhang et. al., [8] proposed a
scheme that supports speculative thread execution in large scale distributed shared
memory (DSM) systems relying on cache coherence protocols. Steffan et. al., [9]
proposed an architecture that supports TLS execution both within a CMP core and
large scale DSMs. This design is based on conventional architecture, but needs very
extensive support from the operating system. The design is based on cache coherence
protocols, but the published literature does not provide details on the implementation.
Our design needs a small amount of extra hardware to implement speculation in the
context of SDF architecture.

2 Scheduled Dataflow Architecture

A processing element in our scheduled dataflow architecture (SDF) is composed of
three components: Synchronization Processor (SP), Execution Processor (EP) and
thread schedule unit. Each thread is uniquely represented by a continuation <FP, IP,

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 175

RS, SC>, where FP is the Frame Pointer (where thread input values are stored), IP is
the Instruction Pointer (which points to the thread code), RS is a register set (a dy-
namically allocated register context), and SC is the synchronization count (the num-
ber of inputs needed to enable the thread). The synchronization count is decremented
when a thread receives its inputs, and the thread is scheduled on SP when the count
becomes zero. SP is responsible for pre-loading data needed by the thread into its
context (i.e., registers), and post-storing results from a completed thread into memory
or frames of destination threads. The EP performs thread computations, including
integer and floating point arithmetic operations, and spawns new threads. A more
general implementation can include multiple EPs and SPs to execute threads from
either a single task or independent tasks. Multiple SPs and EPs can be configured into
multiple clusters. Inter-cluster communications will be achieved through shared
memory.

An Example. To understand the decoupled, scheduled dataflow concept, consider one
iteration of the innermost loop of matrix multiplication: c[i,j] = c[i,j] + a[i,k]*b[k,j].
Our SDF code is shown in Figure 1. In this example we assume that all necessary
base addresses and indexes for the arrays are stored in the thread’s frame. The thread
is enabled after it receives all inputs in its frame, and a register context is allocated.

Preload
:

LOAD RFP|2, R2 # base of a into R2 body: MULTD R8,R9 R11 #a[i,k]*b[k,j] in
R11

 LOAD RFP|3, R3 # index a[i,k] into R3 ADDD R10,R11, R10 # c[i,j] +
a[i,k]*b[k,j] in
R10

 LOAD RFP|4, R4 # base of b into R4 FORKSP poststore #transfer to SP
 LOAD RFP|5, R5 # index b[k,j] into R5 STOP
 LOAD RFP|6, R6 # base of c into R6
 LOAD RFP|7, R7 # index c[i,j] into R7
 IFETCH R2, R3, R8 # fetch a[i,k] to R8 poststore: ISTORE R6,R7, R10 #save c[i,j]
 IFETCH R4, R5, R9 # fetch b[k,j] to R9 STOP
 IFETCH R6, R7, R10 # fetch c[i,j] to R10
 FORKEP body # transfer to EP
 STOP

Fig. 1. A SDF Code Example

SP executes the preload portion of the code to transfer data into the registers
allocated for the thread. The body portion of the code is executed by the EP
performing necessary computations while the poststore portion is completed by the
SP to store results into either the frames of other threads (and possibly enabling them)
or the I-structure [10]. I-structure access instructions (IFETCH and ISTORE) need a
base and an index into the array and these values are contained in a pair of registers.
Note that only SP accesses data caches (frame cache and I-structure cache) while EP
only accesses thread registers. A thread can move between EP and SP as needed to
fetch or store data from/to registers (FORKSP and FORKEP serve this purpose and
they take 4 cycles). Although not shown in this example, SP can perform index and
address computations since each SP is provided with an integer arithmetic unit.
Unlike token driven models, our instructions (for example MULTD) are provided
with a pair of store locations (in our example R8 and R9) for input operands so that
the instructions need not be executed immediately when the second operand arrives
(as is the case in token driven models). Our instructions are “scheduled” like control

176 K. Kavi, W. Li, and A. Hurson

flow architectures using program counters. Our instruction driven approach eliminates
the need for complex communications to exchange tokens among processing
elements. We simplified this example to illustrate the general structure of SDF code.
In general, techniques such as loop unrolling can be used to increase the size of the
loop body, and multiple threads can be created to execute loop iterations in parallel.

3 Thread-Level Speculation Schema for the SDF Architecture

For the non-speculative SDF architecture, if there is an ambiguous RAW (true de-
pendence) that cannot be resolved at compile time, the compiler generates sequential
threads to guarantee correct execution using I-structure [10] semantics. This will
reduce the performance of programs. However, with hardware support for speculative
execution of threads and committing results only when the speculation is verified, a
complier can more aggressively create concurrent threads.

