
IEEE Proc. HICSS-40, Big Island HI, Jan 3-6 2006
Software Agents and Semantic Web Technologies Minitrack

A Methodology to Evaluate Agent Oriented Software Engineering Techniques

Chia-En Lin, Krishna M. Kavi
Dept. of Computer Science and Engineering

University of North Texas
cl0065@cse.unt.edu, kavi@cse.unt.edu

Frederick T. Sheldon, Kris M. Daley and
Robert K. Abercrombie

Computational Sciences and Engineering
Oak Ridge National Laboratory1

SFT | DKM | ABE@ornl.gov

Abstract
Systems using Software Agents (or Multi-Agent

Systems, MAS) are becoming more popular within the
development mainstream because, as the name suggests,
an Agent aims to handle tasks autonomously with
intelligence. To benefit from autonomous control and
reduced running costs, system functions are performed
automatically. Agent-oriented considerations are being
steadily accepted into the various software design
paradigms. Agents may work alone, but most commonly,
they cooperate toward achieving some application
goal(s). MAS’s are components in systems that are viewed
as many individuals living in a society working together.
Currently however, there is no universal agreement on
how to build a comprehensive Agent-oriented system.
Development of MAS’s is a non-trivial task especially
without the necessary support provided by software
engineering (SE) environments. From a SE perspective,
solving a problem should encompass the steps from
problem realization, requirements analysis, architecture
design and implementation. These steps should be
implemented within a life-cycle process including testing,
verification, and reengineering to proving the built system
is sound. Agent-oriented SE techniques must be evaluated
and compared to gain a better understanding of how
Agent systems should be engineered and evolved.

In this paper, we explore the various applications of
Agent-based systems categorized into different application
domains. We describe what properties are necessary to
form an Agent society with the express purpose of
achieving system-wide goals in MAS. A baseline is
developed herein to help us focus on the core of Agent
concepts throughout the comparative study and to
investigate both the Object-Oriented and Agent-oriented
techniques that are available for constructing Agent-
based systems. In each respect, we address the conceptual
background associated with these methodologies and how
available tools can be applied within specific domains.

1 This manuscript has been authored by UT-Battelle, a contractor of the
U.S. Government (USG) under Department of Energy (DOE) Contract
DE-AC05-00OR22725. The USG retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

1 Introduction
Within the last decade, Information Technology (IT)

has played an ever-increasing role in the everyday aspect
of life. The power of IT has increasingly influenced
software development in every field of application from
personal computing, to critical infrastructures and
industrial systems. Developing a software system involves
the challenge of coping with embedded computational
complexities of distribution, multi-tasking, and real-time.
Moreover, it is nearly impossible for users to manually
command/control a software systems that is even mildly
complex. Clearly, the need for sophisticated, automatic
intelligence must be brought into the development life
cycle. Accordingly, agent-oriented computing, which
provides such intelligence, has become an important
research topic. An "Agent", is a programmed system that
can handle tasks autonomously with intelligence under
some prescribed rules. Systems using Agents are
becoming more popular in software development.

How can existing methodologies be extended to
ensure sophisticated and autonomous intelligence be
ordained from the first step forward? Agent
methodologies can inherit properties of simple functional
systems, reactive systems and distributed concurrent
systems. Jennings and Wooldridge [1] suggest three
classes of systems utilizing the Agent-oriented computing
model: Open Systems, Complex Systems, and Ubiquitous
Computing Systems. An Open System is comprised of
components and structures that change dynamically. For
example, the Internet is a highly open software
environment with its size and complexity increasing
exponentially. Software systems live on it; hence,
mechanisms to adapt software are needed. Complex
Systems require integration of large numbers of
components without a priori knowledge of the interactions
or results of the interactions. Usually, modularity and
abstraction are used to cope with this complexity. Agents
can be used to monitor the interactions among
components of complex and dynamic systems, particularly
when human-interactions in such systems is either
unavailable or becomes a bottleneck. The need for
autonomous control systems, reducing cost of running
such systems and dynamic nature of complex systems are
driving the adaptation of Agent-oriented considerations
into software requirements and design.

Table 1: Agent Applications Catalog.
Domain Application Fields

Industrial
Critical Process Control, Manufacturing, Air
Traffic Control, Network and Telecommunication
Management, Transportation System

Commercial Information Management, Electronic Commerce,
Business Process Management

Medical Patient Monitoring, Health Care
Entertainment Games, Interactive Theater and Cinema

Agents can be delegated to perform simple tasks or to
provide autonomous services to assist a user without being
“commanded.” Agents play roles in terms of different
expertise and functionalities while supporting services to
an application. They are responsible for making intelligent
decisions to execute such activities and to provide valid
and useful results. Agents can work alone, but most
importantly, they can cooperate with other agents. Agents
are software components in the system that are viewed as
many individuals living in a society working together.
Examples of Agents include personal assistance devices,
application assistants, tutoring agents, agents controlling
smart home management and agents involved in critical
infrastructure protection.

1.1 Agent Background
Agents are entities that are designed to run routine

(user driven) tasks and to achieve a proposed setting (or
goal) within the context of a specific environment. The
difference between an Agent and a traditional software
entity is that the latter just follows its designed functions,
procedures or macros to run deterministic codes. The
former incorporates the ability to practice intelligence by
making (autonomous/ semi-autonomous) decisions based
on dynamic runtime situations.

There is no universally accepted definition of an
Agent. According to N. R. Jennings [2], autonomy is the
central capability of an Agent. More generally, an Agent
is an encapsulated system, which is situated in some
environment and is capable of flexible, autonomous action
taken within the environment to meet designed objectives.

