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The Pressure Is On

As applications become more demanding, computer systems research
must not only redefine traditional roles but also unite diverse disciplines in
a common goal: To make quantum leaps toward next-generation systems.

hat computing and communication systems
are becoming increasingly interdependent is
evident in almost every aspect of society.
Applications of these integrated systems are
also spreading. As this trend continues, it will
force the computing community not only to develop
revolutionary systems but also to redefine “computer
system” and the roles of traditional research disci-
plines, such as operating systems, architectures, com-
pilers, languages, and networking. This awesome
responsibility falls squarely on computer systems
researchers—those who have traditionally developed
the infrastructure on which applications are built.

In the Workshop on New Challenges and Directions
for Systems Research, sponsored by the US National
Science Foundation (http://www.cs.utexas.edu/users/
new_directions), experts from a range of disciplines
met to crystallize this new perspective and explore new
paradigms for systems research and development. The
emphasis was on finding quantum leaps, not evolu-
tionary steps, to next-generation systems. The main
product of the workshop was a list of research chal-
lenges, directions, and recommendations for the near
and distant future. In this article, we look at three of
those challenges, describe what is being done to meet
them, and review remaining obstacles:

* How to develop high-confidence systems with
predictable properties at a predictable cost. How
do we use component-based design techniques to
develop future applications, such as telemedicine
or the design of new pharmaceuticals?

* How to develop global-scale systems. A key issue
is how to specify and implement critical issues such
as quality of service (QoS), security, and robust-
ness. Application programming interfaces (APIs)
for global-scale applications must be quite differ-
ent from current APIs. For example, they must
make it easier to accurately predict a system’s prop-
erties from the properties of its components.

Computer

* How to make architectures dynamic and adaptive.
Avrchitecture that is liquid—reorganizes the execu-
tion engine as an application progresses—will be
mandatory if we are to exploit the tremendous
advances in hardware technologies. Dynamic archi-
tectures will blur the boundaries between hardware
and software. The challenge is to look beyond
reconfigurable logic and use runtime information
across hardware and software boundaries. This will
open doors to interoperation among applications
using different execution paradigms, memory-
consistency models, and network protocols.

As is characteristic of systems research topics in gen-
eral, these challenges and their solutions are extremely
interdependent. We also include “Outlook on” side-
bars throughout the article that provide more specific
evaluations of key challenges in architecture, net-
working, and software systems. The “Outlook on
Applications™ sidebar contains some of the applica-
tions identified in an interim report from the
President’s Information Technology Advisory Com-
mittee as possibilities for the next decade.

DEVELOPING ROBUST, PREDICTABLE SYSTEMS

Software systems are growing ever larger and more
complex. End-to-end behavior often depends on tens or
even hundreds of independently developed subsystems.
At the same time, computer systems are assuming
increasing responsibility for controlling and managing
physical and logical processes—from telephone calls
to safety-critical applications. Having designers attempt
to engineer very complex systems without an adequate
base of fundamental knowledge is proving disastrous:
Software systems are failing at increasing rates.
Products continue to be unacceptable because of soft-
ware flaws. Both functional and performance defi-
ciencies are becoming more commonplace.

In short, we cannot continue to use current system-
development paradigms.
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Challenges

The techniques, methods, and processes for develop-
ing robust systems must meet four basic requirements.
Finding an effective way to develop systems that meet
these requirements is a challenge across all disciplines.

e Composability. We must be able to compose sys-
tems from components of multiple scales and
from multiple semantic domains. As a start, we
need effective models of composability, particu-
larly ones that meet the requirements of dynamic
structures, timing deadlines, and fault tolerance.

« Dynamic, adaptable systems. We must be able to
build systems that can adapt to changing require-
ments and changing implementation environ-
ments on time scales from microseconds to years.
This will let us more effectively manage resources,
upgrade components, and tolerate failures.

¢ Risk management. Early in development, we
must be able to reliably predict the system prop-
erties that will result from a given design. At pre-
sent, we do not know a complex system’s
properties until the system is mostly developed.
Because this lack of predictability presents an
unacceptable risk, many potentially useful com-
plex systems are never built.

e Security and availability. We must be able to
build systems that are secure and available
enough to make computers the primary means
of critical personal and commercial transactions.

