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DATAFLOW COMPUTERS: THEIR HISTORY AND
FUTURE

INTRODUCTION AND MOTIVATION

As we approach the technological limitations, concurrency
will become the major path to increase the computational
speed of computers. Conventional parallel/concurrent sys-
tems are based mainly on the control-flow paradigm, where
a primitive set of operations are performed sequentially on
data stored in some storage device. Concurrency in con-
ventional systems is based on instruction level parallelism
(ILP), data level parallelism (DLP), and/or thread level
parallelism (TLP). These parallelisms are achieved using
techniques such as deep pipelining, out-of-order execution,
speculative execution, and multithreaded execution of
instructions with considerable hardware and software
resources.

The dataflow model of computation offers an attractive
alternative to control flow in extracting parallelism from
programs. The execution of a dataflow instruction is based
on the availability of its operand(s); hence, the synchroni-
zation of parallel activities is implicit in the dataflow model.
Instructions in the dataflow model do not impose any
constraints on sequencing except for the data dependencies
in the program. The potential for elegant representation of
concurrency led to considerable interest in dataflow model
over the past three decades. These efforts have led to
successively more elaborate architectural implementations
of the model. However, studies from past projects have
revealed a number of inefficiencies in dataflow computing:
thedataflow model incurs moreoverhead duringan instruc-
tion cycle compared with its control-flow counterpart, the
detection of enabled instructions and the construction of
result tokens generally will result in poor performance for
applications with low degrees of parallelism, and the
execution of an instruction involves consuming tokens on
the input arcs and generating result token(s) at the output
arc(s), which involves communication of tokens among
instructions. Recent advances that may address these
deficiencies have generated a renewed interest in dataflow.
In this article we will survey the various issues and the
developments in dataflow computing.

This chapter is organized as follows: the Dataflow Prin-
ciples section reviews the basic principles of the dataflow
model. The discussion includes languages supporting data-
flow model. The Dataflow Architectures section provides a
general description of the dataflow architecture. The dis-
cussion includes a comparison of the architectural charac-
teristics and the evolutionary improvements in dataflow
computing, including pioneering pure dataflow architec-
tures, hybrid architectures attempting to overcome the
shortcoming of pure dataflow systems, and recent attempts

to improve the hybrid systems. The next section outlines
research issues in handling data structures, program allo-
cation,andapplicationof cachememories.Severalproposed
methodologies will be presented and analyzed. Finally, the
last section concludes the article.

DATAFLOW PRINCIPLES

The dataflow model of computation deviates from the con-
ventional control-flow method in two fundamental ways:
asynchrony and functionality. Dataflow instructions are
enabled for execution when all the required operands
are available, in contrast to control-flow instructions, which
are executed sequentially under the control of a program
counter. In dataflow, any two enabled instructions do not
interfere with each other and thus can be executed in any
order, or even concurrently. In a dataflow environment,
conventional concepts such as ‘‘variables’’ and ‘‘memory
updating’’ are nonexistent. Instead, objects (data struc-
tures or scalar values) are consumed by an actor (instruc-
tion) that yields a result object that is passed to the next
actor(s). It should be noted that some dataflow languages
and architectures, however, use variables and memory
locations for the purposes of convenience and of efficiency.

Dataflow Graphs

Dataflow graphs can be viewed as the machine language for
dataflow computers. A dataflow graph is a directed graph,
G(N, A), where nodes (or actors) in N represent instructions
and arcs in A represent data dependencies among the
nodes. The operands are conveyed from one node to another
in data packets called tokens. The basic primitives of the
dataflow graph are shown in Fig. 1. A data value is produced
by an operator as a result of some operation f. A true or false
control value is generated by a decider (a predicate),
depending on its input tokens. Data values are directed
by means of either a switch or a merge actor. A switch actor
directs an input data token to one of its outputs, depending
on the control input. A Merge actor passes one of its input
tokens to the output based on the value of the control token.
Finally, a copy is an identity operator which duplicates
input tokens. Figure 2 depicts the dataflow graph of the
following expression:

sum ¼
XN

i¼1

f ðiÞ

Note the elegance and flexibility of the dataflow graph to
describe parallel computation. In this example, the implicit
parallelism within an iteration is exposed. Furthermore,
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because of the functional properties of operations, the
function f can be invoked simultaneously for all values of
i. Thus, given sufficient amount of resources, N iterations of
function f can be executed concurrently.

Dataflow Languages

Any dataflow language should permit the specification of
programs that observe dataflow principles. In terms of
programming language semantics, these principles trans-
late into freedom from side-effects (prohibit modification of
variables either directly or indirectly), single assignment
(values associated with variables cannot be modified), and
locality of effect (instructions do not have unnecessary far-
reaching data dependencies). In this section we introduce
three dataflow languages that received considerable atten-
tion in the literature.