There are several application domains of software
system functions that are appropriate for Agent
techniques. Jennings and Wooldridge [1] proposed a
catalogue to classify Agent application domains (Table 1).

Building industrial-strength applications in a robust,
fault-tolerant and flexible way seems a demanding
requirement. Current Object-Oriented software
engineering (SE) processes provide methods and tools for
developing traditional software systems. Standards exist
for modeling, analyzing, designing and testing Object-
Oriented software. However, there is no consensus
agreement on how to build a comprehensive Agent-
oriented system. Because of the intrinsic properties of
Agents, development of
Agent systems is a non-
trivial task without the
necessary infrastructure.
Agent-Oriented SE
requires methodologies
and tools to encompass
steps from problem
realization,
requirements analysis,
architecture design and implementation. These steps must
be implemented within a life-cycle process including
testing, verification, and reengineering to ensure the built
system is sound.

1.2 Related Research
Agent-Oriented SE (AOSE) is a nascent but active

field of research [3]. A comprehensive methodology that
plays an essential role in SE must be robust but easy-to-
use. Moreover, it should provide a roadmap to guide
engineers in creating Agent-based systems. Recently
several Agent-oriented methodologies have been proposed
to address the AOSE process. Thus far, however, software
developers have not embraced any single methodology,
primarily because AOSE lacks industrial strength tools
and standards [4]. Understanding the limitation of existing
AOSE methodologies can permit researchers to develop
better solutions. Exploration into building blocks for
Agents, fundamental theories and methods as well as
available assistance from notations of analysis,
architecture design and implementation toolkits should is
needed. The ultimate hope is to develop practical AOSE
methodologies for building robust, industrial-strength
Multi-Agent Systems (MAS). However, given the
divergent directions currently being pursued by
researchers, the road towards mature Agent software
development may be reached most effectively by first
understanding of the competing approaches.

A few frameworks for comparing Agent-oriented
methodologies have been suggested. Sabas, Badri, and
Delisle [5] suggest a multi-dimensional framework
containing criteria within each of the following aspects:
methodology, representation, organization, cooperation,
and technology. These criteria are used as differentiators
for comparison purposes. The results of comparisons are
described by a two-dimensional array containing criteria
(row wise) and methodological names (column wise).
Each intersection is marked: "Y" for Yes, "N" for No, "P"
for possible, or simply blank (' ')2. In the work by Strurm
and Shehory [4], four dimensions are proposed to divide
the issues: (1) concepts and properties, (2) notations and
modeling, (3) process, and (4) pragmatics. In addition,
support for SE and marketability are added into the
comparison framework by Dam and Winikoff [6].

A different approach using goal-question-metric
(GQM) is proposed by Gernuzzi and Rossi [7] to
determine what factors are important to measure for
comparing methodologies. An attribute tree is created

according to the
objectives of advanced
GQM questions to
identify comparison
criteria with each tree
root representing a
specific attribute.
Traditional software
engineering and Agent-
based system

2 "Y" represents that the methodology that takes a criteria into account.
"N" represents that it does not take a criteria into account. "P" indicates
the methodology could take criteria into account based on available
information. A blank indicates no conclusion based on available
information.

Component Rules and Constraints

Inter-Agent

Communication

and Coordination

Application/Environment Context

Component Context

Cognitive Agent

Public

Private

Inputs/Outputs

(sensors and

actuators)

Autonomic

Proactive

Reactive

Public

Services

Public

Beliefs

Private

Beliefs

Public

Goals

Private

Goals

Agent Privileges, Access Policies and Enforcement Mechanisms

Interacting and Contributing

Reasoning and Adapting

Goals IntentionsBeliefs

Figure 1. Example of how the BDI model is a useful Agent
paradigm for endowing intelligent adaptive characteristics

characteristics are proposed by Shehory and
Strurm [8] as an evaluation/comparison
approach methodology. In each field,
corresponding criteria are inspected. Textual
statements provide comments on each issue.
The final evaluation is graded incrementally
as good (+), satisfying (*), or not supported
(NS). Consequently, in this paper we build
on these previous attempts and develop a
framework for comparing different AOSE
methodologies. We begin by first
introducing several AOSE techniques and
frameworks.

2 AOSE Techniques and Tools
Often, software engineers use Object-

Oriented programming to implement Agent
systems. There are similarities between an
Object-Oriented (OO) entity and an Agent-
oriented (AO) entity. Both are distributed
instances that can communicate with peer
entities and have state and member
functions to support their behavior.

Using well-tested Object-Oriented SE (OOSE)
methods can make the Agent software process more
adaptable to a majority of systems. However, some
differences exist between Agents and Objects. For
example, Agents are autonomous, self-contained and
should act to achieve goals without external influence or
initiation (i.e., an Agent decides when and how to execute
its functions). Objects, however, are passive entities
because their behavior depends on their member functions
being triggered. In addition, Objects lack an explicit
mental state concept; they do not have mechanisms to act
proactively toward goals. On the other hand, objects bring
maturity to the design. Although lacking major support
features for the Agent paradigm, software engineers
depend on their experiences and intuition while using pure
Object-Oriented paradigms for modeling and
implementing Agents. In Object-Oriented modeling,
design patterns have been mostly used to increase
flexibility, and reusability of software entities.
Practitioners apply patterns to fit object components into
applications thus gaining a clearer view of design justified
through comprehensive detailed scenarios within a given
pattern. Patterns can provide a template for addressing
some aspects of Agents. In short, an Agent not only
preserves Object properties but also extends them with
specific capabilities. These features must be considered
while contemplating Object-Oriented patterns for Agents.

