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ABSTRACT

The emergence of 3D-DRAM has rekindled interest in near
data computing (NDC) research. This article introduces
dataflow processing in memory (DFPIM) which melds near
data computing, dataflow architecture, coarse-grained re-
configurable logic (CGRL), and 3D-DRAM technologies to
provide high performance and very high energy efficiency for
stream oriented and big data application kernels. The appli-
cation of dataflow architecture with a CGRL implementation
provides a flexible, energy efficient computing platform. The
initial evaluation presented in this paper shows an average
speedup of 5.5 is achieved with an energy efficiency factor of
460.
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1. INTRODUCTION

One of the major problems facing today’s computer sys-
tems is the disparate timing between processor instruction cy-
cles and memory access cycles, sometimes tagged the "mem-
ory wall" [17]. The cache hierarchy in processors has been
used to mitigate the effects of the memory wall by providing
fast access to data items on subsequent accesses. However,
there are some classes of applications that do not exhibit
repeated access to the same data items. These classes of
applications achieve little to no benefit from the cache hi-
erarchy. Examples of these classes include streaming and
big data applications [6]. One approach to improving the
performance of these applications is Near-Data-Computing
(NDC) that includes Processing-in-Memory (PIM) as one
form. This approach moves the processing closer to the
memory to achieve faster access and higher bandwidth.

The recent commercialization of 3D, stacked DRAM [12]
provides the opportunity to integrate processing on the logic
layer of the stacked DRAM. While this logic layer provides
high bandwidth access to the memory, there are limitations
to the size and power of the processing elements. These
limitations preclude the use of standard, high performance,
out-of-order processors for PIM applications.

The use of dataflow techniques based on Coarse Grain
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Reconfigurable Logic (CGRL) offers processing capacity and
power efficiency suitable for the PIM applications [16][7].
A dataflow processing-in-memory (DFPIM) structure using
CGRL consists of a set of functional blocks with a reconfig-
urable interconnection. The interconnection of the blocks is
configured to implement the dataflow graph of the PIM appli-
cation. The dataflow paths are synchronized and pipelined
such that a new element is typically computed on every
clock cycle. The parallelism and pipelining provide high
performance while requiring less energy than out-of-order
processors. In this paper, we analyze the algorithm or source
code to identify the kernels and generate dataflow graphs of
the kernels. An XML representation of the dataflow graph
is input to our DFPIM simulator which verifies the accu-
racy of the input by generating results for comparison to
the benchmark reference data. The simulator also provides
performance and energy estimates for the kernel.

Our initial findings show speedups averaging 23.3 with
energy efficiency improvements averaging 596 times better
than the host processor baseline for single instance analysis.
Allowing the host processor to execute 32 instances of the
kernel in parallel compared to a DFPIM configuration with
multiple kernel instances still showed an average speedup of
5.5 with an energy efficiency improvement of a factor of 460
times.

Section 2 provides a detailed description of the DFPIM
concept. Section 3 provides results and analysis of the DF-
PIM system. Section 4 discusses future work on DFPIM.
Section 5 examines research that is closely related to DFPIM.
Section 6 provides summary and conclusions for the DFPIM
work presented in this paper.

2. DFPIM CONCEPT

Dataflow Processing-in-Memory (DFPIM) is based on
melding three technologies. The dataflow paradigm extracts
the available concurrency from the algorithms. Coarse Grain
Reconfigurable Logic (CGRL) provides an efficient and flexi-
ble method to implement the dataflow processing. 3D-stacked
DRAM includes a logic layer on which the CGRL can be im-
plemented and provides low latency, high bandwidth access
to memory.

2.1 Dataflow

Dataflow is a style of computing where the data values
"flow" from one operation to the next operation. Dataflow
is highly concurrent and self-synchronizing [blocked]. Gen-
erating and analyzing dataflow graphs are integral compo-
nents to optimizing compilers for high level programming
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DRAM.

languages. DFPIM utilizes the dataflow graphs of the PIM
applications to extract parallelism, detect dependencies, and
arrange pipelining of the application. Pure dataflow uses
data availability at each operation to determine when to ’fire’
the operation and generate a new result. This provides the
self-synchronizing characteristic of dataflow. However, this
also introduces substantial overhead in dataflow processing
which has limited its commercial deployment.