VAL: A Value-oriented Algorithmic Language. VAL is a
high level programming language developed at MIT (1),
and can be viewed as a textual representation of dataflow
graphs. VAL relies on pure functional language semantics
to exploit implicit concurrency. Since dataflow languages
use single assignment semantics, the implementation and
the use of arrays present unique challenges (see Research

Issues). In VAL, array bounds are not part of the type
declarations. Operations are provided to find the range of
indices for the declared array. Array construction in VAL is
also unusual to improve concurrency in handling arrays. It
should be noted that because we must maintain single
assignment feature of functional languages, traditional
language syntax to accumulate values (for example, the
sum in Fig. 2) need some changes. To express such con-
currencies, VAL provides parallel expressions in the form of
forall. Consider the following examples:

1. forall i in [array_liml(a), array_limh(a)]

a½i� :¼ fðiÞ;

2. forall i in [array_liml(a), array_limh(a)]

eval plus a½i�;

If one applies imperative semantics, both examples
proceed sequentially. In the first case, the elements of
the array a are constructed sequentially by calling the
function f with different values of the index i. In the second
example, we compute a single value that represents the
sum of the elements of the array a, which represents
sequential accumulation of the result. In VAL, the con-
struction of the array elements in example 1 can proceed in
parallel because all functions in VAL are side-effect free.
Likewise, the accumulation in example 2 also exploits some
concurrency because VAL translates such accumulations
into a binary tree evaluation.

In addition to loops, VAL provides sequencing opera-
tions, if-then-else and tagcase expressions. When dealing
with one of data type, tagcase provides a means of inter-
rogating values with the discriminating unions.

VAL did not provide good support for input/output
operation nor for recursion. These limitations allowed for
a straightforward translation of programs to dataflow
architectures, particularly static dataflow machines (see
the earlier Dataflow Architectures section). The dynamic
features of VAL can be translated easily if the machine
supported dynamic graphs, such as the dynamic dataflow
architectures.
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Figure 1. Basic primitives of the dataflow graph.
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Figure 2. A dataflow graph representation of sum ¼
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Id: Irvine Dataflow language. Id is a dataflow language
that originated at the University of California-Irvine (2),
and was designed to permit high-level programming lan-
guage for the dynamic dataflow architecture proposed by
Arvind (see the Earlier Dataflow Architectures section). Id
is a block-structured, expression-oriented, single assign-
ment language. An interpreter was designed to execute Id
programs on dynamic dataflow architectures. Data types in
Id are associated with values, and variables are typed
implicitly by the values they carry. Structures include
both arrays and (record) structures; and elements can be
accessed using either integer indices or string values that
define the name of the element (for example, t[‘‘height’’]).
Structures are defined with two operators: select and
append. Select is used to get the value of an element,
whereas append is used to define a new structure by copy-
ing the elements of the original structure and adding new
values defined by the append operation.

Id programs consist of side-effect free expressions and
expressions (or subexpressions) can be executed in any
order or concurrently based on the availability of input
data. Loops in Id can be understood easily from the follow-

ing example, which computes
XN

i¼1

f ðiÞ

(initial i  1; sum  0;

while i � N do new i  i+1;

new sum  sum + f(i);

return sum)

Id uses the concept of ‘‘new’’ to define a new value
associated with an expression. It should be noted that a
variable is not assigned a new value (like in conventional
languages), but a new value is generated – variables are
used only for the convenience of writing programs. It is also
convenient to remember that the expressions in a loop can
form recurrence expressions.

Procedures and functions in Id are pure functions and
represent value(s) returned by the application of the function
on the input values. Recursive procedures can be defined by
associating names with proceduredeclarations. For example:

y procedure fðnÞðif n ¼ 0 then 1else n�fðn-1ÞÞ

defines factorial recursively, and we can invoke the proce-
dure, for example as y(3).

Because no translators to convert Id programs to con-
ventional (control-flow) architectures were developed, Id
was used mostly by those with access to dynamic dataflow
processors and to Id interpreters.

SISAL: Streams and Iterations in a Single Assignment
Language. Sisal is thebest-knowndataflow language,mostly
because of the support provided by the designers. Sisal recei-
ved a fairly wide acceptance during the 1990s, because Sisal
compilersgeneratedoptimizedCastheirintermediaterepre-
sentations and thus could be run on any platform with a C
compiler. Although it is not as widely known now, Sisal
translator and run-time support software are still available
for Unix based systems and can be obtained from the web
at http://sisal.sourceforge.net/. Sisal 2.0 provided multi-

tasking (or multithreading) to support dataflow-style paral-
lelism on conventional shared memory multiprocessors (4).

Sisal programs consist of one or more separately compil-
able units, which include a simple program, modules, and
interfaces. A module is similar to a program but is not a
starting point of execution. It pairs with an interface to export
some of its types and function names. Like Id, Sisal supports
scalar data types and structures (records, union, arrays, and
streams). A stream is a sequence of values produced in order
by one expression (thus it consists of homogeneous typed
values), and is consumed in the same order by one or more
other expressions. Sisal permits the creation of new values
(and associates them with the same name).

for i :¼ 1;

while ( i <5) do

new i :¼ i+2;

j :¼ i + new i;

returns product (i+j)

end for

This program constructs implicitly a stream of values
inside the loop and returns the product of the elements of
the stream. The values of the stream are the values of (i + j):
7, 13. Thus 91 is returned by the loop.

Sisal expressions can loop over the elements of an array
(called array scattering) or over the elements of a stream
(stream scattering) (5). As with VAL, Sisal can perform
reduction operations concurrently using binary tree eva-
luations. Sisal has predefined reduction operations to eval-
uate sum, product, min, and max of a set of values. Catenate
is a reduction that returns the concatenation of a sequence
of one-dimensional array or a stream. Consider:

for i in [1..N] do

return sum f(i);

which uses sum as a reduction operation to produce
XN

i¼1

fðiÞ.