2.1 BDI Based Methods
A crucial capability for autonomous Agents is

reasoning. Modeling how Agents “think” can help
designers observe micro-activities in Agents. A well-
known method to describe rational Agents is the BDI
model, proposed by A. Rao and M. Georgeff [9]. The
motivation of BDI (Belief, Desire and Intention) is the

recognition that dynamic factors from the system and the
environment should be considered when modeling the
behavior of an Agent. BDI describes an Agent’s beliefs
about the system and the environment, the Agent’s goals
(or desires) to achieve as well as, expressing the Agent’s
intentions by way of executable plans. Agents can reason
about what is the best plan for achieving desires under
specific beliefs about the environment. An Agent can
review its goals and respond with revised plans, if
necessary, as system or environmental parameters change.
Figure 1 illustrates these concepts which convey that
intelligent (or cognitive) adaptive systems may comprise
three types of processes: 1) reactive, for producing timely
responses to external stimuli, 2) deliberative, for
possessing learning and reasoning abilities, and 3)
reflective, for the ability to continuously monitor and
adapt based on introspection. Although useful, the BDI
model has limitations for use as an AOSE methodology,
particularly for the design of multi-agent systems.

2.2 Role/Society Based Model
A software process consists of a set of steps (or

stages) used to assure the successful development of
systems. Some easily usable models, techniques and tools
have to be offered to developers to handle complex
problems within these steps. In the context of Agent
systems, the software processes must deal with traditional
issues as well as the added properties of Agents. For the
Object-Oriented approach, Booch suggested
decomposition, abstraction, and organization are
principles to handle software complexity. N. R. Jennings
[2] states that Agent approaches can also use these
principles. However, these are not adequate for Agents’
interactions or BDI (mental) abilities. Jennings suggests
the following approach for Agents, inspired by social
interactions among humans.

Figure 2. Social (knowledge) level model.

There are two ways to describe this model. The first
is the social-level viewpoint and the second is the
knowledge-level viewpoint. Figure 2 shows the social
level model in a summary diagram, which describes how a
system is modeled as an organization or society made up
of components, the majority of which are agents. Their
communication channels include content and mechanisms,
dependencies between Agents, and organizational
relationships such as the concepts of peers and
competitors. In the society, compositional laws are used as
guidelines that describe how components in the system are
organized under the regulation of the society. Behavioral
laws regulate how components (i.e., members in the
organization) meet both their roles and societal
commitments. From the social level viewpoint, units of
the system are different organizations in the society.
Different organizational mechanisms and structures can
influence the behavior of the constituent components. The
way organizational structures change can also
significantly affect role relationships, especially by
adding/removing roles. The Medium describes how to
accomplish these changes, and from the knowledge level
side, Agents are central to a system. An Agent perceives
its goals and accomplishes them by actions. These goals
and actions are governed by rational rules, which are
provided as laws. All laws are based on the knowledge of
their environment. Utilizing this knowledge, Agents
continue working toward their goals.

The social level conceptual model stands on top of
the knowledge level and provides social concepts as a
foundation for Agent-oriented systems. In doing so, the
social level facilitates abstraction (i.e., high-level system
components are conceptualized without getting into the
details of greater complexity). Moreover, laws in the
society help to regulate an Agent's behavior and make the
results of the system more predictable.

N.R. Jennings [2] also proposed a methodology that
aids in conceptual modeling, analysis and design. In
analysis, the main task is to identify the overall goals of
computing organizations, basic skills, interactions
between organizations, and rules of behavior these
organizations must follow. This analysis leads to the
identification of roles, protocols of interaction and rules of
conduct. The design phase consists of readjustment of
roles, organizational patterns, and definition of
organizational structure. The central metaphor generated
from organizational concepts can be roles in the society.
Thus, role modeling becomes a subsystem in the
architecture. Goals are implicit behind roles, and Agents
are important elements during analysis. In social concepts,
goals are mostly mentioned as organizational aspects.
Goal structure analysis can help refine them in the
organizational structure. Most agent-oriented systems can
be designed using this methodology if goals can be
properly modeled with roles.

2.3 UML Extensions
The Unified Modeling Language (UML) is widely

used in the Object-Oriented paradigm. Because UML is
inherited from the Object-Oriented methodology, its
application to multi-Agent systems is limited. However,
UML has been a successful modeling language in Object-
Oriented design. It would be beneficial if Agent oriented
design can use UML with extensions to model Agents.
There have been several proposed extensions to UML.
Some extensions propose to build models of different
Agent properties as an infrastructure. Others include new
UML diagrams to address specific Agent features.
Currently, both FIPA (Foundation of Intelligent Physical
Agents) and OMG (Object Management Group) are
securing proposals to extend UML to accommodate Agent
features.

One example of a framework and UML extension
was proposed by a research team lead by Kavi and Kung
[10]. Rooted in BDI, this UML extension provides for
integrated modeling of Agents making objects Agent-
capable. Mental states are central to Agent modeling. The
BDI architecture has been adapted broadly as an Agent
behavioral reasoning mechanism in constructing multi-
Agent systems; however, it seems that engineers often use
the model at a conceptual level. Implicit modeling of the
BDI philosophy often generates unclear semantics in
analysis and design. The framework by Kavi and Kung
extends UML to model specific Agent scenarios. New
notations are used to model Agent mental states, such as
beliefs, goals and plans. Using these notations, a model
for BDI architecture has been introduced as the Agent
Domain Model. In the architecture, beliefs represent the
state of a changing environment where Agents are
situated. Beliefs are updated when events occur changing
the current state of the system. Belief changes affect goals,
which are evaluated to reflect the update. Finally, updated
plans according to goals are delegated to threads
responsible for execution. The following is a summary of
the framework.
• In the framework, goals and Agent classes are keys to

modeling the whole system. They are represented using

the Agent Domain Model to express BDI architecture
in detail.