Dataflow does not have a concept of memory as only val-
ues are utilized. DFPIM uses load units at the dataflow
graph inputs to get the needed values from memory. The
load units have 2 buffers per graph input that each hold
a row of DRAM memory. The system will be accessing
data from one row buffer while the other row buffer is being
filled through a memory access. Similarly, there are store
units to write rows back to memory as required. There are
delay operations in the dataflow graphs to balance and syn-
chronize the path lengths. The dataflow graph is ’executed’
only when all graph inputs for the next computation are
available. This single level of synchronization reduces the
dataflow overhead by not requiring synchronization at each
operation in the graph. The pipelined graphs also handle
loop carried dependencies and simplifies memory ordering
issues. Small configurable logic blocks based on look up
tables are added to the dataflow and allow boolean decisions
within the dataflow graphs. Programmable state machines
are used to implement looping structures within the dataflow
graphs to increase graph execution independence from a host
processor or controller.

2.2 Coarse Grain Reconfigurable Logic

CGRL provides a set of functional blocks that are config-
ured at run-time to implement an algorithm. Each functional
block is implemented completely in silicon logic to minimize
latency and power. This distinguishes CGRL from Fine
Grain Reconfigurable Logic (FGRL) used by standard Field
Programmable Gate Array (FPGA) devices where the func-
tional block is implemented using programmable look-up ta-
bles interconnected with programmable switches. Dedicated
functional units require less space, less power, and provide
better timing. CGRL used as Coarse Grain reconfigurable
accelerators (CGRA) provide significant energy efficiency
and performance benefits [8]. The functional blocks inter-
connect with other functional blocks using programmable,
bus-based routing. This arrangement allows one output to
drive multiple inputs if a data value is used more than once.

2.3 3D-Stacked DRAM

3D-Stacked DRAM is a high density, high bandwidth mem-
ory subsystem that is created by stacking multiple DRAM
semiconductor dies vertically and communicating through
the stack using Through-Silicon-Vias (TSV) [11]. Chang [3]
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Figure 2: DFPIM layout Example.

has shown that the most significant performance benefit of
stacked DRAM is increased bandwidth. The high bandwidth
is required for high performance DFPIM operation as PIM
applications have very high memory demands. The stacked
DRAM configuration selected for DFPIM is illustrated in
Figure 1. This is the same configuration selected by Zhang
[19] and Scrbak [14] in giving the highest bandwidth be-
tween PIM and DRAM without thermal issues from the host
processor.

The DFPIM instances are included in the base logic layer
with the DRAM memory controllers. DFPIM instances are
limited to 50% of an 80 mm? die with a total dissipated
power (TDP) of 10 Watts consistent with Zhang [19]. The
TDP for the DFPIM logic is therefore limited to 5 Watts.

2.4 DFPIM Layout

Figure 2 illustrates a possible floor plan for a DFPIM
implementation. This illustration is drawn to scale using
best available estimates for each of the block types for a 28
nm process technology. The Arm core, memory controller
and SerDes block sizes were obtained from public sources.
There are large blocks for the external SerDes interfaces
and the memory controllers for the 16 vertical vaults of the
stacked memory system.

The collection of DFPIM functional blocks form a serpen-
tine path wrapping around the 16 memory controllers ac-
cessing the 16 vertical memory vaults in the stacked DRAM.
The bold, red line represents the DFPIM connection bus
channel. The DFPIM logic blocks are placed on both sides
of the connection bus channel, which allows them to access
the connection buses. The larger DFPIM blocks (floating
point blocks, Arm processor, and 256 KB memories) uti-
lize the horizontal space between the memory controller
groups. There are 712 ALU equivalents, 32 load-store units,
10 floating point units, and 1.5 MB of memory in this config-
uration. Alternate configurations could delete floating point
and increase memory, or increase floating point and decrease
memory, or reduce ALUs to increase either floating point or
memory. Smaller silicon geometries such as 22 nm or 14 nm
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Figure 3: DFPIM Connection Bus.

would significantly increase the amount of DFPIM blocks
implemented. A different layout of external interface and
memory controllers would result in a different bus channel
arrangement.