Defining a Research Agenda

by an extraordinary requirement for

Directions and recommendations

Research programs must enhance our ability as a
nation to develop processes that produce high-confi-
dence software systems with predictable properties at
predictable cost. One effective strategy for focusing
research is to develop demonstration prototypes of
Grand Challenge systems. An example is a transac-
tion-oriented information management system based
on Internet 2 that has known security and perfor-
mance properties at design time and evolves grace-
fully over a specified set of changes in requirements
and execution environment.

Intuitively it may seem odd to speak of “demon-
stration prototype” and ““known security and perfor-
mance properties” in one scenario. However, in this
context, a demonstration prototype is a system that
shows how appropriate conceptual foundations,
appropriate methodologies, and adequate tool imple-
mentations can yield a product with predictable prop-
erties for predictable cost. This contrasts with, say, a
rapid prototype, which focuses on the ability of the
design to realize a given set of functions.

Research must also span disciplines. Narrow, single-
discipline research programs will not help us attain
the required knowledge and technology base. The
problem does not fall solely to software engineering,
for example. First of all, ““engineering” implies that
we are applying technologies we know to be effective.
That is not the case here. Second, problems such as
composability and risk management are common

(http://lwww.hpcc.gov/ac/interim/) identi-

lenges and Directions for Systems Research
(held July 31 to August 1, 1997, in St.
Louis) was to identify significant new
approaches to systems research—research
into the infrastructure for developing com-
puter and communication systems applica-
tions. A primary theme was integrated
approaches to significant problems that
span traditional research disciplines such as
operating systems, architecture, compilers,
networking, multimedia, real-time systems,
system security, and system evaluation.

The research directions have five criti-
cal goals:

o Offer a quantum leap to the next gen-
eration of computer and communi-
cation systems.

» Examine the role of Grand Challenge
problems in systems research. Grand
Challenge problems are characterized

computing resources, the use of mul-
tidisciplinary approaches to solutions,
and a potential to significantly affect
how we use computing systems.

« |dentify challenges and directions for
building synergistic relationships
among historically disjoint comput-
ing systems research areas.

e Create new paradigms for computer
and communication systems that
address Grand Challenge problems.

» Define infrastructure requirements
that will enable research based on
synergistic approaches to Grand
Challenge problems.

The results of the workshop are doc-
umented at (http://www.cs.utexas.edu/
users/new_directions). Although the work-
shop was held over a year ago, a recent
interim report from the President’s Infor-
mation Technology Advisory Committee

fied similar requirements in areas that
overlap systems research, including the
need for component-based software devel-
opment and a scalable information infra-
structure.

The research recommendations that
came from the workshop will directly
address these critical areas of concern. For
example, one of the workshop’s recom-
mendations is to adopt a multidisciplinary
approach in defining new application pro-
gramming interfaces. This will aid in the
component-based development of soft-
ware systems with predictable behavior.
Other recommendations include develop-
ing models to predict the performance of
dynamic and adaptive systems, and estab-
lishing a research infrastructure to support
research on global-scale applications.
Both these recommendations address the
PITAC report’s requirement to develop a
scalable information infrastructure.
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Outlook on
Applications:
Reshaping
Relationships
Around the World

nectivity, content, and flexibility of
information technologies is so fun-
damental that it is dramatically reshaping
relationships among people and organi-
zations. It is also quickly transforming our
processes of discovery, learning, explo-
ration, cooperation, and communication.
We can now study vastly more complex
systems and begin to rapidly advance our
understanding of learning and intelligent
behavior in living and engineered systems.
Our current challenge is to realize the
full potential of these new resources and
institutional transformations. The recent
President’s Information Technology Ad-
visory Committee Interim Report (http:
Ihvww.hpce.gov/ac/interim) lists a range of
application visions:

T he extraordinary rise in power, con-

One billion people worldwide can
access the Internet simultaneously.

One billion people worldwide can
access the Internet simultaneously and
engage in real-time electronic meet-
ings, download the daily news, con-
duct financial transactions, or talk to
friends and relatives around the world.
Any individual can participate in
online education programs regardless
of geographic location, age, physical
limitation, or personal schedule.

Telemedicine applications are com-
monplace. Specialists use videocon-
ferencing and telesensing to interview
and even examine patients who may

be hundreds of miles away.

e Complex products and structures can
be designed via computer simulations
that accurately represent the physical
properties of the system being built.
Designers, manufacturers, builders,
suppliers, and users participate in the
design.