• Relationships among Agent activities and goals are
modeled throughout the whole process. Goals are also
represented clearly in the newly introduced diagrams,
such as the Agent Goal Diagram and the Agent
Sequence Diagram. It promotes goal preservation in the
complete development process.

• The blackboard communication mechanism provides
effective interaction among Agents. It also facilitates
clear expressiveness in the Agent communication
diagram.

• The modeling provides great flexibility in dealing with
dynamic environments mainly due to adapting the BDI
architecture and providing a clear way to depict mental
schemes in UML.

2.4 Examples
There are an increasing number of AOSE

methodologies that try to encompass the software issues
and compete in being the main approach. Here we will
describe the more popular AOSE technologies.

2.4.1 Tropos
Tropos [11] was originally developed at the

University of Toronto, Canada, and is being updated and
maintained by a number of universities in Europe. Tropos
adopts Yu's i* framework [12] as the base theory of
requirement analysis. The i* offers concepts such as
actors, goals, and dependencies intended to model social
structures and describe detailed relationships between
them. Tropos provides a method for engineers to design
multi-Agent systems that can take advantage of the
societal model throughout the design process [11].

There are four phases in the Tropos design process.
The early requirements analysis phase is the first step for
identifying basic stakeholders. During the late requirement
analysis phase, a potential system actor is introduced. The
purpose of this "system" actor is to provide system
operational services to actors depending on services from
the last analysis phase. In the detailed design phase, more
explicit scenarios of Agents are depicted. Finally, in the
implementation phase, Tropos adapts JACK for its
execution because they both rely on the BDI architecture.
Notations used in Tropos can be seen as mental ones, such
as goals and tasks (plans) [13]. The notations used
throughout the analysis and design phase help preserve the
semantic mapping. Critique of Tropos Methodology:
1. The exploration of stakeholders and the dependencies

between them mainly rely on the developers'
experience. The realization of goals and their
dependencies among stakeholders can be derived
based on different points of view, which could lead
to different results. The discretion is left wide open.

2. During the analysis phase, when a new sub-goal is
generated from goal refinement, dependencies
between the new goal and every actor in the system
have to be recalculated. The iterated algorithm to run

this process becomes a non-deterministic concurrent
algorithm [11]. It is non-trivial for engineers to
conduct this analysis in an efficient way.

3. Dependency analysis plays an important role in the
analysis phase. Statements of goals and dependencies
are prone to be unclear depending on an engineer's
interpretation. There are no standard guidelines to
follow while decomposing goals or tasks into sub-
goals or sub-tasks, and depends on the interpretations
of the software engineer.

4. Although traceability is available through notation
diagrams, it is still difficult to trace all the
dependencies backward. A system actor is added in
the middle of the analysis. Dependencies among
actors are rearranged to accommodate the new actor.
There is no formal rationale to support this approach.

5. Tropos rests on the uniform use of small sets of
intentional notations [14] throughout the whole
development process; however, it is difficult to
reflect on a changing environment to adaptively
revise beliefs and plans.

2.4.2 Gaia
Gaia, proposed originally by M. Wooldridge et al.

[15], where the foundation of analysis is based on a
Object-Oriented design method called Fusion, from which
it borrows terminology and notations. Gaia is rooted in
conceptual organizational modeling [16] and suggests that
developers think about building Agent-based systems as a
process of organizational design. The Agent
computational organization is viewed similarly to human
organization consisting of interacting roles and
functions[17].

Under the organizational metaphor, role is the key
template to be modeled. Agents play designated roles and
are aware of resources modeled by environmental
variables. Roles and resources are regulated by
organizational rules. The developing process consists of
analysis, architecture design and detailed design.
Preliminary models are abstracted from requirements,
which help to postulate implicit goals about organizational
divisions, environment, roles and interaction rules.
Explicit decisions about the desired structure are made at
the architecture design stage to finalize role modeling. The
detailed design stage takes roles and interactions to
develop Agent classes and services. Critique of Gaia
Methodology:
1. Goals implicitly coincide with subdivisions of the

system, which potentially increase the modeling
complexity. There is also no clear guideline on how
to derive roles from the organizational model.

2. It is difficult to model Agents entering and exiting sub-
organizations; or, adapting to the evolution of
organizational structure. There is a lack of dynamic
reasoning [18]

3. Organizational metaphor is a strongly embedded
abstraction coded in the Gaia methodology.

Table 2: Concepts and Properties Criteria.
Criteria Description

Autonomy
An Agent can make decisions on its
own based on inner states without
external supervision.

Mental
Mechanism

An Agent has mechanisms to realize
its intentions by achieving goals.

Adaptation
An Agent is flexible enough to
adjust its activities according to
dynamically changing environments.

Concurrency An Agent may need to perform
multiple tasks concurrently.

Communica-
tion

There are protocols or mechanisms
defined for Agent interactions.

Collaboration An Agent has methods to cooperate
with other Agents to achieve goals.

Agent
Abstraction

Methodology has theory to describe
Agents using high-level abstractions.

Agent-oriented

The design of methodologies
originates from the consideration of
Agent-oriented approaches primarily
focused on whether the methodology
addresses Agent-based features
during the analysis and design.

