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Abstract—Advances in memory technologies including 3D-
DRAM memories (such as High Bandwidth Memory (HBM)
and Hybrid Memory Cube (HMC) systems), wide I/O memory
promise very large bandwidths at lower power consumption
to address the needs of high-performance computing as well
as emerging big data applications. However, in order to fully
benefit from such bandwidths, it is necessary to understand
how to optimally organize data across channels, ranks, banks
or vaults of the memory structures, how to obtain large volumes
of data with fewer accesses and how to schedule threads of multi
threaded applications to benefit from these memory organizations.
In this paper, we will examine different memory organizations
that spread data across channels, ranks, and banks and identify
application features that benefit from different organizations. Our
study applies to generic DDR memory structures as well as 3D-
DRAMs. We will also evaluate scheduling of OpenMP threads
(e.g., using static, dynamic and guided) but with emphasis on
how different scheduling methods benefit from different memory
organizations. Using the best scheduling for the application,
proper memory organization, our experiments show, we can
achieve up to 16 percent performance gains depending on
workload.

Index Terms—OpenMP; Scheduling; Memory Organization;
HBM

I. INTRODUCTION

With the introduction of 3D-DRAMs, and wide I/O memories
[1] processor-memory bottleneck has been somewhat mitigated.
There has been a significant amount of research done on 3D-
DRAM usage as a last level cache (LLC) or as part of main
memory (see for example [2], [3] [4] [5] [6] [7] [8] [9] [10]).
In this paper, we assume 3D DRAM is used as main memory
(either alone or in combination with other memories). Our
goal is to investigate how the bandwidth of such memories
can be utilized by applications. While the two commercially
available 3D-DRAM designs, HBM (for example see [11],
[12]) and HMC [13] differ in some design details, they still
rely on organizations that are similar to DDR technologies. A
DRAM-based memory is organized into banks and each bank
consists of rows of data as shown in Figure 1 [14].

Larger memories may be organized in banks, bank groups
(or vaults in HMC) and ranks, and data may be accessed using
multiple channels. It is important to understand the different
organizations since they impact memory access latencies and
effective bandwidth. Access times (or latencies) involve the

Fig. 1. Row Buffer

Fig. 2. Matrix Multiplication example

activation of a row (which may involve selection of banks
and deactivation of previously open rows), accessing the data
from the row and then selecting an appropriate amount of data,
typically equal to a cache line, from the row, often known as
column select. Access latencies depend on if the access falls to
the same row as the previous access (in which case there is no
need to close current row and activate a new row) or falls to
a new row. Consider for example memory accesses of matrix
multiplication in Fig 2. We are aware that there are many more
efficient implementations of matrix multiplication, but we use
this simple algorithm for illustration purposes. The innermost
loop will access elements of one matrix row-wise and the
element of the second matrix column-wise. These accesses are
likely to fall to different DRAM rows and thus cause excessive
access latencies. Large caches can alleviate some of these
latencies since future accesses may be satisfied by previously
cached data. It is still important to understand how data is
organized in DRAMs and how an application requests data. In
this paper, we will explore the impact of different ways for
spreading memory rows across banks, ranks, and channels and



the resulting memory access performance.
In case of multithreaded applications executing on multicore

systems, the memory performance depends on how the different
threads access data (and how the data is spread across DRAM
banks, ranks and channels). The accesses may negatively
impact memory latencies if the accesses from different threads
fall to different rows. The access behaviors of multithreaded
applications, particularly those written using OpenMP [15],
can be controlled by deciding on how loop iterations (when
using pragma omp parallel for) are assigned to threads. For
example, consecutive iterations may be assigned to the same
thread (chunk scheduling) or cyclically assigned to different
threads (cyclical scheduling). And these different approaches
can cause threads to access different rows or the same row. In
this paper, we will explore how OpenMP scheduling impacts
memory access performance when using DRAM OR 3D-
DRAM devices.