¢ Research is conducted in virtual lab-
oratories, in which scientists and engi-
neers routinely perform their work
without regard to physical location.
They interact with colleagues, access
instrumentation, share data and com-
putational resources, and access
information in digital libraries.

e Government services and information
are easily accessible to citizens, regard-
less of their physical location, level of
computer literacy, or physical capacity.

ignored application: the intelligent inte-

gration of home computing and enter-
tainment devices. An example is a home
where the household electronics recognize
the residents by their profiles (TV viewing
habits, room-temperature settings, and so
on) and automatically alter settings to meet
the residents’ needs.

I n addition to these visions is an often

wherever effective processes are critical to system
development, regardless of discipline.

Research must also be based on sound formal mod-
els of systems and development processes. Researchers
outside the traditional software engineering and secu-
rity communities must become involved in develop-
ing new programming paradigms, compilers, software
processes, and tools that are amenable to formal and
rigorous analysis. Effective research programs will
couple formal methods with knowledge not only from
experts in many disciplines, but also from tool and
system developers. The focus must be on scalability
and relationships across domains. We can expect
major advances from such a program. We could, for
example, design highly secure and reliable systems,
since we would be able to verify security and reliabil-
ity by integrating analyses and testing.

DEVELOPING GLOBAL-SCALE SYSTEMS

The development of global-scale systems is a nat-
ural outgrowth of the many applications that integrate
computers and communications. QoS requirements,
which relate to both timing requirements and richness
of service (such as video quality in telepresence) will
be critical in many applications. Resource-manage-
ment functions must also broaden: For an application
in wide-area networks, such functions must span sev-
eral administrative organizations. Finally, there must
be support for mobile users and resources.

Computer

Challenges

An important challenge in this area is how to
develop mechanisms that let resources be accessed uni-
formly and seamlessly across LANS, intranets, and the
Internet. The sidebar “Outlook on Networks”
describes some of the key issues in this challenge,
including the development of a global uniform nam-
ing scheme and name-resolution infrastructure. To
build such a facility, researchers must address scala-
bility, robustness, and security, as well as more tradi-
tional issues such as replication, caching, and fault
tolerance. To satisfy the mobility requirement, nam-
ing schemes must be location independent so that
clients can access mobile resources without identify-
ing their locations. Such mechanisms would apply to
all types of resources.

Another challenge is how to manage resources and
cope with end-to-end latencies. Many future net-
work-centric applications, such as ubiquitous, high-
quality telepresence, will impose stringent QoS
requirements. To meet such demands, resource man-
agement must be dynamic and scalable: It must meet
real-time constraints and deal with different admin-
istrative authorities.

Resource management strategies for global systems
must also address variations in workload and
resources, how to deal with failures, and how to tune
the system given its runtime behavior. Another chal-
lenge is how to cope with increased loads. In some



Outlook on Networks:
Experimentation to
Harness the Power of
the Internet

network research must change if we
are to develop applications that exploit
all the communication power of the
Internet. Current WANS do not deal with
congestion effectively, offer poor support for
quality of service (QoS), and have low reli-
ability. There is also no clear and rigorous
definition of the semantics of shared state.
The community needs simple program-
ming models with clear and powerful
semantics and abstractions for developing
Internet-based applications with adequate
support for QoS, availability, fault tolerance,
security, and protection requirements.t
WAN research must also address design
scalability, how to cope with diversity and
change, and performance, reliability, and
security. Major challenges are how to
develop network control software and self-
configuring network components, how to
better use hardware technology, how to
simplify the evolution of networks, and
how to directly support distributed appli-
cations in a way that will maximize net-
work resources and capabilities. To meet
these challenges, there must be open plat-
forms for systems research so that experi-
menters can configure both hardware and
software components quickly and easily.?

T he current infrastructure of wide-area

Naming

One prerequisite for these goals is to
develop more effective naming in global-
scale systems. The primary function of a
name service is to map a given resource
name to its current address. Recognizing
the brittleness of URL-based namess when
mobile resources are involved, an Internet
Engineering Task Force working group is
exploring the use of Uniform Resource
Names (URNS).* URNs will be globally
unique and provide resource naming
regardless of location. They will also be
persistent and scalable (in the context of
the resources’ life span), transcribable,
and human-readable. These functional re-
quirements will become essential if we are
to seamlessly integrate and access new
resources and applications on global
information networks.