Table 3: Comparison using Concepts and
Properties.

Concepts +
Properties (A) Tropos Gaia MaSE

Autonomy Yes Yes Yes
Mental
mechanism

Goal, soft
goal, task

No Goal,
task

Adaptation Yes Yes No
Concurrency Yes Yes Yes
Communication Yes No

details
No
Details

Collaboration Yes Yes Yes
Agent Abstraction Social

actors
Roles in
org.

Roles

Agent-oriented Yes Yes Yes

Table 4: Notations + modeling technique criteria

Criteria Description

Expressive-
ness

Notations used in this methodology
help the design processes.

Complexity
There are abstract levels from low to
high that help manage a complex
problem with modeling.

Modularity
Uses components or modules in the
methodology to model in an
incremental fashion.

Executable
Models used in this methodology
are capable of generating or
simulating prototypes.

Refinement
A modeling technique permits
refinement of goals into subgoals or
roles into sub-roles.

Traceability Traceability across the refinement
boundaries is provided.

2.4.3 MaSE
MaSE, proposed by Deloach et al. [19], stands for

Multi-agent System Engineering. MaSE methodology
aims to provide developers guidance from requirements to
implementation. The development process consists of two
main phases: analysis and design. In each phase, a series
of steps are provided to model the system. In each step,
related models are created. Models in one step produce
outputs that become inputs to the next step, which
supports traceability of the models across all of the steps.

The analysis phase consists of three steps: capturing
goals, applying use cases, and refining roles. High-level
goals are identified from requirements analysis in the
beginning step. These goals are then decomposed into
subgoals and collected into a tree-like structure. The

second step generates use-cases and their corresponding
sequence diagram. The last step of the analysis phase
involves role refinement. The main task during this step is
to map goals into roles where every goal in the system
needs a delegated role.

There are four steps in the design phase: creating
Agent classes, constructing conversations, assembling
Agent classes, and system design. The first step is a
process, which creates Agent classes and their interactive
behavior. After each Agent class is recognized,
constructing a conversation is the next step. In this step,
designers construct conversation models used by Agent
classes. The assembling Agent class step creates Agent
class internals. The final step of design is system design,
where the Agent classes are instantiated into actual
Agents. Critique of MaSE Methodology:
1. Goal analysis, conducted at the beginning of a MaSE

process, reinforces goal preservation through

analysis and design phases. It facilitates role and
Agent class modeling to focus on clear goal
delegation, where every role is responsible for a
particular goal to be accomplished. There are tasks
that belong to the dedicated goals of roles.

2. In a role refinement step, it is crucial to match goals
with roles. Every goal has to be associated with a
role. With these roles defined, the design of
communication between roles and their
corresponding tasks become fixed, lacking dynamic
adaptability of goals (and hence roles).

3 Evaluation Methodology Defined
Often, it is unclear which methodology would be the

most effective for the design of a Multi-Agent system. In
this paper, we have defined a process for evaluating the
methodologies, comparing strengths, weaknesses and
identifying ways to improve on a particular
methodological improvement. AOSE methodologies

Table 5. Comparison using Notations and
Modeling Techniques

Notations +
Modeling (B)

Tropos Gaia MaSE

Expressiveness Yes Yes Yes
Complexity Decomposition

of goals, tasks
Role Goal, role

refinement
Modularity Yes Yes No
Executable No No No
Refinement Yes No Yes
Traceability Yes Yes Yes

Table 6: Process Criteria

Criteria Description

Specification
This methodology provides ways of
forming a system specification from
scratch.

Life-cycle
Coverage

This methodology covers steps from
analysis, design, implementation, and
testing throughout system
development.

Architecture
Design

This methodology provides
mechanisms to facilitate design by
using patterns or modules.

Implementa-
tion Tools

This methodology provides
suggestions on how to implement
Agents in the system

Deployment This methodology provides support
for practical deployment of Agents.

Table 7. Pragmatics Criteria.
Criteria Description

Tools
Available

There are resources and tools ready to
use.

Required
Expertise

There is a required level of background
or expertise to apply the methodology.

Modeling
Suitability

This methodology is based on a specific
architecture.

Domain
Applicability

This methodology is suitable for a
specific application domain.

Scalability
This methodology is able to handle a
large number of Agents in an
application.

should be compared for their SE and agent-oriented
potential/capabilities. Our evaluation includes criteria for
both software processes and agent-oriented properties.
Four major divisions similar to [4] are adopted in the
comparison framework. We form the framework with an
“aspect overview” and “detailed rationale” to provide a
comprehensive evaluation. A summarized checklist is

provided at the overview level based on criteria suggested
in each of four divisions (i.e., Concepts and Properties,
Notations and Modeling Techniques, Process, and
Pragmatics). The results are compiled (e.g., Table 3), with
criteria as rows and methodologies as columns. Each cell
of the matrix contains a "Yes" representing that the
criteria are supported by the AOSE methodology, or
otherwise "No.” Textual descriptions are provided as
appropriate. Logical inferences of concerns are evaluated
at the detailed level by providing questions and answers.
These questions are derived both from emphases on
displaying logical relationships within methodological
issues as well as from experiences obtained from case
studies. As we address these questions and gather data, we
have gained a deeper insight into the comparisons and
better understand the rationale of each methodology.

3.1 Criteria A: Concepts and Properties
Concepts and properties collect all the basic building

blocks of Agents. Primitive capabilities or characteristics
of Agents are covered in this division. This category deals
with questions on whether or not a methodology adheres
to the basic notions of Agents.