Additional reduction functions can be defined by the
programmer. Consider the following example to build
histograms.

reduction histo(v, N: integer returns array of integer)

initial

hacc :¼ array[0..N+1:0];

in

idx :¼ if(v <1) then 0

elseif (v > N) then n+1

else v

end if;

new hacc :¼ hacc[idx: hacc[idx]+1]

returns hacc

end reduction

Sisal’s popularity also is caused by the concept of
modules and interfaces: The interface shows the function
templates that are visible publicly and the module defines
the implementations of the functions. Sisal implementa-
tions also permit foreign code (written in a different
language), by associating an interface with the foreign
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code. Consider for example to import MathLib functions to
Sisal programs:

interface MathLib in FORTRAN

function sin (x: real returns real);

function tan (x: real returns real);

end interface

DATAFLOW ARCHITECTURES

Architectural implementations of dataflow traditionally
have been classified as either static or dynamic. The static
approach allows at most one instance of a node to be enabled
for firing, i.e., a dataflow actor can be executed only when all
of its input tokens are available and no tokens exist on any
of its output arcs. On the other hand, the dynamic approach
permits simultaneous activation of several instances of a
node during the run-time by viewing arcs as buffers con-
taining multiple data items. To distinguish between differ-
ent instances of a node (and routing data for different
instantiations of the node), a tag is associated with each
token that identifies the context in which a particular token
was generated. An actor is considered executable when all
of its input tokens with identical tags are available.

The static dataflow model has a simplified inherent
mechanism to detect enabled nodes, but the model limits
the performance because iterations are executed one at a
time. The dynamic dataflow allows greater exploitation of
parallelism; however, this advantage comes at the expense
of the overhead in terms of the generation of tags, larger
data tokens, and complexity of the matching tokens. A more
subtle problem with the token matching is the complexity
involved in allocation of resources (i.e., memory cells). A
failure to find a match implicitly allocates memory within
the matching hardware. If the matching unit becomes
overcommitted, the program may deadlock.

Dataflow architectures have also been classified as pure
dataflow architectures, macro dataflow architectures, and

hybrid dataflow architectures. Detailed discussion about
this classification is beyond the scope of this article and
interested reader is referred to Ref. 6.

Earlier Dataflow Architectures

This section discusses three classic dataflow machines:
the static dataflow machine, the (dynamic) manchester
machine, and the explicit token store. These projects repre-
sent the pioneering work in the area of dataflow. The
foundation they provide has inspired many other dataflow
projects.

Static Model. The general organization of the original
(static) dataflow machine is depicted in Fig. 3 (Table 1) (7).
The memory section is a collection of memory cells, each cell
composed of three memory words that represent an instruc-
tion template. The first word of each instruction cell con-
tains op-code and destination address(es), and the next two
words represent the operands. The design has envisioned
six types of templates that represent binary and unary
operators, binary and unary deciders (predicates), and
binary and unary Boolean operators. The processing sec-
tion is composed of five pipelined functional units, which
perform the operations, form the result packet(s), and send
the result token(s) to the memory section. The arbitration
network is intended to establish a smooth flow of enabled
instructions (i.e., instruction packet) from the memory
section to the processing section. An instruction packet
contains the corresponding op-code, operand value(s),
and destination address(es). The distribution network is
intended to transfer the result packets from the processing
section to the memory section. Finally, the control network
in designed to reduce the load on the distribution network
by transferring the Boolean tokens and the acknowledge-
ment signals from the processing section to the memory
section.

Figure 4 shows the dataflow graph and the contents of
the memory section for the YðtÞ ¼ A�XðtÞ þ B�Yðt-1Þ

Figure 3. The basic organization of the static dataflow
model.
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þC�Yðt-2Þ. For the sake of simplicity, representation details
in the memory are omitted. Note that each memory cell is
numbered to correspond to the node number in the dataflow
graph.

Manchester Dynamic Model. Figure 5 shows the block
diagram of the dynamic dataflow system prototyped at the
Manchester University (Table 1). It is designed as a back-
end, composed of five units organized as a pipeline ring: The
switch unit establishes communication between the front-
end and back-end processor, and routes the result tokens
back to the pipeline ring. The token queue is a First-
in-first-out buffer that stores temporarily tokens traver-
sing on the data-flow graph arcs. The basic operation of the
matching unit is to bring together tokens with identical
tags by pairing associatively tokens with the same destina-
tion node address and context. The dataflow program that
represents the code for an operation is stored in the node
store. The processing unit, a micro-programmed, 2-stage
pipeline unit, executes the dataflow operations. The first
stage handles the generation of result tokens and the
association of tags with tokens. The second pipeline stage

consists of 15 functional units to perform the necessary
operations.

Explicit Token Store. Despite the potential parallelism
promised by the dynamic dataflow model, early experiences
have identified the following shortcomings in implement-
ing the model:

� Overhead involved in matching tokens (and the need
for associative matching),

� Complex resource allocation,

� The inefficiency of the dataflow instruction cycle
(token driven models require multiple cycles through
the pipeline to complete execution), and

� Nontrivial mechanisms to handle data structures (see
the Research Issues section).

Performance of the dynamic dataflow architecture is
related directly to the rate at which the matching unit
operates. To facilitate this process while considering the
cost, Arvind proposed a pseudo-associative matching
mechanism that requires typically several memory
accesses (9). A failure in finding a match implicitly allocates
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Figure 4. A dataflow graph and its representa-
tion (MIT Static Model).