Figure 3 depicts the DFPIM connection bus. This depic-
tion shows the top half of a connection bus channel. The
lower half of the channel is a reflection of the top half. Each
horizontal line represents a 32-bit data bus. Alternately, each
bus can be two 16-bit buses or four 8-bit buses. There are a
total of 32 of the buses. The rows of black, open diamonds
represent a distributed AND-OR multiplexor structure that
allows each input of the functional block to connect to any of
the 32 horizontal bus segments. The red vertical lines with
a closed diamond are the outputs of a DFPIM functional
block that drives the horizontal segment where the diamond
connects. Any of the ALUs connected to that segment can
use that bus as an input. This forms a local 16-in by 32-out
cross-point switch that includes the ability for multiple units
to be driven by one output unit. The ovals on each bus
represent bus switches that can extend the bus to the left
or to the right. The bus segment switches are staggered to
allow an overlap in horizontal bus segment coverage. The
overlapping bus segments allows implementation of large
dataflow graphs with a linear growth in switching area and
power, rather than a quadratic growth for a full cross-point
implementation. It also provides the flexibility to configure
32 pipelines of 20 units or 8 pipelines of 75 units.

3. RESULTS AND ANALYSIS
3.1 Methodology

This paper focused on comparing the performance and
energy between a standalone server processor and a DFPIM
accelerated implementation. Future work will compare DF-
PIM to other NDC solutions such as multiple Arm cores and
energy efficient GPGPUs. An example DFPIM implemen-
tation is illustrated in figure 4. The multicore host proces-
sor connects to the Accelerated Memory Modules (AMM)
through a High Speed Link (HSL) such as that used in the
Hybrid Memory Cube [12]. Each AMM contains a 3D stack
of DRAM and a logic layer containing the DRAM memory
controllers (MC), the HSL interface, the DFPIM controller
(such as a small, in-order Arm processor), multiple CGRL

segments, and scratch pad memories for the DFPIM dataflow
graphs. A vertical 'vault’ consists of a memory controller,
access to the HSL interface, and some CGRL blocks and
SPM.

Each benchmark was executed on a compute server system
with two 14-core Intel Xeon E5-2683 processors running at 2.0
GHz. Runs were made for 1 to 32 instances of the benchmark.
The useful capacity of the Xeon system was the number
of benchmark instances that had incremental performance
gain. Loss of cache effectiveness or saturation of the memory
interface result in performance ceilings as more instances are
executed simultaneously. The Intel Performance Counter
Monitor tools package, version 2.11, was used to monitor the
power consumed by the CPUs for each configuration. The
time to complete the benchmark multiplied by the power
consumed during that time yielded the energy to execute
the benchmark. The memory bandwidth was computed by
dividing the amount of data required by the benchmark
by the time to execute the benchmark. The energy of the
memory accesses was computed using the equations detailed
in Pugsley [13]|. These benchmarks read input data from a
file or generate random input data. Only the portion of the
benchmark that implemented the algorithm was timed for
these tests which emulates using memory resident data.

Each benchmark was then simulated with the DFPIM
simulator. This simulator is configured by reading an XML
representation of the dataflow graph of the benchmark. The
simulator then reads the input data file and provides that
data to the dataflow graph in response to memory accesses.
The interconnection, parallelism, and pipelining are modeled
by the DFPIM simulator. At the end of the simulation
run, the DFPIM generated results are compared to the host
generated results to verify the accuracy of the dataflow graph
implementation. The DFPIM simulator also indicates the
number and types of CGRL elements used, the amount of
simulated time required, the memory bandwidth used, and
the estimated power used by the benchmark configuration.
The useful capacity of the DFPIM system is computed based
on the amount of CGRL resources used in the simulation
with respect to the total amount of resources available.

The energy needed for each of the DFPIM dataflow graph
component types used in the simulator was estimated by
writing VHDL models of each component type and synthe-



HOST PROCESSOR

CORE CORE CORE CORE

L1 L1 L1 L1

L2 L2 L2 L2

L3
MEMORY CONTROLLER
| |
PClle PERIPHERALS

[
[
[ COMMODITY DIMM }—H

/ Tof 16 VAULTS
/
/
3-D STACK /
DRAM / SPM
/pRAW— [
/ CGRL
,/ [HSLif )+—{ MC |} CGRL
/ CGRL
N AE / uCTRL CGRL
. N R CGRL
16 VAULTS: <
MC & DFPIM :
LOGIC

Figure 4: Example DFPIM System Implementation.

sizing them with a 28nm planar library and a 16nm FINFET
library using Synopsys Design Compiler. The static and
dynamic power values for each component were integrated
into the DFPIM simulator to produce the final estimates for
each benchmark based on number of components used and
frequency of operation. The 16nm results were 25% faster,
1.6 times more energy efficient, and required 53% of the area
than the 28 nm results.