Table 3 summarizes our comparison of the
methodologies based on the Concepts and Properties
criteria identified in Table 2.

3.1.1 Detailed Level Questions3
1. What concepts are at the root of the methodology and

what are the advantages?
2. How is an Agent created in a methodology?
3. How well constructed is the design that deals with

Agent mental mechanisms?
4. How well does a design deal with an Agent’s

perception of its environment, and how does it react
based on the perception?

5. How efficient are Agents in achieving their goals?

3.2 Criteria B: Notations & Modeling Techniques
Notations and modeling techniques are key to

representing elements and activities in a system. During
the software development process, consistent expressive
constructs help to clearly address an Agent’s behavior.
Good modeling can ease the complexities of
understanding and implementing systems from concepts
to realizations. These criteria deal with notations and
models that are manipulated in a methodology.

Table 5 provides a comparison of the methodologies
for the Notations and Modeling Techniques criteria
identified in Table 4.

3.2.1 Detailed Level Questions3
1. How well are notations and models formed to

address Agent-based system scenarios?
2. How consistent and unambiguous are models while

running the process?
3. How well does the modeling technique address

traceability and reuse?
4. How well does modeling technique represent Agents?

3 A detailed analysis and comparison of methods based on the Concepts
and Properties questions is provided in the Appendix (also see [20]).

Table 8. Comparison of Process & Pragmatics
 Tropos Gaia MaSE
Process(C)
System
specification

Stake-
holders
analysis

Role
analysis

Use-cases
goal + role
analysis

Life-cycle
coverage

Yes Yes Yes

Architecture
Design

Yes No Yes

Implementation Yes No Yes
Deployment No Yes Yes
Pragmatics (D)
Tools available No No Yes
Required expertise No No No
Modeling
suitability

BDI No No

Domain
applicability

Yes Yes Yes

Scalability Yes Yes Yes

3.3 Criteria C: Process
A process is a series of steps that guide practitioners

to construct a software system from the beginning to the
end. It serves as a detailed guideline of all activities
throughout subsequent phases. This criteria deal (Table 6)
with the investigation of development processes for a
methodology.

3.3.1 Detailed Level Questions3
1. How well does the methodology define the system

domain?
2. How well does the process cover the whole lifecycle

development?
3. How well do the transitions between phases preserve

goals?

3.4 Criteria D: Pragmatics
Pragmatics refers to real use scenarios as developers

apply methodology in building Agent-based systems. This
provides reviews in real situations from instituting
concepts, building models, and implementing details. This
division deals with the exploration of practical
deployment while using a methodology. Table 8 compares
the methodologies using both the Process (Table 6) and
the Pragmatics (Table 7) criteria.

3.4.1 Detailed Level Questions3
1. Is the methodology easy to use?
2. Do Agent concepts and properties evolve easily?
3. Is the Agent-oriented methodology flexible enough in

reengineering?
4. Are paradigms/architectures suitable in general cases?

3.5 Summary of Observations
Based on the evaluation using the above criteria to

compare Tropos [11] , Gaia [15], MaSE [19], Extending
UML [10], and Object-Oriented frameworks [21], we
observe that a good AOSE methodology for MAS should

include the following:
• A good mental mechanism to support an Agents'

autonomy, adaptation and collaboration,
• Communication protocols for interactions among

Agents,
• Description and management of goals,
• Practical conceptual models to ease the management of

design complexity,
• Notations for clearly and concisely expressing key

processes and properties,
• An executable and reliable life-cycle SE process,
• Modular and refinement capabilities are needed to

analyze and integrate elements in the system.

4 Conclusions
Software Agent technology has drawn much attention

as the preferred architectural framework for the design of
many distributed software systems. Agent-based systems
are often featured with intelligence, autonomy, and
reasoning. Such attributes are quickly becoming alluring
to both legacy and new systems. Agents are building
blocks in these software systems, while combinations of
attributes are composed to form the software entities. The
more complex an Agent-based system is, the more
sophisticated the methodology to design such systems
must be. At present there are no consensus standards on
how to create Agents or model them in the development
process. A study of proposals for creating Agent-based
systems is under way to gain insights on what attributes
are useful in leading to better design methodologies.

In this work, we described agent-based systems as
they are used in a variety of application domains. Since
there is no single definition of agents, we described the
more commonly accepted properties of agents. We then
described some of the available methodologies and SE
processes for designing agent-oriented software systems.
We created a framework for comparing the available
AOSE methodologies. Our framework is based on both
SE process principles and agent characteristics. The
evaluation framework is composed of two levels. At the
overview level we evaluate AOSE methodologies to
determine whether a criteria have been met by the
methodology. We then proposed questions at the detailed
level concerning logical relationships among criteria, and
provide answers as statements for comparison.

5 References
[1] Jennings, NR and Wooldridge, MJ, "Applications of

Intelligent Agents," in Agent Technology: Foundations,
Applications, and Markets: Springer, 1998, pp. 3-28.

[2] Jennings, NR. "On Agent-based Software Engineering,"
Artificial Intelligence, Elsevier, 2000(177): 277-296.

[3] Tveit, A. "A survey of agent-oriented software engineering,"
NTNU Computer Science Graduate Student Conf., Norwegian
University of Science and Technology, 2001.

[4] Sturm, A and Shehory, O. "A Framework for Evaluating
Agent-oriented Methodologies," 5th Int'l Bi-Conf. Wkshp on
Agent-Oriented Info Sys (AOIS), Springer LNCS 3030, 2003.