Table 1. Earlier Dataflow Architectures

Name Country Type

MIT Static Dataflow (1975) (7) USA Static
Manchester Dataflow (1977) (8) England Dynamic
MIT Tagged Token (1978) (9) USA Dynamic
CSIRAC II (1978) (9) Australia Dynamic
DDM1 Utah Data Driven (1978) (10) USA Static
LAU System (1979) (9) France Static
TI Distributed Data Processor (1979) (11) USA Static
NEC Image Pipelined Processor (1980) (12) Japan Static
NTT Dataflow Processor Array (1983) (13) Japan Dynamic
Distributed Data Driven Processor (1983) (14) Japan Dynamic
Stateless Dataflow Architecture (1983) (15) England Dynamic
SIGMA-1 (1984) (16) Japan Dynamic
Parallel Inference Machine (1984) (17) Japan Dynamic

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 5



memory within the matching unit — mapping a code-block
to a processor places an unspecified commitment on the
processor’s matching unit. This can result in a deadlock if
this resource becomes overcommitted. Another problem
with dataflow processing is caused by the duration of the
instruction cycle relative to its control-flow counterpart.

To overcome the inefficient matching of dynamic data-
flow model, explicit token store (ETS) proposed a direct
matching (9). Storage (called activation frames) is allocated
dynamically for all the tokens that can be generated by a
code block (a code block represents a function or a loop
iteration). The usage of memory locations within the acti-
vation frame is determined at compile time; however the
allocation of storage is determined at run time. A computa-
tion is described completely by an instruction pointer (IP)
and an activation frame pointer (FP) and the pair<FP. IP>
called a continuation. A typical instruction specifies an op-
code, an offset in the activation frame where a match for its
inputs will take place, and one or more displacements that
define the destination instructions that will receive the
result token(s). Each displacement is also accompanied
by an input port (left/right) indicator that specifies the
appropriate input arc for a destination actor. Figure 6
shows an example of the ETS code block invocation and
its corresponding instruction and frame memory. When a
token arrives at an actor (for example, Add), the IP part of
the continuation points to the instruction that contains an
offset r as well as displacements for the destination instruc-
tions. The system achieves the actual matching process by

checking the disposition of the slot in the frame memory
pointed to by FP + r. If the slot is empty, the system writes
the token’s value in the slot and sets its presence bit to
indicate that the slot is full. If the slot is already full, the
system extracts the value, leaving the slot empty, executes
the corresponding instruction, and communicates the
result tokens to the destination instructions by updating
the IP according to the destinations encoded in the instruc-
tion.

Table 1 lists early dataflow architectures that have been
advanced in the literature. Because of the space con-
straints, additional discussion about these architectures
are beyond the scope of this article and the interested
reader is referred to the cited references.

Dataflow Architectures of the 1980s and the 1990s

Relying on the lessons learned from early designs, several
dataflow prototypes were designed during the 1980s and
the 1990s. These include Monsoon, Epsilon-2, EM-4,
P-RISC, and TAM. Table 2 summarizes the architectural
characteristics of these designs (18–23).

These prototypes use the dynamic dataflow paradigm,
primarily because of the success of direct matching of
tokens proposed in ETS. The concept of a code-block in
ETS permitted localization and efficient management of
tokens. Activation frames can be allocated for different
iterations of a loop, thus permitting the ‘‘unfolding’’ of loops.

Another major architectural change was the integration
of the control-flow sequencing with the dataflow model.
Dataflow architectures that are based on the pure dataflow
model, such as the Manchester dataflow machine, provide
well-integrated synchronization at the instruction level.
However, this process is very inefficient when compared
with the synchronization used in control-flow systems. It
has been shown that it is more efficient to assign some of
these responsibilities to the compiler and to use a simpler
control-flow sequencing at run-time. The overhead of con-
structing and communicating result tokens can be reduced
by using processor registers to hold intermediate results
(similar to control-flow processors). The hybrid of dataflow
flow with control-flow sequencing and usage of registers
can be found in EM-4, and the Epsilon-2.

In contrast to these hybrid systems, the threaded
abstract machine (TAM) provided a conceptually different
perspective on the implementation of the dataflow model of
computation. In TAM, the execution model for fine-grain
parallelism is supported by an appropriate compilation
strategy and program representation rather than by ela-
borate hardware. By assigning the synchronization, the
scheduling, and the storage management tasks to the
compiler, the use of processor resources can be optimized
for the expected case, rather than for the worst case. In
addition, because the scheduling of threads is visible to the
compiler, TAM allowed for a more flexible use of registers
across thread boundaries.

Recent Dataflow Projects

Since the mid 1980s, computer architecture has expended a
considerable effort in exploitation of ILP as a means to
improve performance. These efforts manifested in the
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Table 2. Dataflow architectures of 80’s and 90’s.

Architecture Key features

Monsoon (18)

� Joint venture between MIT and Motorola was an outgrowth of the MIT Tagged-Token Dataflow Architecture.

� A collection of processing elements communicating with each other and a set of interleaved I-structure memory

modules through a multistage packet switching network.

� Direct matching of tokens based on the Explicit Token Store concept.

EM-4 (19)

� A highly parallel dataflow multiprocessor based on the SIGMA-1 project. It was an attempt to simplify the architecture

by a RISC-based single-chip design, a direct matching scheme, and use of strongly connected arc model.