3.2 Benchmarks

There are a wide variety of benchmarks that could be used
in an evaluation such as this. The purpose of DFPIM is to
offload memory intensive kernels from the host processor to
utilize the high bandwidth of 3D stacked DRAM and the
parallelism of dataflow. We reviewed the map-reduce bench-
marks from HiBench [10], the map-reduce benchmarks from
PUMA [1], the Rodinia benchmarks [4], SPEC benchmarks
[15], and MiBench benchmarks [9]. We picked benchmarks
that had significant differences in the dataflow configuration
of the kernels to evaluate DFPIM in a variety of applications.
The six benchmarks used in this paper are histogram, word
occurrence count, fast fourier transform, string match, linear
regression, and breadth first search.

The benchmark kernels were extracted from the bench-
marks by analyzing the source code and making dataflow
graph representations. The output of the DFPIM simula-
tor was verified against the output of the host processor
execution to ensure the dataflow graphs were accurate rep-
resentations of the benchmark functionality. An automatic
extraction based on emitting dataflow graphs from the LLVM
clang compiler is in process.

3.3 Results

Table 1 provides the results of our analysis. The six bench-
marks are listed across the top of the table with the last
column containing the average of the values across the bench-
marks. The first row, Capacity, lists the number of DFPIM
instances and Xeon instances of each benchmark that can
run simultaneously. The second row, Speedup, is computed
by the host processor execution time divided by the DFPIM
execution time reported by the DFPIM simulator. The third
row, Energy, is an energy efficiency ratio computed by the
host processor energy divided by the DFPIM energy esti-
mate from the simulation. All energy values used in this
paper include both static and dynamic power components
of the processor and DFPIM elements and the energy of

the memory accesses and data transfers. The fourth row,
Host BW, is the average memory bandwidth for the host
execution in megabytes per second. The last row, PIM BW,
is the average memory bandwidth for the DFPIM execution
in megabytes per second.

The only benchmark that showed a significant degrada-
tion in Xeon performance due to memory access limitations
was BFS. Performance stopped improving with 17 threads
which set the useful capacity to 16 for BFS. The other five
benchmarks scaled to 32 threads, although all of them had
noticeable reductions in incremental improvement with more
than 20 instances. The number of instances of DFPIM
benchmarks can be constrained by the availability of CGRL
element resources or by PIM power limitations. These values
varied from 4 for the FFT benchmark which was limited by
the number of floating point units that were available in the
configuration being analyzed to 32 instances for the simple
logic of the linear regression benchmark.

The DFPIM showed an average speedup of 5.5 for the six
benchmarks. This is impressive since the Xeon host processor
was being clocked 2.5 times faster than the DFPIM logic.
The increased performance of the DFPIM resulted from the
parallelism and pipelining achieved from the dataflow driven
computations. This structure provided the ability to initiate
and complete an iteration of the benchmark kernel on every
clock cycle once the pipeline filled.

The average energy efficiency ratio of 460 is a combination
of completing the computations in 18% of the time; the
use of silicon technology optimized for low power rather
than high speed; and the elimination of instruction fetch,
instruction scheduling, instruction decode, reorder buffers,
and high speed cache memory needed for high performance
Server processors.

The ability of DFPIM to better utilize the higher memory
bandwidth provided by stacked DRAM is evident in the
differences in memory bandwidth shown in the table. The
ratio of memory bandwidth correlates to the speedup.

4. FUTURE WORK

The preliminary results shown in section 3 have demon-
strated DFPIM is a viable approach to both performance
improvements and energy efficiency for PIM applications.
Continued development of DFPIM will include completely
defining the set of functional blocks and the quantity of each
type of functional block to include in a DFPIM cluster. The



Hist Word FFT BFS Str-m Lin-r Ave
Capacity 16 | 32 8 | 32 4 ] 32 16 | 16 20 | 32 32 | 32 16 | 30
Speedup 4.09 2.56 3.79 12.56 3.20 6.79 5.50
Energy 253 104 621 919 357 505 460
Host BW 9386 2471 1655 592 4004 7542 4275
PIM BW 34800 6336 25098 7430 12800 25600 19278

Table 1: Xeon Host Processor and DFPIM Comparison. These values are based on a 2.0 GHz host and a 0.8

GHz DFPIM.

definition will serve as a reference for generating dataflow
graphs and development of the functional blocks. Each of
the functional blocks will be modeled in VHDL. A synthesis
tool will be used to characterize size, timing, and energy
for each of the DFPIM blocks in 28nm planar and 16nm
FINFET silicon technologies. The DFPIM simulator will be
updated to include the area, timing and energy estimates
from the logic synthesis results.