Both URL and URN belong to a
broader class of names, Uniform Resource
Identifiers (URIs).> Currently, DNS
(domain name system) names are primar-

Mobile agents can migrate
autonomously to perform
computations on behalf of their
OwWners.

ily location dependent, and the DNS ser-
vice by itself cannot support URNSs
because it would have to maintain a poten-
tially very large number. In all other
respects, however, the DNS service is the
best candidate foundation for building a
URN service. One effort to use DNS to
implement a URN service is a NAPTR
(short for naming authority pointer),
which is a new type of DNS resource
record. A NAPTR provides rules for map-
ping parts of URIs to domain names. By
changing the mapping rules, designers can
change the host that is contacted to resolve
a URI. The result will be a more graceful
handling of URLSs over long periods.

NAPTRs form the foundation for one
of potentially many new proposals for
handling URNSs.® An IETF working group
has identified a general framework that
will let different URN systems work
together, thus making it easier to seam-
lessly integrate applications based on dif-
ferent URN schemes.

Mobile agents

Another issue, and one very much a part
of current agendas, is the creation and use
of mobile agents—active objects that can
migrate autonomously from node to node
to perform computations on behalf of their
owners, either users or programs.” Tra-
ditionally, distributed applications have
relied on the client-server paradigm in
which client and server processes commu-
nicate either through message passing or
remote procedure calls. The RPC model is
usually synchronous—the client suspends
itself after sending a request to the server,
waiting for the results of the call.

The mobile-agent paradigm has three
main advantages over RPC and message
passing.® First, moving processing functions
close to where the information is stored
reduces the amount of communication

between client and server. With mobile
agents, the user sends the agent only once
(with its initial parameters) to the remote
server. It then interacts with the server locally
without using the network; after it com-
pletes its task, it migrates back to its home
site with the results. Thus, instead of doing
a simple keyword-based Web search, the
user would send an agent to perform a more
intelligent search and filtering, which he has
customized to satisfy his current needs.

increases the degree of asynchrony
between client and server. While its
agents execute on various servers, the client
need not remain connected to the network.
This feature is especially useful for mobile com-
puters, which are often switched off to save on
power and network-connection charges.
Finally, agents potentially outperform
RPC and message passing in real-time con-
trol applications. If the application uses
RPCs to control a device, it may be difficult
(if not impossible) to guarantee real-time
deadlines because of variations in network
communication delays. With agents, the
application can send an agent to the device
and control the device locally, which means
better predictability. Agents can also mon-
itor performance of computing nodes and
network bandwidth and migrate to nodes
that are more likely to complete tasks on
time.

S econd, the mobile agent paradigm
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cases, systems may need to add nodes and hardware
on the fly to meet application requirements. In other
cases, applications must be notified of a resource loss
so that they can modify their behavior.

A third major challenge is the creation of program-
ming abstractions that make it easier to program and
use large distributed systems. New techniques, lan-
guages, and paradigms have evolved in response to such
needs—but have brought their own set of challenges.
Perhaps the most promising new paradigm is the use of
mobile agents. The sidebar “Outlook on Networks”
describes the characteristics of this paradigm.

Electronic commerce and agent-based distributed
computing have increased the importance of security
and assurance in network-based systems. A host node
must permit mobile agents originating from any site to
execute in an open distributed system and still be able
to protect itself from attacks by malicious agents.
Similarly, agents themselves may need to be protected
from the hosts they visit.X

Directions and recommendations
There are several key directions in this area.
Naming. To address the challenge of providing uni-
form access to resources, researchers are looking to
replace URLs, which are location dependent, with

Uniform Resource Names (URNSs). The sidebar
“Outlook on Networks” describes this new naming
scheme. The goals of this effort are to design naming
schemes and name-resolution protocols and develop
an organization for the name service’s database that
uses partitioning, replication, and caching.

Application programming interfaces. APIs should
make it possible to specify resource, latency, and QoS
requirements. These requirements could then be trans-
lated to suitable resource-allocation and scheduling
decisions (at the system’s lower levels) or to negotia-
tions for resources and QoS services. Researchers must
develop instrumentation for monitoring and control,
as well as financial models for accounting. Monitoring
and adapting to changing conditions will be critical
to the success of global systems. APls must permit the
exchange of information on many levels and aid in
negotiation and adaptation.

Research must also cut across system levels (network,
operating system, runtime system) and application dis-
ciplines in defining APIs that permit resource-manage-
ment policies and the specification of QoS, security, and
reliability requirements. Cross-disciplinary research must
also be the watchword in designing systems that adapt
to changing resources and application requirements.