There have been many research studies on Near-Data Process-
ing (NDP) or Processing In Memory (PIM) (see for example
[16] [17] [18] [19] [20] [21]) approaches whereby computation
is moved closer to memory to overcome long memory latencies
and utilize large bandwidths. When processing elements are
embedded in the logic layer of a 3D-DRAM, it may be possible
to obtain larger amounts of data on each access (instead of
one cache line at a time) since such systems are not limited
by bus widths or pin counts. On the other hand, this will be
wasteful if consecutive accesses fall to different rows. Also
PIM (Processing-In-Memory) elements are likely to be very
simple In-Order cores with no or limited cache memories. Thus
it is useful to understand if memory accesses from In-Order
cores differ from those of Out-Of-Order cores and determine
which thread scheduling is better for PIM designs (as compared
to scheduling for host CPUs).

In this research, we investigate three related issues that
impact memory performance (such as average access times):
i) how DRAM rows are distributed across banks, ranks, and
channels, ii) how loop iterations are assigned to OpenMP
threads and how threads access data, and ii) if PIM designs
can benefit from 3D-DRAM technologies.

We conduct experiments using two types of CPU cores:
large Out-Of-Order cores with large multilevel caches and
simple In-Order cores with only small L1 caches. The second
type of cores are the likely choice for processing-in-memory
implementations due to power limits on 3D-DRAM devices.
As we will report in this paper, which memory organization
and which thread scheduling results in the "best" memory
performance depending on the type of the core used (Out-Of-
Order or In-Order). Thus, the main contribution of this paper
is understanding how different memory organization, different
thread scheduling methods and different types of cores play a
role in applications’ memory access performance.

The rest of the paper is organized as follows. In section
II, we will provide details on how DRAM memories can be
organized. We will discuss how threads in OpenMP can be
scheduled. This section provides an overview of our work for
this paper and describes our experimental approach including

the simulation environment and the set of benchmarks we used.
In Section III, we will present the results of our experimentation
and an analysis of the results. In section IV, we will discuss
the potential extension of this work. Section V provides a brief
overview of some of the related work that is aligned to this
research. Finally, section VI comprises of high-level insights
with a conclusion of this work.

II. METHODOLOGY

A. Address Mapping

Address mapping describes data distribution across the chan-
nels (or vaults in HMC), ranks, banks, rows, and columns in a
DRAM memory. If the memory organization is RoBaRaCoCh,
shown in Figure 4, then the data is distributed across channels,
columns, banks, banks groups, and ranks to comprise a row.
That is, a DRAM row of data is spread across the bank, bank
groups, ranks, and channels - resulting in very large amounts of
data per row access, for example, 256K bytes. This organization
is useful if successive accesses fall to the same row, and they
can be satisfied from the open row. Consider Fig 2 for example,
the innermost loop of matrix multiplication that computes c[i][j]
+= a[i][k] * b[k][j]. In this case, access to matrix "a" will fall to
the same row, however, accesses to "b" fall to different rows (if
the matrices are very large). If the organization is ChRaBaRoCo,
shown in Figure 3, data is distributed across a series of rows
in the same bank, and thus each row is much smaller, for
example, 2K bytes. Now it takes 128-row accesses to obtain
the same amount of data as in the previous organization; it
should be noted that access to a new DRAM row requires
closing of previous row (and writing the row back to DRAM)
and opening a new row. While this organization may benefit
accesses to "b" matrix in matrix multiplication, it may penalize
accesses to "a" matrix. Additional architectural optimizations
such as prefetching may be relied upon to further optimize
memory performance.

B. Types of Memory Organization

Commercial processing systems allow memory organiza-
tions based on DIMM sizes. They permit spreading data
(or interleaving physical addresses) across multiple DIMMs,
channels, and nodes, limiting access to a single DRAM row
[22]. We feel it may be possible to utilize some of these address
inter-leavings to achieve the two organizations studied in this
paper. The two organizations we used represents two extreme
cases of data distribution. We now provide more details about
these organizations. Although we did not specifically propose
organizations covering different 3D DRAMs (such as vaults),
the two organizations evaluated are aimed at exploring two
extreme cases, one providing very large rows covering all
channels, banks, vaults, etc., while the other has very limited
row sizes contained within a bank ( or within a vault).

1. ChRaBaRoCo:
This is a typical organization where there is no channel

level parallelism. We selected this organization since it does
not possess any kind of bank or channel level parallelism.
Each row is contained within a single bank. For a pictorial



Fig. 3. ChRaBaRoCo.