3.1 SDF Architecture Supported by the Schema

Our TLS schema not only supports speculative execution within a single SDF cluster
consisting of multiple EPs and SPs, but also supports speculation among SDF clusters
using distributed shared memory (DSM). Our design is derived from a variation of the
invalidation based MESI protocol [13]. By applying the MESI protocol, we can en-
force coherence of data caches on different nodes in a DSM system. We add extra
hardware in each node to maintain intra-node coherence.

3.2 States in Our Design

In our schema, an invalidate message will be generated by a node to acquire exclusive
ownership of data stored in a cache line before updating the cache. In addition to the 3
states of MESI protocol (Excusive (E), Shared (S), and Invalid (I)), we add two more
states: speculative read of an exclusive data (SpREx) and speculative read of a shared
data (SpR.Sh)1. We can distinguish the states easily by adding an extra S (Speculative
read) bit to each cache line. Table 1 shows the encoding of the states.

Table 1. Encoding of Cache Line States

 SpRead Valid Dirty(Exclusive)

I X 0 X

E/M 0 1 1

S 0 1 0

SpR.Ex 1 1 1

SpR.Sh 1 1 0

1 We do not permit speculative writes.

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 177

3.3 Hardware Design of Our Schema

In the new architecture, a (speculative) thread is defined by a new continuation -- <FP,
IP, RS, SC, EPN, RIP, ABI >. The first four elements are the same as the original con-
tinuations in SDF (see Section 2). The added elements are the epoch number (EPN), re-
try instruction pointer (RIP) and an address-buffer ID (ABI). For any TLS schema, an
execution order of threads must be defined based on the program order. We use epoch
numbers (EPN) for this purpose. Speculative threads must commit2 in the order of their
epoch numbers. RIP defines the instruction at which a failed speculative thread must start
its retry. ABI defines the buffer ID that is used to store the addresses of speculatively-
read data. For the non-speculative thread, the three new fields will all be set to zero. We
add a separate queue for speculative threads to control the order of their commits.
Figure 2 shows the overall design of our new architecture .

Fig. 2. Overall Design

For the controller (Thread Schedule Unit) to distinguish between speculative and
non-speculative threads, it only needs to test the epoch field of the continuation to see
if it is equal zero (as stated previously, a non-speculative thread’s EPN is set to zero
and any continuation that has a non-zero epoch number is a speculative thread). The
commit control maintains the epoch number of the next thread that can commit based
on the program order and will test the epoch number of a continuation that is ready
for commit. If these numbers are the same and no data access violations are found in
the reorder buffer associated with the thread, the commit controller will schedule the
thread for commit (i.e, schedule the thread on SP for post-store). If there is a viola-
tion, the commit controller sets the IP of that continuation to RIP and places it back in
the preload queue for re-execution. At this time, the thread becomes non- speculative.

We use a few small fully-associative buffers to record the addresses of data that
are speculatively accessed by speculative threads. Data addresses are used as indices
into these buffers. The small fully associative buffers can be implemented using an

2 In our architecture, a thread commits its results to memory by executing the post-store part of

its code.

178 K. Kavi, W. Li, and A. Hurson

associative cache where the number of sets represents the maximum number of specula-
tive threads and the associativity represents the maximum number of speculative data
that can be read by a thread. For example, a 64 set 4-way associative cache can support
64 speculative threads, with 4 speculative address entries per thread. The address buffer
ID (ABI) is assigned when a new continuation for a speculative thread is created. When a
speculative read request is issued by a thread, the address of the data being read is stored
in the address buffer assigned to the thread and the entry is set to valid. When a specula-
tively read data is subsequently written by a non-speculative thread, the corresponding
entries in the address buffers are invalidated, preventing speculative threads from com-
mitting. The block diagram of address buffer for a 4-SP node is shown in Figure 2. This
design allows invaliding a speculatively-read data in all threads simultaneously. It also
allows different threads to add different addresses into their buffers. When an “invali-
date” request comes from the bus or a write request comes from inside the node, the data
cache controller will change the cache line states, and the speculative controller will
search the address buffer to invalidate appropriate entries.

Threads in SDF architecture are fine-grained and thus the number of data items
read speculatively will be small. By limiting the number of data items read specula-
tively, the probability that a speculative thread successfully completes can be im-
proved. For example, if p is the probability that a speculatively read data will be
invalidated, then the probability that a thread with n speculatively read data items will
successfully complete is given by (1-p)n. With 4 to 8 speculative reads per thread and
16 speculative threads, we only need 64 to 128 entries in the address buffers. Because
our threads are non-blocking, we allow threads to complete execution even if some of
the speculatively read data is invalidated. This eliminates complex mechanisms to
abort threads, but may cause wasted execution of additional instructions of specula-
tive threads.