Data and service replication. Replication is both a

Three Decades of Computing Systems Research: Characteristics and Key Developments.

1970s 1980 1985
Chip densities < 1,000 < 100,000 < 500,000
Clock rates 1 MHz 10 MHz <50 MHz
Main memory A few Kbytes <1 Mbyte < 32 Mbytes
Architecture Bit parallel (4 bits) Bit parallel (8 bits) Bit parallel (16 bits)
Microprogrammed Microprogrammed and RISC, pipelined

Compilers

Operating systems

Networking

Computer

Sequential execution

C, Pascal p4
Dataflow analysis

Unix
Time sharing

ARPAnNet
FTP, Telenet
Ethernet and LANSs

pipelined

GNU retargetable
compilers
Vectorization
Programming
environments

Remote procedure calls
(RPC)
Distributed file systems

Internet
TCP/IP

Cache memories

ML, Tcl/Tk
Interprocedural
analysis

Microkernels
(Mach, Chorus)
X Windows
Name file server

Domain name system
Network management
protocol



benefit and a disadvantage. On the one hand, it
increases both robustness and scalability; on the
other, it complicates the management of distributed
state sharing, security, and fault tolerance. Trust rela-
tionships and security policies in global systems can
be quite complex, and security breaches may pose
high risks. Risk management and intrusion detection
and prevention will become key concerns. The major
focus in security should be on end-system security,
not just on middleware or application-level security.
Language designs and compiler support must address
security requirements. Al techniques for pattern
recognition can be used to detect unauthorized access.
An important direction in this area is the creation of
languages and interfaces that define security policies
and a means to analyze those policies.

Research infrastructure. We clearly need an infra-
structure to support research in global-scale applica-
tions. The infrastructure must integrate diverse
research domains, each of which now has a distinct
approach and policy. At the network-resource-man-
agement level, research often requires dedicated
research facilities that experimenters may alter or
reconfigure as desired. On the other hand, research
in higher level abstractions and services requires a sta-
ble underlying network. Some experiments require

installing software components on extreme numbers
of nodes and subsequent access to those components.

DYNAMIC AND ADAPTIVE ARCHITECTURES

With the possibility of billion transistor chips that
can run at gigahertz clock speeds, we are approaching
a critical technological threshold that will revolution-
ize the organization and abstractions in current
machines and systems. These changes present exciting
challenges across all areas of systems architecture, and
no one is quite sure where they will lead. Among the
alternatives for processor architecture are trace proces-
sors, multithreaded processors, multiscalars, multiple
processors on a chip, and superspeculative executions
of instructions. The sidebar “Outlook on Systems
Architecture” describes the characteristics of these
choices. Future systems will rely on the pervasive use
of virtual machine architecture, in which the instruc-
tion-level architecture is made ““liquid” (instruction
set, caches, and other data paths can be changed on
the fly as an application progresses). Researchers must
reexamine the traditional definitions of architecture
and system design as technological advances open the
door to designing much higher level systems.

Many forms of dynamic optimization are emerg-
ing at different design levels. In the past, these efforts

1990 1995 2000
1 million 10 million 1 billion
100 MHz 500 MHz 1 GHz
100 Mbytes Gigabyte 100 Ghytes
Instruction parallel Instruction parallel Thread parallel
32-bit architecture 32- and 64-bit architecture 64-bit architecture
Branch prediction Superscalar Superscalar, trace
Out-of-order execution Speculative execution processors, multithreaded
Multimedia architecture
Multiscalars
C++, HPF/Fortran 90 Java/JVM, mobile code Web programming
IDL compilers proof-carrying code Robust compiler
Visual programming infrastructure
languages
Distributed objects, Mobile code Global scale OS
CORBA Web security
ATMs Web Next-Generation Internet
HTTP, Mbone, MIME IPv6 Billion-node World Wide
Internet 2 Web

Active networks
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Outlook on Systems
Architecture: How
to Use a Billion
Transistors

duce a billion-transistor chip, but how

to best use devices that contain such
chips. The immediately obvious solution is
to add more of something, such as on-chip
(L1) cache memory, pipelines (providing a
higher degree of superscalars), registers,
hardware context, prefetch buffers, or on-
chip DRAM. Less obvious design alterna-
tives may better satisfy an important set of
requirements, however: a high degree of
instruction-level parallelism; large or mul-
tiple sets of register files; the ability to pre-
dict both conditional branches and
instruction-generated data values, and the
ability to overcome memory latencies.