Fig. 4. RoBaRaCoCh.

view, see Figure 3, which shows how a 31-bit address is split
into DRAM organization. As can be seen, a DRAM row will
be assigned to only one channel and cannot benefit from the
existence of multiple channels. 3D DRAM devices are likely
to have several channels, in some designs as many as 32. This
organization may be better suited for multi-tasking or multi-
threaded applications if the accesses from different threads (or
tasks) can be spread across different channels. On the other
hand, for single threaded applications, this organization does
not utilize channel level parallelism and may lead to lower
memory performance.

2. RoBaRaCoCh:
This organization spreads rows across multiple channels

to exploit channel level parallelism (and obtain data faster),
For a pictorial view, see Figure 4, which shows how a 31-bit
address is split into DRAM organization. Data from a single
DRAM row is now accessed using multiple channels. This
organization may cause memory access conflicts for multi-
threaded and multitasking workloads. We understand that this
organization that uses multiple channels to obtain a large row of
data is not currently implemented in commercial systems, but
we wanted to explore potential benefits for multicore systems.
In a typical commercial system, a channel is responsible for
transferring data from one or more ranks and banks (similar to
the organization in Figure 3) [22]. However, memory controllers
are capable of aligning rows from different banks and ranks
so that all channels can be used to transfer the data to achieve
effectively the organization shown in Figure 4. Note that our
model consists of just one rank, so there is no rank bits are
shown in Fig 3 and 4.

Other organizations may be possible resulting in different
amounts of data per row access, different amounts of channel
level parallelism and rank level parallelism. Some of these
organizations may be possible with 3D DRAMs even if they
do not make sense with 2D DDR memories. However, we limit
our study to the two organizations described here since they
represent two extreme cases of data distribution.

C. Scheduling

In this era of multicore processors and many-core GPUs,
efficient parallel programming is very crucial to benefit
from such systems. For our purpose, we limit our study to
homogeneous multicore systems and thus focus on OpenMP
style programs. Since the programmers may not be aware
of the DRAM organizations (such as those described above),

Processor values
Core count 4

Type In-order
Frequency 1.0 GHz

Cache values
L1 size 32K

Shared L2 size 64K
Associativity 4

TABLE I
PIM-LIKE CORE AND CACHE CONFIGURATION.

these parallel programs may not achieve optimal levels of
performance. For example, not many programmers use the
"schedule" clause in OpenMP,( i.e., no specific scheduling type
specified), relying on runtime system to implement scheduling.
This will impact the overall performance up to 3 times when
using "schedule" clause compared to not using one. Some
programmers use static chunk scheduling where a number
(i.e., chunk) of consecutive iterations are assigned to the same
thread. It is also possible to use other ways of distributing loop
iterations to threads, including cyclically assigning iterations
to threads (in this case consecutive iterations may be assigned
to different threads). In Dynamic scheduling, chunks of loop
iterations are assigned to the next idle thread and this may lead
to an uneven number of iterations assigned to different threads.
In guided scheduling, initially only a portion (typically half)
of the work is distributed to threads, and when the assigned
work is complete, an additional portion of the iterations are
distributed, until all the work is completed. This scheduling type
may reduce the chunk size to improve load balancing among
the iterations. Finally, when auto is specified, the iteration
scheduling assignment is under compiler’s control. Although
cyclical assignment of loop iterations is not typically used
with dynamic and guided scheduling methods, we explore
such assignments in this study. It should be obvious that the
scheduling used can impact the performance of applications
since different scheduling methods result in different memory
access patterns. However, our goal is to quantitatively measure
the performance differences due to thread scheduling as well
as DRAM memory organizations. In some cases accesses from
different threads fall to the same DRAM row, while in other
cases they fall into different rows of DRAM. And the size
and distribution of DRAM rows across channels, banks and
ranks impact access latencies. For the purpose of this paper, we
focus on two different ways of distributing iterations (chunk and
cyclical), three scheduling methods (static, dynamic, guided)
and two DRAM organization. While the performance impacts
of OpenMP scheduling were studied previously, our emphasis
is on the memory accesses resulting from different scheduling
methods with different memory organizations. We also study
these organizations and scheduling methods for both In-Order
and Out-Of-Order cores, since PIMs are likely to use In-Order
cores.