Fig. 3. Address Buffer Block Diagram

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 179

3.4 States Transition Diagram

A speculative thread cannot write any results to data cache. The results of a thread
(during post-store) are not committed unless all speculative reads remain valid at the
time the thread is ready for commit (in the order of epoch numbers). An invalid
speculation will force the thread to retry using RIP pointer.

a. Request from a Node

b. Request from Bus

Fig. 4. State Transition Diagrams

Figure 3 shows the state transition diagrams for tracking data reads and writes by
speculative and non-speculative threads. Figure 3a shows the cache line state transi-
tions due to requests from a node within a cluster (i.e., intra-node). The key idea is
that every speculative read will change the cache line state to speculative and also
allocates an entry in the corresponding ABI buffer and every (non-speculative) write
will invalidate the entries in the ABI buffer. Figure 3b shows the cache line state
transitions due to bus activities (i.e., inter-node transactions). The write miss message
from the bus will invalidate cache line and corresponding ABI entries. Due to the
page limits, we will not explain these diagrams in detail, but they are similar to MESI
type cache coherency protocols.

3.5 Instruction Set Architecture Extension

We added three new instructions to SDF instruction set for thread-level speculation
support. The first instruction is for speculatively spawning a thread. This instruction
will request the system to assign an epoch number and an ABI for the new continua-
tion. The second instruction is for speculatively reading data, which will cause the
addition of an entry into the address buffer associated with that continuation. It should
be noted that not all reads of a speculative thread are speculative reads. A compiler
can resolve most data dependencies and use speculative reads only when static analy-
ses cannot determine memory ordering. It should also be noted that when a specula-
tive thread is invalidated, the retry needs only to re-read speculatively-read data. The
third instruction is for committing a speculative thread. This instruction places the
speculative thread continuation into the speculative thread commit queue.

180 K. Kavi, W. Li, and A. Hurson

3.6 Experiment and Results

We extend our SDF simulator with this speculative thread execution schema. This
simulator performs cycle-by-cycle functional simulation of SDF instructions.

3.6.1 Synthetic Benchmark Results3
We created benchmarks that execute a loop containing variable number of instruc-
tions. We control the amount time a thread spends at SPs and EPs by controlling the
number of LOADS and STORES (workload on SP) and computational instructions
(workload on EP). Then we use the TLS to parallelize these benchmarks. We test this
group of benchmarks both in term of the scalability and the success rate of the specu-
lative threads.

Figure 4a shows the performance of a program that spends 33% of the time at SPs
and 67% of time at EPs, when executed without speculation. Figure 4b shows the
performance for programs with 67% SP workload, 33% EP workload, while Figure 4c
shows the data for programs with 50% SP and EP workloads (if executed non-
speculatively). All programs are tested using different speculation success rates. We
show data with different number of functional units: 8SPs-8EPs, 6SPs-6EPs, 4SPs-
4EPs, and 2SPs-2EPs.

Since our SDF performs well when the SPs and EPs have balanced load (and
achieve optimal overlap of threads executing at EPs and SPs), we would expect best
performance for the case shown in Figure 4c and when the success of speculation is
very high (closer to 100%). However, even if we started with a balanced load, as the
speculation success drops (and is closer to zero), the load on EPs increase because
failed threads will have to re-execute their computations. As stated previously, a
failed thread only needs to re-read the data items that were read speculatively and data
from a thread are post-stored only when the thread speculation is validated. Thus a
failed speculation will disproportionately add to EP workload. For the case shown in
Figure 4b, with a smaller EP workload, we obtain higher speed-ups (compared
Figures 4a or 4c) even at lower success rates of speculation, since EPs are not heavily
utilized in this workload. For the 33%-66% SP-EP workload in Figure 4a, even a very
high success rates will not lead to high performance gains on SDF, because EP is
overloaded to start with, and the mis-speculative will add to the load of EPs.

From this group of experiments, we can draw the following conclusions. Specula-
tive thread execution can lead to performance gains over a wide range of speculation
success probabilities. We can obtain at least 2-fold performance gain when the suc-
cess of speculation is greater than 50%. If the success rate drops below 50%, one
should turn off speculative execution to avoid excessive retries that can overload EPs.
When the EP workload is less than the SP workload, we can tolerate higher rates of
mis-speculation. Finally, when the success rates are below 50%, the performance does
not scale well with added SPs and EPs (8SPs-8EPs, 6SPs-6EPs, and 4SPs-4EsP all
show similar performance). This suggests that the success of speculation can be used
to decide on the number of SPs and EPs needed to achieve optimal performance.