� Use of registers to reduce the instruction cycle time and the communication overhead of transferring tokens.

� Integration of a token-based circular pipeline and a register-based advanced control pipeline.

� The prototyped processing element consists of a memory module and a single chip processor called EMC-R.

Epsilon-2 (20)

� Epsilon-2 is a multiprocessor dynamic dataflow model evolved from the Epsilon-1 project. It is composed of a set of

processing modules contented via a global interconnection network.

� Direct matching of tokens.

� Repeat fan-out mechanism to reduce the overhead in copying tokens.

� Control-flow type of sequencing and use of registers. Register contents are not necessarily preserved across grain boundaries.

� Load balancing (adaptive routing).

P-RISC (21)

� P-RISC is a multiprocessor architecture strongly influenced by Iannucci’s dataflow/von Neumann hybrid architecture.

It utilizes a RISC-like Instruction set and its generalization for parallel-RISC. Can use both conventional and dataflow

compiling technologies.

� Application of multithread using a token queue and circulating thread descriptors.

� Introduction of Fork and Join instructions to spawn and synchronize multiple threads.

� Synchronization of memory accesses by using I-structure semantics.

TAM (22)

� Placing all synchronization, scheduling, and storage management responsibility for execution of fine-grain parallelism

explicit and under compiler control to relieve hardware complexity. This allows execution of dataflow languages

on conventional control-flow processors.

� Providing a basis for scheduling a number of threads within an activation as a quantum while carrying values

in registers across threads.

� Once an activation is made resident, all enabled threads within the activation execute to completion.

� Having the compiler produce specialized message handlers as inlets to each code-block.

� A prototype TAM instruction set, TL0 (Threaded Language Version 0), has been developed at the

University of California at Berkeley.

�T (23)

� Tokens do not carry data, only continuations.

� Provides limited token matching.

� Overhead is reduced by off-loading the burden of message handling and synchronization to separate coprocessors.
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design and the implementation of the so called superscalar,
Very Long Instruction Word, super-speculative, and super-
pipelined organizations. In these organizations, ILP is
exploited through deep pipelining and out-of-order
execution of instructions. Aggressive exploitation of ILP
is made possible by wide dispatch and issue of instruction,
by a large issue buffers, by a large number of physical
registers for register renaming, by a large number of func-
tional units, and by a speculative execution of branches.
Whether the instruction placement and issue are done
statically as in VLIW architecture, or dynamically as in
superscalar paradigm, the hardware complexity of these
architectures, combined with the diminishing performance
gains, renewed an interest in dataflow processing. This
interest has resulted in several dataflow based architec-
tures, such as the scheduled dataflow (SDF) (24), the EDGE
(Explicit Data Graph Execution) (25), the WaveScalar (26),
and the D2NOW (Data-Driven Network of Workstations)
(27).

Scheduled Dataflow (SDF). Unlike instruction level data-
flow systems, SDF (24) uses dataflow-like synchronization
at the thread-level, and control-flow semantics within a
thread. A thread is allocated as an activation frame for
receiving its inputs, similar to Cilk (28). A thread is enabled
for execution when it has received all its inputs, and
completes execution without interruption (viz., non-block-
ing threads). This approach minimizes instruction level
communication, and because SDF threads are very fine-
grained (typically a basic block), the amount of parallelism
lost because of the sequential execution of instructions
within a thread is minimal. Additionally, SDF decouples
completely all memory accesses from execution pipelines,
resulting in overlapped execution of threads. When a
thread is enabled, SDF allocates a register set for the
thread. Data is pre-loaded into the register set context
prior to its scheduling on the execution pipeline. After a
thread completes execution, the results are post-stored
from its registers into memory. All memory accesses are
performed by synchronization processors (SPs). The execu-
tion engines (EPs) rely on in-order execution of instructions
within a thread. This architecture exploits two levels of
parallelism: Multiple threads can be active simultaneously,
permitting thread level parallelism, and the three phases of
a thread execution (pre-load, execute, and post-store) can
be overlapped with those of other threads. It is also possible
to select appropriate number of SPs and EPs to meet
application needs. Thread level speculation to improve
performance of imperative programs is simplified in SDF
system. Similar to the WaveScalar design, epoch numbers
are associated with threads along with extended cache
coherency protocols to commit (post-store) the results of
a speculative thread in program order.

Explicit Data Graph Execution (EDGE). EDGE (25) is a
static placement dynamic issue instruction model. It is
designed to allow direct instruction communication: hard-
ware delivers a producer’s output directly as an input to a
consumer instruction, (i.e., fine grained instruction sche-
duling). The TRIP architecture is an instantiation of an
EDGE design. The TRIP prototype is a collection of 16

execution units that communicate with each other via a
thin operand routing network. Each processing element
includes an integer unit, a floating point unit, an operand
router, and an instruction buffer of depth 128 (to hold
multiple instructions and their operands). The scheduler
determines which instructions to be assigned in each pro-
cessor buffer (viz., Static placement). However, the avail-
ability of operands determines the order of the execution
(viz., Dynamic issue).