D. Simulation

We used Gem5 [23] simulator in Full System mode for our
experimental evaluations. Selected programs from benchmarks



Processor values
Core count 4

Type Out-Of-Order
Frequency 3.5 GHz

Cache values
L1 size 32K

Associativity 8
Shared L2 size 1M
Associativity 16

TABLE II
HOST-LIKE CORE AND CACHE CONFIGURATION.

HBM values
Capacity 2 GB

Memory Controllers 1 per Channel
Banks 8

Row Buffer 2 KB
Bus Width 128 bit per Channel
Bandwidth 128GBps

TABLE III
HBM CONFIGURATION.

Benchmark Labelled as Benchmark size
Vector Addition vadd 64000 elements

Matrix Multiplication mm 200x200 elements
Blackscholes bh 4096
Streamcluster sc Cluster size-1000
Particle Filter pf Particles-2000

Hotspot hs 1024x1024
Computational Fluid Dynamics cfd 1024 elements

TABLE IV
BENCHMARKS LIST.

suites Rodinia [24], PARSEC [25] and Livermore loops [26]
are used in our experiments (see Table IV for information
on these benchmarks). We used GCC compiler to compile
the benchmarks and simulated each benchmark with different
OpenMP Scheduling techniques and two memory organizations
described in Section II, using In-Order and Out-Of-Order
(OOO) cores. The configuration used in our study are shown
in tables I, II, III.

III. ANALYSIS

Here we will describe the results of our experiments and
provide an analysis of these results. In all figures, each
benchmark is labeled with the scheduling type and a suffix
-chunk or -cyclical to indicate how loop iterations are assigned
to threads. For example, static-chunk refers to Static scheduling
that distributes a fixed number of iterations to each thread, and
Dynamic-cyclic refers to dynamic scheduling that distributes
iterations cyclically to threads (see Section II).

A. Chunk vs Cyclical Assignment

We now compare the performance differences between chunk
and cyclical allocation of iterations (with static scheduling).
The size of the chunk is based on the total number of
iterations divided by the number of threads. Fig 6 shows
the ratio of execution cycles using chunk versus cyclical
assignments of loop iterations (Data shown are based on Fig 3
Memory Organization). From Fig 6, it can be noted that some
applications like Blackscholes and vector addition perform

Fig. 5. Row activation count comparison (static scheduling, In order cores)

better with static chunk assignment (rather than static cyclical
assignment). This can be understood since these applications
access data mostly from vectors or rows of matrices; thus
assigning consecutive iterations of loops to the same thread
improves spatial locality of data accessed by that thread (and
accesses will fall to the same DRAM row). If the cyclical
assignment is used for these benchmarks, consecutive iterations
will be assigned to different threads and accesses from the
same thread may fall to different DRAM row buffers. However,
cyclical assignment performs better for other applications,
particularly when applications access some data row-wise and
some data column-wise. Column-wise accesses do not exhibit
spatial localities: thus assigning consecutive iterations to the
same thread does not benefit from accessing large amounts
of data on each DRAM access. Each thread may need to
access multiple DRAM rows to satisfy its data needs. Moreover,
the accesses from different threads can lead to opening and
closing of DRAM rows, adding to the performance losses.
Cyclical assignment can eliminate some DRAM row conflicts.
For example, consider Fig 2, which shows a simple matrix
multiplication code. To access the first matrix, in chunk mode,
4 threads will divide the workload equally (our experiments
use a 4 core system and thus we use 4 threads): each thread
processes 40 iterations. Initially, each thread accesses different
DRAM row, which causes the activation of several rows, one
per each thread. Whereas in cyclical mode, each thread will
be assigned one iteration and it is likely that requests from
different threads fall into the same row buffer, eliminating the
need for multiple row activations to the DRAM. We observed
that this can reduce the total number of row activations by up
to] 40 percent as shown in Fig 5. We can make the follow-
ing observation as to when the cyclical allocation performs
better: application kernels with nested loops accessing multi-
dimensional arrays, where array indexes involve multiple loop
indexes. This is the case with Matrix Multiplication, Particle
Filter, Hotspot, Computational Fluid Dynamics benchmarks.
We can see as much as 4 percent, 6 percent, and 16 percent
overall performance gains for Computational Fluid Dynamics,
Hotspot and Matrix Multiplication benchmarks respectively
with cyclical allocation when compared chunk assignment.