3 These are actual programs written for SDF and run on our simulator. We controlled the num-

ber of Load/Store instructions, and controlled which speculative threads successfully commit
(post-store) their results.

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 181

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

a. SP:EP 33%:66% b. SP-EP 66%:33%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

C. SP:EP 50%:50%

Fig. 4. Performances Model of TLS Schema

3.6.2 Real Benchmarks
To further test our design, we selected a set of real benchmarks. We hand-coded these
benchmarks using SDF assembly language. This group of benchmarks includes: Liver-
more loops 2 and 3; two major functions from compress() and decompress() (from
129.compress) and four loops chosen from 132.ijpeg. Table 2 shows the detailed descrip-
tion of the benchmarks. We code these benchmarks in two forms: one without specula-
tion, where all the threads are executed linearly, and the other with speculation. In the
speculative execution, earlier iterations (or threads with lower epoch numbers) generate
speculative threads for later iterations (or threads with higher epoch numbers).

Table 2. Selected Benchmarks

Suite Application Selected Loops
 Loop2 Livermore

Loops Loop3
Compress.c:480 while loop 129.Compress95
Compress.c:706 while loop
Jccolor.c:138 for loop
Jcdectmgr.c:214 for loop
Jidctint.c:171 for loop

SPEC 95

132.ijpeg

Jidctint.c:276 for loop

182 K. Kavi, W. Li, and A. Hurson

We evaluated performance gains using different number of SPs and EPs and the
results are shown in Figure 5. The speculative execution does achieve higher speed-
ups - between 30% and 158% for 2SP-2EP configuration and between 60% and 200%
speedup for 4SP4EP configuration. To compare our results with those of [9], we use
the parallel coverage parameter defined in [9]. Using 4SP4EP configuration to com-
pare with their 4 tightly coupled, single threaded superscalar pipeline processors, for
compress95 we achieve a speedup of 1.94 compared to 1.27 achieved by [9]; and a
speedup of 2.98 for ijpeg compared to 1.94 achieved by [9].

Another finding from Figure 5 is that our performance does not scale well after
4SP4EP configuration. This is because of the way we generated threads – we generate
very limited number of speculative threads, since each iteration only generates one
new speculative thread. However with an optimizing compiler, it will be possible to
generate as many speculative threads as needed to fully utilize available processing
and functional units.

Fig. 5. Performance gains normalized to non-speculative implementation

Fig. 6. Performance gains normalized to non-speculative implementation

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 183

We repeated our experiments with the same benchmarks but using a control thread
that spawning multiple speculative threads at a time. For livermore loops, the control
thread spawns 10 iterations a time, and for the compress95 and the jpeg, the control
thread spawns 8 iterations a time. The results are shown in Figure 6. For most cases,
this approach does show better scalability with added functional units. Livermore
loop 3 and compress are the exceptions. For these applications, the mis-speculation is
very high and since on mis-speculation all threads become non-speculative (executing
sequentially) the available concurrency is reduced. It should be noted, however, our
approach does lead to higher speedups than those reported in [9].

4 Summary and Conclusions

Our goal here is to provide a qualitative and a quantitative evaluation of an inno-
vative non-blocking multithreaded architecture that decouples all memory access
from execution pipeline. Our quantitative evaluations are limited to hand-coded
benchmarks. At this time, we do not have a compiler, but we hope that we will be
able find support to design and implement an optimizing compiler for our architec-
ture. An optimizing compiler is needed to take full advantage of SDF features.

In previous sections we have shown that SDF can achieve scalable performance
that is comparable or better than Simplescalar, VLIW and SMT architectural para-
digms. We also have shown that thread level speculation on SDF can lead to speedups
that are better than or comparable to other speculative execution models. In addition,
SDF offers several qualitative advantages over existing architectural paradigms.

Separating PEs into SPs and EPs has distinct advantages. One can tailor the num-
ber of SP and EP units included in a single “computation cluster” to maximize per-
formance of experimentally determined computation needs. The number and types of
functional units (viz., integer and floating point arithmetic units) within these process-
ing elements can also be varied. The EPs and SPs can easily be run at different clock
speeds, providing power savings. Such control is easier to implement in our system
than proposed globally asynchronous, locally synchronous (GALS) designs that con-
tain multiple clock domains (MCD’s) ([15], [16]). And by keeping the EP and SP
pipelines extremely simple with no out-of-order instruction execution, we can address
power constraints, provide additional computing power by including multiple simple
SP and EP clusters on a chip, or more register sets.