WaveScalar. Similar to EDGE, WaveScalar (26) is a tiled
architecture. It is a tagged-token dynamic dataflow
machine composed of processing elements. Instructions
are bound dynamically to processing elements during the
execution phase. It should be noted that once an instruction
is bound to a processing element, it can remain there for
many dynamic executions. A processing element is com-
posed of an interface to receive data tokens: a storage
medium to store data tokens awaiting their matching
partner. Upon the execution of an instruction, the output
tokens are routed to the consumer processing element(s).
To reduce the communication costs, the processing ele-
ments are connected through a hierarchical interconnec-
tion infrastructure—pairs of processing elements are
coupled into pods sharing ALU results via a common bypass
network. Four pods are grouped into domains that com-
municate over a set of pipelined busses. Four domains form
a cluster supported by conventional memory hierarchy. To
build larger machines, multiple clusters can be connected
with each other by a grid-based, on-chip network.

Data-Driven Network of Workstations. D2NOW (27) is a
collection of off-the-shelf Pantium microprocessors inter-
connected through a fine-grained interconnection network
that supports the thread level synchronization. The design
is based on an earlier Decoupled Data Driven model
of execution and in principal similar to the SDF model
(24). To tolerate the communication latency, D2NOW
employs three mechanisms: fine-grained communication,
medium-grained communication, and coarse-grained com-
munication. The fine-grained communication is used for
consumer identification and for data-token transfer. The
medium-grained communication is for the medium size
messages that identify a code block. The coarse-grained
communication is through the Ethernet to support large
data block transfers.

SOME RESEARCH ISSUES

Handling Data Structures

In pure dataflow model, no concept of a variable exists and
data is exchanged in the form of tokens flowing between
instructions (or if memory is used to store data, then
variables can only be assigned a value once – the single
assignment principle). To apply this property to arrays and
structures, the entire structure must be carried as tokens
(or new arrays and structures must be allocated, by copying
unchanged items and by assigning new values to the ele-
ments that have been modified). In practical dataflow
systems, a more efficient treatment of structures and of
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arrays is needed. The proposed solutions can be classified as
either direct access or indirect access methods.

Direct Access Method. The direct access scheme treats
each array elements as individual (scalar) data tokens —
which eliminates the concept of an array (or structure).
The token relabeling scheme proposed by Gaudiot is an
example of direct access method (29). In this approach,
tokens are identified by tags, associating the values with
specific array elements. Although this method is simple, it
requires entire data structures be passed from one node to
the next or to be duplicated among different nodes. More-
over, in many applications, the notion of array as a single
entity cannot be done away with completely, and thus the
direct access method is inappropriate for such applications.

Indirect Access Method. In an indirect access scheme,
arrays are stored in special (separate) memory units and
their elements are accessed through explicit ‘‘read’’ and
‘‘write’’ operations. For example, in MIT, static dataflow
machine arrays are represented as a heap forming a tree
(30). VAL (see section on Dataflow Languages) provides
constructs to generate and to access arrays. Arrays can be
appended with new values, and arrays (and elements of
arrays) are accessed using pointers. Modified elements can
be made inaccessible by using reference counts with poin-
ters (when the count becomes zero the element becomes
inaccessible). The disadvantages of this method are:
O(log n) time to access successive elements of an array
and sequential nature of the append operations (only one
element of an array can be modified at a time), which limits
the performance of the system. It also becomes necessary to
perform garbage collection of inaccessible elements.

I-structure. I-structures are asynchronous array-like
structures that include a ‘‘presence’’ bit with each element
of the structure, thus preventing access to undefined array
elements and enforcing single assignment property (31).

University of Manchester Approach. This approach com-
bines the concept of streams (i.e., a sequence of values
communicated between two portions of a code) with con-
ventional arrays (32). However, in contrast to streams, the
size of the array structure must be known at the time it is
created. Thus, a finite component is defined as a collection
of elements, a ‘‘unit,’’ on which the basic storage opera-
tions are performed. This scheme implies that the mod-
ification of any element(s) in an array requires copying the
entire array. Sisal language (see the Dataflow Languages
section) provides constructs to create and access arrays, as
well as streams. An enhanced version permitted ‘‘in-place’’
updates to alleviate the need to copy unaffected elements.

Hybrid Scheme. The basic idea behind the hybrid
scheme is to associate a template, called the structure
template, with each conceptual array (33). For selective
updates, this minimizes copying by allowing only the mod-
ified elements to be appended to the new array. Each array
is represented by a hybrid structure that consists of a
structure template and a vector of array elements. A struc-
ture template is subdivided into three fields:

� The reference count field; an integer indicating the
number of references to the array,

� The location field; a string of 1’s and 0’s where the
length of the string equals the total number of ele-
ments in the array. Each location bit determines
whether the desired array element resides in the
vector indicated by either the left (‘‘0’’) or the right
(‘‘1’’) pointer, and

� The status bit (S); when an array is initially created,
the status bit (S) is initialized to ‘‘0,’’ which indicates
that the vector contains the original array. Whenever a
modification is made to an array with more than one
reference, a new hybrid structure is created (the status
bit set to ‘‘1’’) where all the modified elements can be
accessed from the vector pointed by the right pointer.
The sharing of array elements between the original
and the modified array is achieved by linking the left
pointer of the modified hybrid structure back to the
original hybrid structure.

Program Allocation

To achieve maximum parallelism, programs must be parti-
tioned and assigned to available resources. The goal is to
maximize the parallelism (partition program into indepen-
dent executable units) while minimizing communication
among the executable units (by assigning dependent units
to the same processing element). It has been shown that
obtaining an optimal allocation of a graph with precedence
requirements is an NP-complete problem. Two main (heur-
istic) approaches exist to allocate subtasks of a dataflow
graph: static and dynamic. In static allocation, the tasks are
allocated at compile-time using global information about
the program and system resources. A dynamic allocation
uses run-time information on processing loads and on
program behavior to distribute tasks.