[5] Sabas, A, Badri, M and Delisle, S. "A Multidimentional
Framework for the Evaluation of Multiagent System
Methodologies," 6th World MultiConf on Systemics,
Cybernetics and Informatics (SCI-2002), 2002, pp. 211-216.

[6] Dam, KH and Winikoff, M. "Comparing Agent-oriented
Methodologies " 5th Int'l Bi-Conf. Wkshp on Agent-Oriented
Info Sys (AOIS-2003), Springer LNCS 3030, 2003, pp. 78-93.

[7] Gernuzzi, L and Rossi, G. "On the Evaluation of Agent
Oriented Modeling Methods," Agent Oriented Methodology
Wkshp, 2002.

[8] Shehory, O and Sturm, A. "Evaluation of Modeling
Techniques for Agent-based Systems," Fifth Int’l Conf. on
Autonomous Agents (AGENTS '01), ACM Press, Feb. 11-13,
2001, pp. 624--631.

[9] Rao, AS and Georgeff, MP. "Modeling Rational Agents
within A BDI-Architecture," Second Int’l Conf. on Principles
of Knowledge Representation and Reasoning (KR'91), Morgan
Kaufmann: San Mateo, 1991, pp. 473-484.

[10] Kavi, K, Kung, DC, Bhambhani, H, Pandcholi, G, Kanikarla,
M and Shah, R. "Extending UML to Modeling and Design of
Multi Agent Systems," 2nd Intl Wkshp on Software
Engineering for Large-Scale Multi-Agent Systems (in
conjunction with ICSE'03), May 3-10, 2003.

[11] Bresciani, P, Giorgini, P, Hiunchiglia, F, Mylopoulos, J and
Perini, A. "Tropos: An agent-oriented software development
methodology," AAMAS Journal, 2004; 8(3): 203-236.

[12] Castro, J, Kolp, M and Mylopoulos, J. "Towards
Requirements-Driven Information Systems Engineering: The
Tropos Project," Information Systems, Elsevier Science Ltd.,
Oxford, 2002; 27(6): 365-389.

[13] Perini, A, Bresciani, P, Giunchiglia, F, Giorgini, P and
Mylopoulos, J. "A Knowledge Level Software Engineering
Methodology for Agent Oriented Programming," Fifth Int’l
Conf. on Autonomous Agents, ACM Press, 2001, pp. 648-655.

[14] Perini, A and Susi, A. "Discussing Strategies for Software
Architecting and Designing from an Agent-oriented Point of
View," Proceedings of SELMAS'03 Wkshp in ICSE'03 (IRST
Technical Report 0303-10, Istituto Trentino di Cultura), IEEE
Computer Society, 2003.

[15] Wooldridge, M, Jennings, NR and Kinny, D. "The Gaia
Methodology for Agent-oriented Analysis and Design,"
Autonomous Agents and Multi-Agent Systems Jr., Kluwer
Academic Publishers., 2000(3): 285-312.

[16] Zambonelli, F, Jennings, NR and Wooldridge, M.
"Organizational abstractions for the analysis and design of
multi-agent systems," Int'l Conf. on Agent Oriented Software
Engineering, Springer (LNCS 1957), 2000, pp. 253-252.

[17] Zambonelli, F, Jennings, NR and Wooldridge, M.
"Developing Multiagent Systems: The Gaia Methodology,"
ACM Trans on SE and Methodology, 2003; 12(3): 317-370.

[18] Juan, T, Pearce, A and Sterling, L. "Roadmap: Extending the
Gaia methodology for complex open systems," Proceedings of
the 1st Int’l Joint Conf. on Autonomous Agents and Multi-
Agent Systems ACM Press, 2002, pp. 3-10.

[19] Wood, MF and DeLoach, SA. "An Overview of the
Multiagent Systems Engineering Methodology in Agent-
oriented Software Engineering," First Int’l Wkshp (AOSE
2000) on Agent-oriented Software Engineering, Springer-
Verlag New York (LNCS 1957), 2001, pp. 207-222.

[20] Lin, C-E, "MS Thesis: A Comparison of Agent-oriented
Software Engineering Frameworks and Methodologies," in
Department of CSE. Denton: Univ. of North Texas, 2003.

[21] Garcia, A, Silva, V, Chavez, C and Lucena, C. "Engineering
Multi-agent Systems with Aspects and Patterns," Journal of the
Brazilian Computer Society, 2002; 1(8): 57-72.

Appendix: Detailed Evaluation of AOSE
Methodologies

(A) Concepts and Properties:
[QA1.] What concepts are at the root of the methodology
and what are the advantages?
[Ans:] A role concept is being used in most of the
methodologies. Roles can have specific responsibilities in a
social or organizational setting. Agents are designed to
represent abstract concepts while running corresponding
tasks that can fulfill their goals. Governed by a hierarchy,
an Agent's communication can be regulated by the rank of
roles. Role modeling provides designers a way to
comprehend an Agent's activities at run-time, and to
effectively describe them. Gaia and MaSE are the main
representatives that use role modeling. The BDI
architecture is also a good tool to use in modeling an
Agent's behavior with mental states. Without mental
notation, it is difficult to describe an Agent by active
interactions only.

[QA2.] How is an Agent created in a methodology?
[Ans:] In Tropos, Gaia, and MaSE, Agent classes are
usually transformed from role concepts. As roles are
refined into sub-roles, corresponding tasks are refined into
sub-tasks and roles are assigned with proper
responsibilities. It is then that Agent types realize roles.
Agent classes are implemented for Agent types, and an
Agent capability is created within an Agent class.

