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Abstract—Cache side-channel attacks have exposed serious
security vulnerabilities in modern architectures. These attacks
rely on measuring cache access times to determine if an access
to an address is a hit or a miss in the cache. Such information
can be used to identify which addresses were accessed by the
victim, which in turn can be used to reveal or at least guess the
information accessed by the victim. Mitigating the attacks while
preserving the performance has been a challenge. The hardware
mitigation techniques used in the literature include complex cache
indexing mechanisms, partitioning cache memories, and hiding
or undoing the effects of speculation. In this paper, we present a
Guard Cache to obfuscate cache timing, making it more difficult
for cache timing attacks to succeed. We create false cache hits
by using the Guard Cache as a Victim Cache, and false cache
misses by randomly evicting cache lines. Our obfuscations can be
turned-on and turned-off on demand to protect critical sections or
randomly to further obfuscate cache access times. We show that
our false hits cause very minimal performance penalties ranging
between -0.2% to 3.0% performance loss, while false misses
can cause higher performance losses. We also show that our
approach causes different number of cache hits and misses and
different addresses causing misses when compared to traditional
caches, demonstrating that common side-channel attacks such
as Prime &Probe, Flush &Reload or Evict &Time are likely to
misinterpret victims’ memory accesses. We use very small Guard
Caches (1KiB-2KiB at L1 or 2KiB-4KiB at L2) requiring very
minimal additional hardware. The hardware needed for random
evictions is also minimal.

Index Terms—Cache Side-Channel attacks, Prime & Probe,
Flush & Reload, Evict & Time, Victim Cache

I. INTRODUCTION

Recent hardware attacks have exposed serious security
vulnerabilities in modern architectures. These attacks can be
successful in revealing encryption keys used in some crypto-
graphic applications, as well as revealing information resulting
attacks based on speculative executions such as Spectre [1],
[2]. Among the earliest attacks discovered is a side-channel to
information stored in cache memories by observing memory
access times, which in turn reveal if an access (to an address)
is a hit or a miss in cache. An attacker can use this side-
channel to observe the memory addresses accessed by a
victim and deduce additional information such as keys used by
encryption codes such as AES [3], [4]. Yet another modern
hardware side-channel attack is made possible by the use of
out-of-order and speculative execution of instructions through
modern processor pipelines [1], [2]. Even these attacks rely
on observing cache accesses to obtain secret information.

In this paper, we focus on developing techniques to obfus-
cate only cache side-channels by causing false hits and false
misses. A false hit may appear as if the requested data is a
hit in cache, when the attacker is expecting a miss. This is
achieved by using a Guard Cache as a Victim Cache [5]. A
Guard Cache is a small fully associative cache that hosts data
evicted (i.e., a victim) from primary cache. On an access to
this evicted item, if it is found in the Guard Cache, the data is
moved back to the primary cache. Given that the Guard Cache
access times are comparable to primary cache access times, the
missing data found in the Guard Cache appears as if it was
in the primary cache. False misses are created by periodically
and randomly evicting data (selected randomly) from cache
memories. Both these obfuscation techniques can be used at
any cache level (L1-I, L1-D, L2, LLC or even with TLBs).
In this paper, we will show that these techniques can prevent
or at least mitigate well-known side-channel attacks including
Evict &Time [6], Prime &Probe [6], [7], Flush &Reload [8],
as well as Spectre and its variants [2], [9]–[11] since even
these attacks also depend on cache timing analyses.

The main contribution of our work is the different ways
in which cache access times are obfuscated which are item-
ized below. While there are other randomization techniques
proposed to prevent side-channel attacks, they focused on
randomization of a single aspect of a system, such as delaying
some cache accesses, cache partitioning, life-times associated
with cached data or use of interfering threads to create random
cache accesses. A long-term observation can potentially reveal
the patterns of randomization used by these techniques. We
randomize several aspects of caches and the combinations
themselves can be randomly changed, making it significantly
more difficult to observe any meaningful patterns. The degree
of randomization can also be varied to change the level of
obfuscation with concomitant impact on performance.

• Obfuscating Cache Timing With False Hits: We use a
small fully associative Guard Cache to create false hits.
Data item evicted from the primary cache1 is saved in the
Guard Cache. If the evicted item (or victim) is accessed,
it can be retrieved from the Guard Cache, making the
access appear as if it was a hit in the primary cache, since
the access times to a Guard Cache and primary cache are

1Guard Caches can be used for any cache including L1-Instruction, L1-
Data, L2 and LLC.



comparable. We also rely on random replacement policy
when entries in the Guard Cache need to be replaced.
Additionally, not all data evicted from primary caches or
”victims” are placed in the Guard Cache, thus causing
false hits more randomly. Yet another obfuscation that
is investigated is to use the Guard Cache more like a
”Miss Cache” [5] - on a cache miss, the missing data is
brought into the Guard Cache instead of into the primary
cache. We saw negligible performance gains or losses
with the Guard Caches. While larger Guard Caches can
provide more protection since victims can be held for
longer periods of time, they require larger silicon areas
and consume more power. We found that 1KiB to 2KiB
at L1 level and 2KiB to 4KiB at L2 or LLC Guard
Caches are sufficient to prevent several types of side-
channel attacks.