The dataflow graph conversion process will be improved
to provide a more automated flow to reduce or eliminate
manual efforts in the benchmarking process. This will allow a
larger number of benchmarks to be analyzed. The benchmark
analysis will be expanded to include comparisons of other
PIM implementations in addition to comparing to the host
processor.

S. RELATED WORK

TOP-PIM [18] is a very similar approach to DFPIM. The
principle difference being the use of GPGPU devices as the
processor component in the PIM. This study showed a mean
decrease in performance of 25% for a 22 nm technology
and a mean increase in performance of 8% for a 16 nm
technology. The energy savings was shown to be 76% and
86% respectively when including the memory power. The
parallelism of dataflow and flexibility of CGRL work to
provide better performance at comparable energy savings.
There were no benchmarks in common between the two
studies so a direct comparison cannot be stated until DFPIM
expands its benchmark coverage to include those used by
Zhang.

Single Graph Multiple Flows (SGMF) [16] uses a dynamic
dataflow paradigm and CGRL to compare to an Nvidia Fermi
streaming multiprocessor. The application arena for SGMF
is compute intensive applications so it is not suitable as a
PIM. However, the advantages of using dataflow with CGRL
is shown in this paper with an average speedup of 2.2 and
energy efficiency of 2.6 for the 64 token case.

The use of a low power embedded processor as a PIM
is addressed in Scrbak [14]. The embedded processor is
limited to memory accesses at a cache line resolution. It also
requires energy for instruction fetch and decode and a cache
subsystem that is not needed by DFPIM. The parallelism of
dataflow CGRL provides higher performance than a single
instruction stream processor running at the same clock rate.

The Tesseract PIM in [2] uses multiple in-order processors
in a Hybrid Memory Cube [12]. The memory bandwidth
restrictions of the in-order cores are mitigated by prefetch-
ing mechanisms. The internal crossbar network allows the
Tesseract processors to communicate without host processor
intervention. This allows them to be used for the reduce task
workload as well as the map task workload. The Tesseract
PIM performance is significant for multi-threaded message

passing applications. DFPIM has not been evaluated in these
types of applications.

The Near DRAM Accelerator (NDA) [5] utilizes a dataflow
network of functional devices to reduce energy by 46% and
increase performance by 1.67 speedup. The NDA does not
include sequencing functional units nor scratch pad memories
which we have shown to be necessary for best performance
in some benchmarks. The NDA connects each accelerator to
a single DRAM die rather than a 3D-DRAM stack used by
DFPIM. This results in a higher accelerator-to-memory cost
ratio as a single DFPIM can support 4 or 8 DRAM dies.

The Heterogenous Reconfigurable Logic (HRL) near data
processing [7] uses CGRL functional units and bus based rout-
ing as well as dedicated memory load and store units. This
paper illustrates the area, performance, and energy advan-
tages of mixed granularity systems such as HRL and DFPIM.
The HRL system requires 8 memory stacks to achieve an
average 2.5 speedup, while DFPIM gets a 3.6 speedup with
a single memory stack. Part of this is attributable to the
difference between the 45 nm process of HRL and the 28 nm
process of DFPIM. DFPIM uses a flexible, partitioned bus
rather than the mesh network of the HRL which may allow
more efficient implementation of some dataflow graphs.

6. CONCLUSION

In this paper we have proposed and evaluated a hybrid
dataflow technology using coarse grain reconfigurable logic
as a highly energy efficient solution for near data comput-
ing within a stacked DRAM module. The parallelism of
dataflow implemented in a low power semiconductor process
on the logic layer of the module provides both a significant
speedup of 5.5 and a very high energy efficiency of 460 for
the presented benchmarks. Our work shows that the hybrid
dataflow approach with sequencers, scratch-pad memories,
and FIFOs implement multilevel looping and asynchronous
interactions within the application kernels without the host
intervention that is needed if a pure dataflow approach is
used.
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