SDF uses non-blocking threads, leading to non-preemptive scheduling of threads.
Although real-time systems often use pre-emptive scheduling to meet required reac-
tive times, non-preemptive scheduling is more efficient, particularly for soft real-time
applications and applications designed for multithreaded systems, since the non-
preemptive model reduces the overhead needed for switching among tasks (or
threads) [17]. The decoupled memory of SDF implies that each thread goes through at
least 3 scheduling points: preload when the thread’s inputs (and I-structure data) are
transferred to its registers at an SP, execute when the thread performs its computation
at an EP, and poststore when the thread transfers results from its registers to memory
or other threads at an SP. Each of these scheduling points allows us to determine
which thread should be scheduled. Such fine-grained real-time scheduling is not pos-
sible with other thread models. The non-preemptive execution is applicable even to

184 K. Kavi, W. Li, and A. Hurson

speculative threads, thus simplifying the management of thread-level speculation. All
threads are allowed to complete but only those threads that can commit are allowed to
complete post-store portions of their code.

References

[1] Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D.: Clock Rate Versus IPC: The
End of the Road for Conventional Microarchitectures. In: 27th International Symposium
on Computer Architecture (ISCA), June 2000, pp. 248–259 (2000)

[2] Tullsen, D.M., Eggers, S.J., Levy, H.M., Lo, J.L.: Simultaneous multithreading: Maxi-
mizing on-chip parallelism. In: International. Symposium on Computer Architecture
(ISCA), June 1995, pp. 392–403 (1995)

[3] Sankaralingam, K., Nagarajan, R., Liu, H., Huh, J., Kim, C.K., Burger, D., Keckler, S.W.,
Moore, C.R.: Exploiting ILP, TLP, and DLP Using Polymorphism in the TRIPS Archi-
tecture. In: 30th International Symposium on Computer Architecture (ISCA), June 2003,
pp. 422–433 (2003)

[4] Burger, D., et al.: Scaling to the end of silicon with EDGE architectures. IEEE Computer,
44–55 (July 2004)

[5] Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. In: Proceedings of the
36th International Symposium on Microarchitecture(MICRO), December 2003, pp. 291–
302 (2003)

[6] Onder, S., Gupta, R.: Superscalar execution with direct data forwarding. In: Proc of the
International Conference on Parallel Architectures and Compiler Technologies, Paris, Oc-
tober 1998, pp. 130–135 (1998)

[7] Marcuello, P., Gonzalez, A., Tubella, J.: Speculative Multithreaded Processors. In: Pro-
ceeding of the International Conference on Supercomputing, July 1998, pp. 77–84 (1998)

[8] Zhang, Y., Rauchwerger, L., Torrelas, J.: Hardware for Speculative Parallelization of Par-
tially-Parallel Loops in DSM Multiprocessors. In: 5th International Symposium on High-
Performance Computer Architecture (HPCA), January 1999, pp. 135–141 (1999)

[9] Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A Scalable Approach to Thread-
Level Speculation. In: 27th International Symposium on Computer Architecture (ISCA),
June 2000, pp. 1–12 (2000)

[10] Arvind, Nikhil, R.S., Pingali, K.K.: Istructures: Data-structures for parallel computing.
ACM Transactions on Programming Languages and Systems 4(11), 598–632 (1989)

[11] Burger, D., Austin, T.M.: The SimpleScalar Tool Set Version 2.0, Tech Rept. #1342, De-
partment of Computer Science, University of Wisconsin, Madison, WI

[12] Terada, H., Miyata, S., Iwata, M.: DDMP’s: Self-timed Super-pipelined Data-driven Mul-
timedia Processor. Proceedings of the IEEE, 282–296 (February 1999)

[13] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd
edn. (2003)

[14] Hurson, A.R., Lim, J.T., Kavi, K.M., Lee, B.: Parallelization of DOALL and
DOACROSS Loops – A Survey. Advances in Computers 45, 53–103 (1997)

[15] Magklis, G., et al.: Dynamic Frequency and Voltage Scaling for a Multiple Clock Do-
main Microprocessor. IEEE Micro, 62–69 (November/December 2003)

[16] Semeraro, G., et al.: Dynamic frequency and voltage control for multiple clock domain
microarchitecture. In: Proc. of International symposium on microarchitecture (MICRO-
35), pp. 356–370 (2002)

[17] Jain, R., Hughes, C.J., Adve, S.V.: Soft Real-Time Scheduling on Simultaneous Multi-
threaded Processors. In: Proceedings of the 23rd IEEE International Real-Time Systems
Symposium (December 2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