• Obfuscating Cache Timing With False Misses: We
randomly evict data from the primary cache, but not use
the Guard Cache for saving the evicted data. This causes
false misses when an attacker is expecting a hit. The
frequency of evictions, as well as what types of data,
(e.g., only unmodified data) is evicted can be varied to
change cache misses.

• Safe-mode execution: The obfuscation using either or
both false hits and false misses can be turned-on only
when needed by the user to protect critical sections of
their programs. It is possible to randomly switch between
safe and unsafe modes of execution to make it even more
difficult for an attack to succeed.

In the rest of the paper, we will describe our techniques,
demonstrate that they prevent some well-known attacks, and
evaluate the impact of our techniques on execution perfor-
mance as well as complexity of the additional hardware
needed.

II. CREATING FALSE HITS AND FALSE MISSES

Cache side-channel attacks rely on measuring memory
access times to determine if an access to a specific cache
line (or set) is a hit or a miss: a miss causes longer access
times. This observation can be used by an attacker to obtain
information regarding which memory addresses a victim ac-
cessed, and possibly retrieve data from those addresses. Victim
Caches are generally very small and fully associative caches
and were originally used to improve cache performance by
eliminating cache thrashing in direct mapped caches [12].
In a more recent work [13], victim caches were used to
house data evicted by speculative load accesses (for example,
ReViCe [13]). We feel this requires complex bookkeeping
since one need to distinguish between speculative and non-
speculative load accesses, as well as removing misspeculated
data from victim cache. We use Guard Caches similar to
Victim Caches to create false hits – any data item evicted from
the primary cache is saved in the Guard Cache. If the evicted
item is accessed, it can be retrieved from the Guard Cache,
making the access appear as if it was a hit in the primary
cache, since the access times to a Guard Cache and primary

cache are comparable. We also rely on random replacement
policy when entries in the Guard Cache need to be replaced,
to further obfuscate information leak. Also, not every data
evicted from primary cache is placed in the Guard cache but
treated as a normal cache miss.

We can also use the Guard Cache as a Miss Cache [5]–
the missing data is brought into the Guard Cache, unlike in
the case of a victim cache where the missing data is brought
into the primary cache and the evicted data is stored in the
Guard Cache. Such data items are likely to be short lived
in Guard Cache unlike when the data is brought to primary
cache since Guard Cache is very small compared to primary
caches. This can add to additional obfuscation to cache timing.
These different uses of the Guard Cache makes it difficult
for an attacker to discover the presence of a Guard Cache,
its size or when it is used or not used. We saw negligible
performance gains or losses with Guard Caches: larger Guard
Caches can provide more protection since victims can be held
for longer periods of time, but can lead to higher silicon area
and consume more power. We found that even a small Guard
Cache (1KiB or 2KiB at L1 level and 2KiB to 8KiB at L2
or LLC levels), is sufficient to prevent several types of side-
channel attacks.

We create false misses by randomly evicting cache lines.
On every L1-D (or L2) cache access that is a hit, we select
a cache line randomly2 and evict the selected data based
on the eviction frequency but do not place it in the Guard
Cache. We varied the frequency of evictions from 5% to
20%. The random evictions lead to performance loss but
if the percentage of evictions is kept below 5% (which is
sufficient to prevent currently known side channel attacks),
the loss is small. Additionally, as we will show in Section III,
the evictions can be randomly turned on and turned off to
both increase obfuscation and reduce performance penalties.
The false misses will make attacks using such techniques as
Evict &Time [6], Prime &Probe [6], [7], Flush &Reload [8]
more difficult since the attacker will see many more misses
than those caused by victim accesses.

Figure 1 shows the working of the Guard Cache in the
memory hierarchy. The arrow labeled ”1” shows the case when
the Guard Cache is not used - data evicted from the primary
cache is not stored in the Guard Cache. Arrow labeled ”2”
indicates when a data item is evicted from a Primary Cache
(L1, L2 or LLC) and stored in the Guard cache (used as a
victim cache). Arrow labeled ”3” indicates the case when the
missing data is brought into the Guard cache (used as miss
cache) and not into the Primary Cache. Arrow labeled ”4”
shows the case when false misses are activated. As described
above, data from primary cache is evicted randomly.