Fig. 6. Chunk vs Cyclic iterations (Cyclical assignment is better when bar value is 1 and above)

Consider Vector Addition where the iterations of the inner-
most loop (computing c[i]=a[i]+b[i]) are distributed among
multiple threads. When cyclical assignment is used, each thread
requires one data element per iteration but each cache line
contains 64 bytes or holds 16 consecutive single-precision
data elements. In this case, each thread will only use one of
these 16 elements. Thus for this benchmark (and others like
Blackscholes), the cyclical allocation is not good. On the other
hand, if chunk assignment is used, consecutive iterations, thus
consecutive vector elements are used by the same thread, thus
all the 16 elements of a cache line may be consumed by the
same thread.

B. Static, Dynamic, Guided Scheduling

In Fig 7, we compare different scheduling techniques with
chunk or cyclical assignment (depending on which performed
better in our previous experiment shown in III-A and Fig 6)
for both In-Order and Out-Of-Order cores using the memory
organization that is shown in Fig 3 (bars show the relative
performance compared to the best performance achieved. In
other words, 1.0 value indicates the best performance and all
the other values indicate by how much other organizations
differ from the best organization).

We observe that dynamic scheduling technique performed
well (more than 6 percent) for benchmarks where the loop
bodies contained conditional statements like Hotspot, Stream
cluster implying unequal amounts of computations performed
in iterations. Even though Computational Fluid Dynamics
benchmark has conditional statements, we noticed that this did
not cause significant differences in the amount of work done in
each loop iteration. Dynamic scheduling allocates work to idle
threads thus balancing the workload of the threads. Even though
static (cyclical) scheduling performed better for computational
fluid dynamics benchmark when using In-Order cores, dynamic

scheduling performs as well as the static scheduling with Out-
Of-Order cores. We observed that static scheduling allocates a
fixed number of iterations to threads, which can lead to load
imbalance and impact the overall performance. We noticed
that for benchmarks performing better with chunk assignment
like Blackscholes, vector addition, guided scheduling performs
on par with the best performing scheduling method. Static
scheduling works better in benchmarks without conditional
statements because of the extra overhead involved in dynamic
scheduling.

C. DRAM Organization

For the experiments thus far we used just one DRAM
organization viz., shown in Fig 3. In this section, we compare
the two memory organizations shown in Fig 3 and Fig 4. We
hypothesized that multi-threaded workloads perform better with
RoRaBaCoCh organization (Fig 4) since the data is interleaved
at channel level and data can be fetched in parallel for the
threads. Our experiments show that when applications involve
multiple data structures (or arrays), they access the same
DRAM row buffers repeatedly (potentially with interleaving
accesses by other threads to other rows), which results in higher
row activation time and thus the organization shown in Fig 4
did not prove beneficial. However, from Fig 8, with In-Order
cores, for Vector Addition and Computational Fluid Dynamics
(CFD), the organization shown in Fig 4 performs better. This
can be understood because, for these benchmarks, only single
dimensional vectors are accessed and the data exhibited spatial
localities. For Computational Fluid Dynamics, data items inside
the computational kernel is accessed in large strides which
span multiple rows in ChRaBaRoCo organization. This results
in delays from closing currently open DRAM row and opening
the required DRAM row. In RoRaBaCoCh (Fig 4) organization,
all the needed data items (in spite of large strides) are contained