A number of heuristic algorithms have been developed
for the allocation problem based on critical path list sche-
dules. The basic idea behind these approaches is to assign a
weight to each node of a directed graph that equals the
maximum execution time from that node to an exit node
(i.e., critical path). An ordered list of nodes is constructed
according to their weights, which is then used to assign
dynamically nodes with highest weights to processors as
they become available. One major problem with critical
path list schedules is the communication among the nodes.
Enforcing only critical path scheduling, without consider-
ing the communication overhead, will not necessarily mini-
mize the overall execution time.

In response, Ravi et. al. (34) proposed a variation of the
critical path list scheduling which takes into account inter
processor communication. In this method, rather than
simply choosing the topmost node on the list, several top
candidates whose critical paths fall within a certain range
are considered for allocation. From this set of candidates, a
node is selected which maximizes savings in communica-
tion time. To determine the compromise between computa-
tion and communication costs, the vertically layered
(VL) allocation scheme was proposed in Ref. (35). The VL
allocation scheme consists of two phases: separation and
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optimization. The basic idea behind the separation phase is
to partition a dataflow graph into vertical layers such that
each vertical layer represents a set of data dependent nodes
that are executed in sequence (i.e., a thread). A density
factor is used to distribute the directed paths among the
processors. The optimization phase attempts to minimize
the inter-processor communication costs by considering
whether the inter-processor communication overhead off-
sets the advantage gained by overlapping the execution of
two subsets of nodes on separate processors (collapsing the
vertical layers assigned to different processors). The VL
allocation scheme succeeds in balancing the load among the
processors, however, by its very nature, it may not always
reduce the total execution time.

A more general approach to program allocation was
proposed by Sarkar and Hennessy (36). In contrast to the
VL allocation scheme, this approach uses a greedy approx-
imation algorithm. The algorithm begins with the trivial
partition that places each node in a separate block. A table
that represents the decrease in the critical path length
obtained from merging a pair of blocks is maintained. It
then merges iteratively blocks that result in the largest
decrease in the critical path length. The algorithm is ter-
minated when no remaining merger could possibly reduce
the critical path length.

Despite the effectiveness of the aforementioned alloca-
tion schemes, one major problem still remains unresolved —
the issue of handling dynamic parallelism. For example, a
dynamic architecture unfolds a loop at run-time by gener-
ating multiple instances of the loop body and attempts
to execute the instances concurrently. However, a single
processor does not allow two simultaneous executions of a
node, consequently, mapping the source dataflow graphs to
processors,withoutspecialprovisions todetectdynamic loop
unfolding, results in the inability toexploit parallelism fully.

One solution is to provide a code-copying facility, where
an instruction within a code block is duplicated among the
available resources. Arvind has proposed a mapping
scheme in which the instructions within a code block (called
the logical domain) are mapped onto available procesors
(called the physical domain) based on a hashing scheme
(37). For example, if a physical domain consists of n pro-
cessors, then the destination processor number can be
processorbase + i mod n, where i is the iteration number.
This will distribute the code uniformly over the physical
domain. Because each of the n processors has a copy of the
code, n iterations may be executed simultaneously. How-
ever, because not all program constructs can be unfolded in
this manner, the question still remains as to how dynamic
parallelism can be detected at compile-time effectively.

Cache in Dataflow

Multithreading can address memory latencies by context-
switching to other thread while awaiting a memory access.
In pure dataflow, each instruction can be viewed as a
thread, causing excessive overheads. ETS based models
and hybrid systems (see the Dataflow Architectures of the
1980s and the 1990s section) have created coarser grained
threads using code blocks. Within the context of dataflow,
threads are nonblocking: A thread is enabled for execution

when it receives all inputs, and executes to completion
without interruption or context switch. The nonblocking
makes it difficult to overcome memory latencies because a
thread cannot be context switched during its execution.
Cache memories provide a solution, but in pure dataflow,
because instruction execution is based on the availability of
data, localities of instructions and data cannot be deter-
mined easily, making the inclusion of cache memories
wasteful. Several innovative proposals for synthesizing
localities in the context of dataflow exist. In Ref. (38), the
concept of simultaneity of execution is used to define local-
ities with code. A weight that represents the distance from
the root is assigned to each dataflow node. The nodes with
the same weight are then clustered on the same (cache)
page. This strategy partitions the dataflow graph into K
horizontal layers, such that the nodes in layer Ki are data
independent from each other (hence they can likely be
executed in parallel) and are data dependent on nodes in
layer Ki�1 (1 < i � K).