[QA3.] How well constructed is the design that deals with
Agent mental mechanisms?
[Ans:] The earlier a mental state mechanism is analyzed,
the easier it is to model an Agent-based system in
following processes. Tropos and MaSE use goals and
intentions from the beginning of an analysis. By analyzing
relationships between roles, these intentions are implicitly
modeled by interactions among Agents. Although goals are
accomplished by tasks, it is difficult to handle beliefs and
desires in a flexible way, because no precise mental
mechanism is mentioned. In Gaia, mental mechanisms are
represented by a liveness property in a role schema. An
Agent type can change its plan by applying different
liveness equations. Goals are fixed in the design so MaSE
lacks flexibility in dealing with a changing environment.

[QA4.] How well does a design deal with an Agent’s
perception of its environment, and how does it react based
on the perception?
[Ans:] As mentioned in QA3, a design process with
explicit mental mechanisms will have a better modeling
and performance in answer to its environment.

[QA5.] How efficient are Agents in achieving their goals?
[Ans:] Goals are the main reasons that Agents exist. In
most of the designs of comparison methodologies, specific
tasks are implemented to fulfill goals. There is no
difference in running time. In a dynamic environment,

however, Agents must contend with the possibilities of
goal conflicts. Mental reasoning and negotiations among
Agents play decisive roles. Agent design should be
embedded with mental mechanisms and efficient Agent-
based communication to excel in accomplishing goals.

(B) Notations and Modeling Techniques:
[QB1.] How well are notations and models formed to
address Agent-based system scenarios?
[Ans:] Tropos defines specific notations to assist designers
in developing Agent-based systems with analysis and
visualization tools. These notations represent goals, tasks,
and Agents in their relationship of dependencies. Using
these notations, designers can gain a clearer idea on Agent
interactions within the system. In Gaia and MaSE, models
are used to present Agents with their functionalities, such
as in models of roles and interactions. Normally, models
are used to present an overview of Agents in the system.

[QB2.] How consistent and unambiguous are models while
running the process?
[Ans:] Generally speaking, the modeling used in the
methodologies we compared is consistent and
unambiguous. Only minor problems exist in the transition
between phases. For example, in Tropos late requirement
analysis, may adversely impact analysis diagrams due to a
newly added system-to-be actor. In such cases, the
consistency of analysis may be called into question causing
the analysis to be restarted. Another example, is the
transformation from role model to agent model using Gaia.
Designers must decide on what and how many agent types
are needed and there is no support provided from the agent
role schema design phase. Furthermore, there is a potential
risk from using multiple same agent types that could lead to
resource contention and deadlock troubles.

[QB3.] How well does the modeling technique address
traceability and reuse?
[Ans:] MaSE is the one that emphasizes models that can be
traced back and forth in each analysis and design layer.
Modeling in each layer is smoothly derived from its upper
layer with explicit rules.

[QB4.] How well does the modeling technique represent
Agents?
[Ans:] Methodologies using Agent-based features, such as
goals or mental states, to analyze and model the system are
better for describing and modeling Agents. For a counter-
example, Gaia did not use any explicit goals or mental
states to model the system. As a result, the overall system
has less explicit Agent-oriented features and flexible Agent
management properties.

(C) Process:
[QC1.] How well does the methodology define the system
domain?
[Ans:] In the Tropos, Gaia, and MaSE, methodologies role
concepts are used to explore stakeholder interaction, which

depicts the main system specification. In MaSE, Use-cases
and UML modeling are used for the system specification.
Each provides a way to explore the system domain by
extracting roles or agents from a requirements statement.

[QC2.] How well does the process cover the whole lifecycle
development?
[Ans:] Most Agent-based methodologies cover the analysis
and design phases in their respective design/development
process. In the implementation phase, some suggest
applying agent-based implementation toolkits. For
example, Tropos adopts JACK as the implementation
toolkit because it easily maps to a BDI architecture. In
most cases, Agents are implemented as object classes by
recognizing Agent types analyzed from design phases.
Also, reuse and maintenance of design is seldom available.

[QC3.] How well are transitions between phases in a
process to preserve goals?
[Ans:] In each Agent-based methodology, Agents should
be managed to bear their goals and achieve them
successfully. Keeping goals in each design process for each
Agent type is crucial to a successful process.

(D) Pragmatics
[QD1.] Is the methodology easy to use?
[Ans:] From an empirical study of these methodologies,
Gaia is the simplest to use (this is based on constructing a
prototype Agent-based system). MaSE provides improved
layered steps and phases while building models. Tropos
emphasizes the notations used throughout the design
process; but rationale analysis introduces complexity.

[QD2.] Do Agent concepts and properties evolve easily?
[Ans:] Deriving an analysis from a requirement statement
using abstract concepts is not difficult to do; however, in
most methodologies there is no explicit rule for developers
to follow. Because experiences and emphases differ with
developers, the exploration of initial stakeholder
interactions could alter concepts and/or properties. In
Tropos, especially, exploring dependencies between
stakeholders is not an easy task. Practitioners must assure
that the analysis proceeds in the “right” direction.

[QD3.] Is the Agent-oriented methodology flexible enough
in re-engineering?
[Ans:] Tropos is problematic because designers must refine
all the analyses from the initial stakeholder
models/specifications. Gaia may also lead to thorny
problems when communication bottlenecks cause the
redesign of Agent roles and interactions starting from the
beginning.

[QD4.] Are the paradigms and architectures of those
methodologies compared suitable for general applications?
[Ans:] All of the methodologies studied provide good
support for most general-purpose applications.