Fig. 7. Comparing different Scheduling Techniques (higher is better)

in the same row but in multiple banks and channels, which can
be activated and fetched in parallel. Thus they benefit from
channel level parallelism for obtaining very large rows across
multiple channels. With Out-Of-Order (OOO) cores, we see
similar results. In addition, with OOO cores, Hotspot, Stream
cluster, Matrix multiplication also perform better when using
RoRaBaCoCh organization (which is not the case with In-
Order cores for these benchmarks). We observed similar data
access patterns (with large strides) for Computational Fluid
Dynamics and Hotspot; and similar access patterns (consecutive
data items) for Vector Addition and Stream cluster. For these
patterns, with OOO cores, we observe better performance with
RoRaBaCoCh organization. For Particle Filter, the access stride
length is not large (and does not benefit from large DRAM
rows), thus performing better with ChRaBaRoCo organization.
We can notice that the Fig 4 organization performs better in

most of the benchmarks with Out-Of-Order CPU model.
The experiments thus far provide a better idea in terms of

the scheduling technique, assignment of iterations and memory
organization that works best for each application. Scheduling
can easily be controlled with OpenMP pragmas. Even if DRAM
organization cannot easily be modified or fixed by the memory
controller, we feel that with a careful physical page allocation
one can effectively achieve different DRAM organizations
discussed in this paper. Pages assigned to different threads
can be aligned to banks, ranks, and channels achieving the
organization shown in Fig. 4. The physical page allocation can
be controlled by the OS.

D. Out-Of-Order and In-order Cores

One of our aims is to explore which memory organization and
which thread scheduling works best for processing-in-memory



Fig. 8. RoRaBaCoCh vs ChRaBaRoCo Organization (Ratio of Fig 4 Organization to Fig 3 Organization, Lower is better for Fig 4 Organization)

cores. As stated before, due to a power limit of 10W [18],
PIM cores are likely to be simple In-Order cores with small L1
caches only, and executing at lower (e.g. 1GHz) clock rates. In
previous sections and figures, we have shown the performance
differences between In-Order cores and large, complex Out-Of-
Order cores with multilevel caches and running at higher clock
rates (3.5 GHz). Most processing-in-memory (PIM) designs
propose to use simple In-Order and low power cores (e.g.,
ARM) while complex Out-Of-Order cores are used as host
computing engines.

From Fig 8, benchmarks like Stream cluster, Hotspot and
Matrix Multiplication perform better with Fig 3 organization
when configured with In-Order cores but when configured with
Out-Of-Order cores, Fig 4 organization outperforms Fig 3. This
can be explained as follows, OOO cores may request data out
of order (for different iterations which may fall to the same
thread or different threads depending on how iterations are
distributed) and these requests may fall to different DRAM
rows; thus using the DRAM organization shown in Fig 4 can
satisfy more OOO memory accesses with a single DRAM row
access. On the other hand, In-Order cores request memory
in order and may not benefit from large row buffers. When
using In Order cores, if the requested addresses are contiguous,
like in Vector Addition, Fig 4 performs better with minimum
DRAM row activations else Fig 3 works well due to the DRAM
row activation conflicts in Fig 4.

Benchmark Assignment Scheduling Organization
Vector Addition Chunk Static RoBaRaCoCh

Matrix Mul. Cyclical Dynamic ChRaBaRoCo
Blackscholes Chunk Static ChRaBaRoCo

Stream cluster Cyclical Dynamic ChRaBaRoCo
Particle Filter Cyclical Static ChRaBaRoCo

Hotspot Cyclical Dynamic ChRaBaRoCo
CFD Cyclical Static RoBaRaCoCh

TABLE V
BEST CONFIGURATION FOR IN-ORDER CORES

Benchmark Assignment Scheduling Organization
Vector Addition Chunk Static RoBaRaCoCh

Matrix Mul. Cyclical Static RoBaRaCoCh
Blackscholes Chunk Static RoBaRaCoCh

Stream cluster Cyclical Static RoBaRaCoCh
Particle Filter Cyclical Static ChRaBaRoCo

Hotspot Cyclical Dynamic RoBaRaCoCh
CFD Cyclical Static RoBaRaCoCh

TABLE VI
BEST CONFIGURATION FOR OUT-OF-ORDER CORES

E. Summary

The differences in the way instructions are executed and order
in which data is accessed can result in different memory access
behaviors. Tables VI and V show the memory organization,
thread scheduling and iteration assignment that results in the
best performance for each application studied in this paper,
for the two types of processing cores. In many cases the same
configurations result in the best performance for these different
types of cores, however, there are some differences as can



be seen in these tables. This indicates that PIM designs may
require different types thread scheduling and data organization
for applications, when compared to executing the applications
on a host node.