T he challenge is no longer how to pro-

Trace processors
Like many alternatives, trace processorst

produce a billion-transistor chip,
but how to best use devices that
contain such chips.

attempt to exploit instruction parallelism
by having multiple processing elements—
each of which resembles a modern super-
scalar unit—on a single chip. Programs are
expanded into traces and stored in trace
caches. Traces contain a set of instructions

along with predicted conditional branches.
Multiple instructions from these traces are
issued to the various processing elements.
Data values may be predicted and inserted
to eliminate data fetches.

Unlike conventional systems, trace
processors will be able to predict and
fetch the next set of traces, which may
involve multiple branch predictions, and
forward results to multiple processing ele-
ments. Physical registers comprising local
and global registers will permit fast access
without numerous ports. To exploit the
parallelism provided by trace processors,
designers will need large instruction win-
dows so that they can construct traces
with a high degree of parallelism.

Multiscalars

Multiscalar systems? are similar to trace
processors in that they contain multiple
processing elements on a chip. Unlike
trace processors, however, each process-
ing element executes a fine-grained task
that is typically a basic block or a loop
iteration. Because many processing ele-
ments reside on the same chip, communi-
cation among tasks is very efficient.

have focused to a large extent on instruction-process-
ing problems, such as branch prediction. Dynamic
optimization can also take the form of runtime mech-
anisms that observe execution behavior, predict future
behavior, and use predictions to enhance performance,
typically through speculation. Generalizations of these
techniques will apply to other areas of architecture,
including memory and 1/O subsystems.

Today’s caches use only limited aspects of memory
behavior and speculate in a very limited way on the
data dependencies in memory. Future memory sys-
tems should permit memory renaming, connect stores
and loads, and increase the degree of speculation.
More aggressive approaches may examine values
being accessed from memory and take speculative
actions. IRAM (intelligent RAM) could pave the way
for such intelligent memories.

Challenges

There are three major challenges in this area.

Application programming interfaces. APIs must
allow the exchange of information across software
and hardware boundaries. Research should push
dynamic optimization techniques down into lower
level design by allowing the hardware itself to be
reconfigured on the basis of runtime observations.
Likewise, we should push runtime information up
across the hardware-software boundary by provid-
ing feedback to the application so that it can change
the way it uses the machine. For example, a storage
subsystem might collect information on the virtual
memory’s performance. The information in turn

Computer

could cause the running program to reorganize data
to improve performance.

Some existing systems use static profiling infor-
mation? and dynamic profiling® to permit the
exchange of information between compiler and run-
time systems. However, APIs must go further, to
allow information exchange not only between com-
pilers and runtime systems but also between appli-
cation code and compilers and between runtime
systems and instruction-level architectures, memory
subsystems, and instruction-issue hardware.

To support programmable hardware and network
devices, APIs must provide the compiler with a view
that includes not only the CPU, but also the storage
and networking subsystems. Application designers
could then load object code into these subsystems to
coordinate and optimize their performance for that
application. For example, a storage subsystem could
offer several consistency models, and storage and net-
work subsystems could have programmable tracing
hardware. We could then load object code into these
subsystems to coordinate and optimize their perfor-
mance. To support reconfigurability and liquid archi-
tectures, a compiler might negotiate an instruction set
to optimize a particular program’s performance, or
system designers might use field programmable gate
arrays (FPGAs) to customize the instruction set.

Multiple-layer system evaluation. Sophisticated mech-
anisms that enhance a technology’s performance often
make it harder to predict the complete system’s per-
formance. An apparently insignificant program change
frequently causes a large, unexpected performance vari-



Simultaneous multithreading

Multithreading aims to hide long
latencies when accessing slower memo-
ries either by switching between multiple
execution threads or by interleaving
instructions from multiple threads.
Simultaneous multithreading (SMT)3
interleaves blocks of instructions from
multiple threads. Because it combines
parallelism both between threads
(interthread) and within a single thread
(intrathread), it can issue many instruc-
tions simultaneously to different func-
tional units (or pipelines) in superscalar
architectures. SMT architectures, like
any multithreaded architecture, perform
better in multiple hardware contexts (a
separate register set, program counter,
and status registers). Without multiple
contexts, when a context must change
from one thread to another, the processor
must save the registers belonging to one
thread and load the registers belonging
to another—a procedure that can be pro-
hibitively expensive.