Other approaches to improve localities and cache in
dataflow can be found in Ref. (39). Partitioning dataflow
programs into threads will have a direct impact on local-
ities. Allocation of threads to processing resources should
use ‘‘cache affinities’’ to minimize cache misses and con-
flicts. An important issue in multithreading is the parti-
tioning of programs into multiple sequential threads (see
the Program Allocation section). The costs associated with
creating threads and synchronization among threads will
impact the granularity of threads and placement of
threads. Schauser et al. (40) proposed a partitioning
scheme using dual graphs. A dual graph is a directed graph
with data, control, and dependence arcs: A data arc repre-
sents the data dependence between producer and consumer
nodes. A control arc represents the scheduling order
between two nodes, and a dependence arc specifies long
latency operation caused by the message handlers (i.e.,
inlets and outlets) sending/receiving messages across
code-block boundaries. The actual partitioning is per-
formed using only the control and the dependence edges
by first grouping the nodes based on dependence sets. The
dependence sets are used to create safe partitions with no
cyclic dependencies. A safe partition has the following
characteristics: (1) no output of the partition needs to be
produced before all inputs to the partition are available, (2)
when the inputs to the partition are available, all the nodes
in the partition can be executed, and (3) no arc connects a
node in the partition to an input node of the same partition.
A number of optimization techniques are performed on
initial partitions to reduce synchronization costs. The out-
put of the partitioner is a set of threads where the nodes in
each thread are executed sequentially and the synchroni-
zation requirement determined statically only occurs at the
beginning of a thread. SDF and TAM (see the Dataflow
Architectures section) use similar ideas for thread genera-
tion.

In the static dataflow architecture, localities can be
exploited by concentrating on the static order of the data-
flow program. The dynamic approach permits the activa-
tion of several instances of a node during run-time. To
exploit the temporal and the spatial localities in dataflow
programs that run on dynamic dataflow models, it is
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necessary to separate instruction memory from the oper-
and memory. However, asynchrony of the dataflow instruc-
tions means frequent context switching, and in general,
lack of temporal and spatial localities in accessing instruc-
tion and operand memories (41). To cope with these pro-
blems, one needs to adopt proper mechanisms to partition
the dataflow graphs into subgraphs, to allocate subgraphs
among processors, and to control the number of instances of
a subgraph in a processor. It should be noted that because of
the functional and asynchronous nature of the dataflow
instructions, the addresses of the nodes in a dataflow graph
can be set as desired without affecting the result of the
execution. This property should be the basis of establishing
localities in dataflow programs. Moreover, in support of the
cache organization, one should study the effectiveness of
the traditional statistical replacement algorithms (e.g.,
LRU) for instruction and operand memories. Therefore,
in a processor with the load control mechanism, a sophis-
ticated deterministic algorithm to replace dataflow blocks
needs to be developed. Finally, the operand memory plays a
dominant role to achieve satisfactory performance in a
dataflow machine, and hence the operand cache must be
managed effectively. In a dataflow machine, it is not only
necessary to maintain spatial locality for the input argu-
ments of a code-block (frame), but also is necessary to
maintain spatial locality for the result tokens of the
code-block. In the other words, the cache management
must keep track of several active frames to avoid cache
misses in accessing arguments while storing the results.
These design principles motivated the organizations of
operand and instruction caches in the literature (41).

CONCLUSION

As modern architects find it difficult to design highly par-
allel architectures that can exploit high degrees of instruc-
tion level parallelism, it may be time to look back to
dataflow model of computation. The dataflow model was
investigated in 1970s and 1980s but no commercially viable
systems were implemented. Nevertheless, several features
of the dataflow principle and dataflow computation have
found their place in modern processor architectures and
compiler technology. Most modern processors use complex
hardware techniques to detect data hazards, control
hazards, and dynamic parallelism — to bring the execution
engine closer to an idealized dataflow engine. Some
researchers have proposed hybrid designs in which the
dataflow scheduling is applied only at thread level (i.e.,
macro-dataflow), whereas each thread is comprosed of
conventional control-flow instructions.

The advances from the development of dataflow projects
indicate potential high performance computation based on
the dataflow principles. However, before a successful
implementation of dataflow machines is possible, the var-
ious issues discussed in this article must be resolved.

It is our contention that a more careful mix of dataflow
principles with recent technological advances will pave the
way to future tera and peta instructions per second
performance. Current multicore and multithreaded sys-
tems do not scale well. Instruction level dataflow implemen-

tations potentially can scale with processing resources, but
they require excessive hardware support for synchroniza-
tion, distribution, and communication among the instruc-
tions. A combination of static (compile time) and dynamic
techniques for the creation and distribution of threads (or a
unit of concurrent activity) may provide a balance between
performance and hardware complexity.

The implementation of imperative memory systems
within the context of a dataflow model is yet another issue
that is not addressed satisfactorily. In addition to the
management of structures, techniques for the management
of pointers, dealing with aliasing, and dynamic memory
management are needed. Ordering of memory updates (a
critical concept in shared memory concurrency) is an alien
concept to pure dataflow. However, to be commercially
viable, it is essential to provide shared memory based
synchronization among concurrent activities. Some ideas
such as those presented in Wavescalar and SDF hold some
promise in this connection.

We believe that several factors are motivating a renewed
interest in the design and implementation of scalable data-
flow processors. These include the recent technological
advances in increased chip density; the complex intercon-
nections among multiple processing elements on a single
chip (Network-on-a-chip); the hardware complexity of the
superscalar, super pipeline, and VLIW architectures and
the diminishing performance gains of these systems with
additional hardware; the large and multi-level caches;
the compliers that perform extensive global and inter-
procedural analyses to extract as much parallelism as
possible, and finally, the success of the recent dataflow
projects (Recent Dataflow Projects section). At the same
time, if dataflow architecture is to address the challenges of
future processing architectures containing hundreds, if not
thousands, of processing elements, it is necessary to eval-
uate carefully different forms of dataflow organizations for
their suitability for implementation.
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