We can deploy both false hits and false misses together to
increase the randomization of cache timing. Figure 2 shows a
simulated Prime & Probe attack. The left column shows the

2In our experiments, we only evict unmodified data to avoid the need for
write-back along the memory hierarchy. However, one can decide on which
types of cache lines to evict e.g., most frequently used vs least frequently
used, creating different levels of obfuscation.
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Fig. 1. Flowchart of the Guard Cache

normal mode indicating what attacker sees as cache misses
caused by victim’s code (evicting attackers primed data). The
middle column shows that the attacker sees additional cache
misses caused by false misses strategy (shown in red). The
right column indicates the case when both false hits (using
the Guard Cache) and false misses are turned on. Now some
misses caused by victim’s access, seen in the left column, are
missing (shown in the shaded yellow area) due to false hits.

The use of the Guard Cache causing false hits may also
prevent attacks such as Spectre. The left hand side of Figure 3
shows a successful attack using a proof-of-concept code from
[14]: characters of the secret key (The Magic Words) are
visible. The right hand side of the figure shows the case when
a Guard Cache is used to cause false hits, and it can be seen
that the attack is not successful (the characters of the secret
are not visible).

Speculative attacks are based on flushing array bounds
variables from caches leading to delays in checking for out-of-
bounds accesses (since the array bounds variables are not in
the cache) and the attacker can rely on speculative execution to
bring large amounts of out-of-bounds data to the cache during
this delay. Our Guard Cache prevents such attacks since it will
capture the flushed array bounds variable, reducing the time
for bounds check, and limiting the accesses to out of bounds
data.

For attack models based on cache timing analyses to differ-
entiate between cache hits and misses, our Guard Cache and
random evictions will make attacks significantly more difficult
as the number of hits and misses will change. If the Guard
Cache is used to capture every evicted data, an attacker maybe
able to deduce the size of the Guard Cache. That is why we
propose to randomly change the fraction of evicted data that is
stored in the Guard Cache, making it difficult for the attacker
to observe the size of the Guard Cache.

As shown in the table at the bottom of Figure 3, even a 1KiB
Guard Cache at L1-D level obscures data during Spectre attack
(and prevents the attack), and while 3% random evictions
may not completely prevent this attack, 5% or higher rates of
evictions prevent the attack. While these numbers are based on

the available proof of attack codes, the sizes of Guard Caches
and the frequencies of evictions can be varied to achieve
desired levels of protection.

III. RESULTS AND ANALYSIS

We evaluated our design using Gem5 [15] System-call
Emulation (SE) mode to accurately model a single high
performance X86 CPU core. The configuration uses 64KiB
L1-D (8-Way), 32KiB L1-I (4-way) and 2MiB L2 (16-way)
caches. We executed several SPEC CPU2017 benchmarks in
system call emulation mode, fast forwarding for 1 billion
instructions, then collecting performance data for 500 million
instructions. We evaluated the benchmarks in baseline (no
false hits or misses), only false hits with different Guard Cache
sizes, different frequencies for using Guard Cache as a victim
cache or as a miss cache, only false misses with different rates
of random evictions, and with both false hits and misses. We
studied the use of false hits (using Guard cache) and false
misses at both L1-D and L2 levels.

A. Analysis of False Hits:

In this section, we present the performance impacts caused
by our Guard Cache for several different SPEC 2017 bench-
marks. We varied the Guard Cache sizes (1KiB-2KiB at L1-D
level and 2KiB-4KiB at L2 level). We have already shown
(Figure 3) that these sizes are more than sufficient to prevent
currently known side-channel attacks, and these sizes for
Guard Caches require very small additional hardware. We
varied the fraction of the time a data item that is evicted
from the primary cache (L1-D or L2) is moved to the Guard
Cache: the first number for each result in Figure 4 shows this
percentage. We varied how often the Guard Cache is used
as a Miss Cache, that is, on a demand miss, the missing
data is brought in to the Guard Cache and no data is evicted
from the primary cache: the second number for each result
in Figure 4 shows this percentage. Thus, 90-10 shows the
results when 90% of all evictions from the primary cache
are moved to the Guard Cache (used as victim cache), and
10% of demand misses are brought into Guard Cache (used
as miss cache). As can be seen, the results in Figure 4 show
very minimal impact on performance ranging between -0.2%
to 3.0% performance loss. Negative bars indicate performance
gains – LRU replacement policy for primary caches results in
performance gains than when Random Replacement is used.
The use of Guard Cache as a Miss Cache results in slightly
higher performance losses than when used as a Victim Cache.