Superspeculative architectures
Modern processors use aggressive

branch-prediction techniques to eliminate
pipeline stalls from conditional branch
instructions. Superspeculative architec-
tures* go beyond control speculation to
use data speculation also. The basic con-
cept is that most producer instructions
generate highly predictable values, so
consumer instructions can speculate their
source operands and begin executing even
before producer instructions complete
their execution.

slower memories, IRAM (intelli-

gent RAM) designs* move at least
some processing to DRAM chips.
Typically, such chips limit their process-
ing capability to avoid using large silicon
areas for processor logic. One recent
design demonstrated IRAM chips with a
1-Mbit DRAM and a CPU that performs
only integer arithmetic on 8-, 16-, or 32-
bit values.> IRAM chips can be used in
conjunction with conventional CPU
chips to enable single-instruction, multi-
ple-data or vector processing for multi-
media applications. Designers may also

T 0 mitigate the negative effects of

be able to delegate memory management
and garbage collection to the IRAM
chips and raise the data abstraction visi-
ble to CPUs.
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ation. This uncertainty makes it difficult to design many
subsystems, including compilers and operating systems.
Researchers must investigate techniques that will qual-
itatively improve our ability to predict system perfor-
mance. Models for performance prediction should be
portable across architectures. There seems to be an
important tension between making systems more adap-
tive and making them more predictable, although these
goals need not be mutually exclusive.

Design of dynamic, adaptive, and scalable systems.
Computer applications will continue to broaden in
both scope and scale. Dynamic optimizations and
adaptations should consider both dimensions. At one
extreme are million-processor systems; at the other
are very small scale systems, such as processing
devices in appliances and disposable systems. Design
principles for dynamic and adaptive architectures
must consider the entire spectrum.

Directions and recommendations

There are three major directions in this area. Some
of these, like APIs and a research infrastructure, are
recurring themes, but we include them to show how
a particular research direction will address more than
one challenge.

Application programming interfaces. New principles
are needed to construct APIs. The API should not only
permit the exchange of information across hardware
and software layers, but also emphasize composabil-
ity. At one level, we should be able to specify the
desired behavior of each lower level subsystem. For
example, a compiler should be able not only to pro-

gram the CPU and cache parameters directly, but also
to specify a desired memory-consistency model or to
program network components and the 1/0O subsystem.
Likewise, we should be able to specify the desired
behavior of any higher level subsystem.

Research infrastructure. Researchers should vali-
date these API design principles experimentally. This
requires defining evaluation metrics, creating ways to
implement the APIs, and designing experiments to
evaluate the implementations. To meet these goals, an
infrastructure must be created that will let researchers
experimentally evaluate architectural alternatives and
compiler and runtime interactions with the hardware
architecture. To design APIs and frameworks, we will
need approaches that cross many disciplines, includ-
ing hardware architectures, compilers, runtime sys-
tems, networking, and operating systems. With the
resulting frameworks, designers will be able to create
composable, adaptable systems that fall anywhere on
the very large to very small scale spectrum.

Predictive models and methods. We will need models
and analytical methods that accurately predict the per-
formance of dynamic and adaptive systems.
Performance in this context implies not only execution
speed, but also properties such as QoS, fault tolerance,
availability, survivability, and security. The models and
analytical methods should reflect the contribution of
each change to overall system performance. A neces-
sary first step to creating models and methods is to iden-
tify the interrelationships among system components
and reflect them in the system models. The relation-
ships may be based on empirical observations. The
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Outlook on Software
Systems: Facing
the Challenge of
Component Reuse
and Development

ware system development is to

develop a broadly applicable tech-
nology for component reuse and compo-
sitional development. Designers of many
existing complex products—automobiles,
airplanes, and even computers—compose
off-the-shelf components from different
manufacturers into complete systems. In
compositional development, the devel-
oper defines specifications for both the
functionality and interface of the desired
components and then builds the product
from existing components that meet those
specifications. Component manufactur-
ers in turn develop components with fre-
quently requested specifications.

The software industry has not yet suc-
ceeded in adopting this concept on any
broad scale. Large ““‘components,” operat-
ing systems, database systems, and so on,
are widely reused. A few component
libraries at the code level are widely and
successfully used, but these are mostly in
specialized domains such as graphical inter-
faces (Visual Basic, Visual C++, JavaBeans)
and may not be suitable for large-scale sys-
tems. Systems that define interfaces (object
request brokers), such as CORBA, COM/
DCOM and their competitors, provide a
framework for interfacing independently
developed components.