IV. FUTURE WORK

In this paper, we only experimented with a limited set of
benchmarks. We will extend this work with more workloads
to identify access patterns and determine best memory organi-
zation and thread scheduling for a given pattern. We will also
explore caching heavily used DRAM rows to minimize access
latencies to the same row at a future time. We will explore
how different OpenMP scheduling techniques impacts page
migration [32] and prefetching [33], [34] techniques used in
heterogeneous memory systems.

V. RELATED WORK

There are prior works on analyzing OpenMP scheduling
options on only matrix multiplication benchmark [27]; but
we analyzed several additional benchmarks, focusing on how
memory accesses impact application performance due to both
on OpenMP scheduling and DRAM organizations.

In another paper [28], the authors proposed a new mechanism
for automatically deciding on scheduling technique at runtime.
Their approach changes the way loop iterations are assigned
based on observed performance. We feel that the overheads
from such dynamic adaptations can defeat any performance
gains. We focus on programmer defined scheduling (although
dynamic and guided scheduling methods of OpenMP do involve
some runtime adaptation of load associated with threads).

In [29], authors tested OpenMP scheduling in hybrid systems
(ARM big-LITTLE configuration) and suggested that current
scheduling policies are inefficient for heterogeneous systems.
Although our study is only limited, we did compare different
scheduling methods for simple In-Order and complex Out-Of-
Order cores.

Bull [30] talks about overheads with respect to the scheduling
chunk size. We investigated best chunk size (either 1 or total-
workload-size/NUM-OF-THREADS) for different benchmarks
depending on nature of it.

There have been many PIM studies that used simple ARM
cores [16], GPUs [18] and specialized ASIC or reconfigurable
devices [31]. Our goal is not to evaluate different PIM
architecture choices but evaluate how PIMs can benefit from
different 3D memory organizations.

VI. CONCLUSION

Our goal in this paper is to explore the impact of DRAM
memories, particularly 3D-DRAMs such as HBM or HMC,
on the performance of multi-threaded applications running on
symmetric multi-core processors. In this paper, we evaluated
memory organization that use multiple channels to access a
row of data, which is applicable with 3D DRAMs since they
are designed with several channels. We explored how different
methods of assigning loop iterations to threads (using OpenMP
schedule clause) can impact memory accesses, and in turn

impact applications’ performance. Since we are concerned with
DRAM (particularly 3D DRAM) memories, we also explored if
it is beneficial to access large amounts of data relying on high
bandwidth through silicon vias (TSV). This can be achieved
using different organizations of data in memory. We studied two
(extreme) ways of spreading DRAM rows across banks, ranks,
and channels. In one case, a row of memory is contained within
a bank, and in the other case the row is spread across multiple
banks, ranks, and channels: the second organization allows for
obtaining large amounts of data (as much as 256KB) on each
memory access. In this study, we limited our experiments to
4-core symmetric multiprocessor systems and OpenMP based
programming models. We compared static, dynamic and guided
scheduling techniques each with chunk and cyclical allocation
of loop iterations. We evaluated two types of cores, simple
In-Order cores with very small caches (which are likely to
be the Processing-In-Memory (PIM) cores embedded in the
logic layer or 3D-DRAMs, due to the limits on allowable
power), and more conventional Out-Of-Order cores with large
multilevel caches. We also varied clock frequencies, with lower
frequencies with PIM cores. In general, for applications that
access multiple data structures or multi-dimensional arrays
using nested loops, and access some arrays row-wise and some
column-wise, cyclical scheduling results in better performance;
for applications that access single-dimensional arrays, static
chunk scheduling performs better. One interesting observation
is that when programmers do not specify any scheduling (i.e.,
do not use schedule clause OpenMP code), default allocation
can lead to uneven allocation of loop iterations to threads,
sometimes resulting in very poor performance, when compared
to using either static chunk or cyclic scheduling approaches.
Another interesting observation is that the type of the core
(Out-Of-Order versus In-Order) also determines which thread
scheduling and which DRAM organization results in best
memory performance. We are planning to extend this study with
more benchmarks as well as integrate our studies with other 3D-
DRAM studies including heterogeneous memory architectures,
prefetching DRAM pages and caching heavily accessed row
buffers.
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