But too many significant software sys-
tems are developed largely without the

T he key research challenge for soft-

—

Designers of many existing complex

products—automobiles, airplanes,
and even computers—compose off-
the-shelf components from different

manufacturers into complete systems.

use of existing components. Efforts to
build significant systems using commod-
ity components have by and large been
unsuccessful. This argues first that cur-
rent approaches are inadequate and sec-
ond that they are inadequate because the
fundamental conceptual foundations for
compositional development are inade-
quate. Indeed, the lack of effective meth-
ods for compositional development is a
major cause of the so-called software cri-
sis. More effective compositional devel-
opment processes would produce more
robust and efficient software systems and
lower the cost and effort to develop them.

Object-oriented design methods pro-
vide some foundation for reuse at the code
level.t Abstract type-oriented languages
(such as Ada) or object-oriented languages
(such as C++) provide features that let
designers compose new types or objects
from already defined ones. Object-
oriented languages also commonly pro-
vide mechanisms that let designers extend
the template interface. These features and

mechanisms have been useful but do not
appear to extend to levels of abstraction
above procedural code. Composition
must take place at analysis and design lev-
els. Design patterns? and design databases
represent needed research directions.

small but growing community of
Aresearchers is developing concepts

and methods for component reuse
and compositional development. Among
the major research directions are software
frameworks and architectures,® which are
toolkits for developing families of soft-
ware systems. Research is also being done
to develop interface and high-level speci-
fication languages that support composi-
tion from components, particularly those
that are domain-specific. The number of
conferences and workshops with a major
focus on reuse and compositional devel-
opment—the IEEE International Confer-
ence on Software Reuse, the Workshop
on Institutionalization of Software Reuse,
the IEEE International Conference on
Software Engineering, ACM’s Conference
on Object-Oriented Systems, Languages,
and Applications (OOPSLA), and the
European Conference on Object Oriented
Programming (ECOOP)—indicates the
level of interest in research on composi-
tional development and component reuse.
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models should account for the behaviors of both the
application and its execution environment.

The next step should be to experimentally validate
the models and analyses. A cross-disciplinary
approach will help in evaluating systems as a whole
and in identifying how each system component con-
tributes to performance.

Global-scale systems. Current system design meth-
ods are suitable only for specific classes of systems
(reconfigurable systems that use FPGAs or ASICs
or shared-memory symmetric multiprocessors, for
example). Research must extend these techniques to
develop design approaches for both large- and small-
scale systems. Integral to design methods is research
on how to systematically map application behaviors

Computer

onto execution environment behaviors. Research on
the design of APIs and metrics should significantly
influence design methods.

sentative of the numerous challenges and direc-

tions that await the computing community. The
workshop contains position papers and group findings
that highlight many other challenges and directions in
other areas of systems research. Also, some of the rec-
ommendations we have presented, although specific
to systems research, are in line with a recent interim
report from the President’s Information Technology
Advisory Committee (http:/Aww.hpce.gov/ac/interim/),
which covers all areas of technology.

T he three challenges we have examined are repre-



If we could distill one major thought from the work-
shop results, it would be this: Systems research is facing
an unprecedented challenge. Systems developers are fac-
ing a major discontinuity in the scale and nature of both
applications and execution environments. Applications
are changing from transforming data to directly inter-
acting with humans: They will use hardware and data
that span wide-area, even global, networks of resources
and involve interactions among users as well. Even the
architecture of individual processors is uncertain.

Despite this uncertainty, we see three clear first steps
to addressing the identified challenges.

Define a new paradigm for systems research. The tra-
ditional role of systems research is giving way to inter-
dependent programs that focus on a range of disciplines.
Defining an appropriate model for cross-disciplinary
research that spans systems, systems integration, appli-
cations, and hardware architectures should be a high pri-
ority for the research community and funding agencies.

Attack problems common to all system development.
Composability, risk management based on early eval-
uation, and adaptability are problems that plague the
development of all systems and represent critical bar-
riers to developing dynamic global-scale systems.
Emphasizing innovative approaches to these common
problems will benefit all subdisciplines of systems
research and make it easier to develop applications.

Build a research infrastructure. Experimental
research on large-scale distributed systems is almost
intractable because of the cost and effort to deploy
meaningful experiments. A research program to
define and instantiate a family of infrastructures is a
prerequisite to experimental research on large-scale
distributed systems. [J
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