Figure 5 shows some memory access behaviors of appli-
cations including average number of data accesses per 1000
instructions and average number of cache misses per 1000
instructions (first four columns in the figure). The figure also
shows the average number of L1-D and L2 cache misses
that are satisfied by the Guard Cache per 1000 instructions
executed. Guard Cache is likely to result in performance
benefits when application exhibits higher cache conflicts; this
can be seen from higher percentage of false hits. Consider
cactus with 2.92 L1-D misses per 1000 instructions without



Fig. 2. Simulated Prime & Probe Attack: False Hits and False Misses Obfuscate Cache Misses and Timing

Fig. 3. Spectre Attack (a) Baseline Mode (b) With Guard Cache

a Guard Cache and a Guard Cache of even 1KiB effectively
eliminates these cache misses (shown as false hits).

This also indicates that most side-channel attacks such
as Prime&Probe, Evict&Time or Flush&Reload that rely on
observing which accesses caused misses, will fail because
most of such cache misses become invisible with the use
of a Guard Cache. Figure 2 in Section II demonstrated that
Guard Cache makes many of the L1-D evictions caused by
Prime&Probe attack invisible. On the other hand, lbm has very
high L1-D miss rates (21.36 misses per 1000 instructions at
L1-D), but these misses are not satisfied by Guard Cache.
Such a behavior may potentially indicate that the application
is a streaming application. Figure 5 shows false hits data for
different Guard Cache sizes. It should be noted that most
applications see very insignificant performance impact due

to Guard Caches that are larger than 4KiB or 8KiB. Higher
number of data memory accesses places higher demand on
Guard Cache and large Guard Caches will be more beneficial
for such applications. The application roms appears to benefit
from larger Guard Cache (more false hits with larger Guard
Cache). This behavior may indicate capacity misses since
the application shows high MPKI (11.6 misses per 1000
instructions), but 1KiB Guard Cache shows very minimal
benefit, but our goal is not improved performance but hiding
some cache misses.

Figure 5 also includes additional cache hits due to Guard
Caches at L2 level. The L2 cache misses that are found in
L2 level Guard Cache is very small. This is expected since
there are fewer memory accesses and misses at L2 level.
Moreover it should be noted that we use Random Replacement
policy with our Guard Caches. This means that a data item
evicted from the primary cache and moved to the Guard Cache
may be evicted later when another data item evicted from the
primary cache needs space in the Guard Cache and Random
Replacement policy may cause more recently evicted item to
be replaced in the Guard Cache.

It should be noted that the data in Figure 4 and Figure 5
are collected with no side channel attack. However, when an
attack such as Prime & Probe, Flush & Reload or Evict &
Time is underway, the GC and random evictions will have
higher impact on performance. These attacks result in higher
levels of cache misses, many of which are caught by the GC,
and the random evictions present unexpected misses to the
attacker. For example, for simulating a proof of concept attack
representing Prime & Probe as well as Specture attack (the
same attacks that we used to produce Figure 2 and Figure 3),
1 KiB Guard Cache at L1-D resulted in more than 100%
additional cache hits and 5% random evictions caused 200%
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Fig. 4. Guard Cache used as a Victim Cache and Miss Cache. X-axis designates the fraction of the evicted lines that are moved to Guard Cache (VC%)
and the fraction of demand misses that are brought to Guard Cache (MC%)
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L1-D Misses
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instructions

L2 accesses

per Million

instructions

L2 Misses

per Million

instructions
1KiB GC1 2KiB GC1 2KiB GC2 4KiB GC2

bwaves_s 286.80 3.95 3955.43 3952.57 0 0 0 0

cactuBSSN_s 474.63 2.92 96860.32 288.84 1362096 1378503 0 0

deepsjeng_s 402.52 0.28 6853.09 115.76 4877 7752 4 4

exchange2_s 158.94 0.00 7.28 2.57 0 0 0 0

fotonik3d_s 395.64 0.05 3146.18 44.52 0 0 0 0

imagick_s 425.87 7.38 7392.09 294.19 151 322 0 0

lbm_s 333.96 21.36 21445.10 13027.49 34 56 1 2

leela_s 361.94 0.15 979.39 8.79 6104 11145 0 0

mcf_s 459.63 15.51 15393.62 5692.01 52734 96158 767 1472

roms_s 335.88 11.60 11610.84 6499.45 646139 2221141 6 7

wrf_s 331.86 2.97 3417.83 28.36 5140 9893 0 0

x264_s 362.58 0.06 1174.48 50.09 28 83 0 0

xz_s 383.38 0.25 349.82 176.36 1123 2594 6 10

Geomean 351.78 0.71 3090.07 228.87

 L2 Misses that 

are found in GC 2
Baseline

 L1 Misses that 

are found in GC1

Fig. 5. Additional cache hits due to Guard Cache

additional misses.

B. Analysis of False Misses

In the next set of experiments, we evaluate the use of
random evictions to create false misses. Figure 6 shows the
performance loss for SPEC 2017 benchmarks when cache lines
are randomly evicted. On every cache access (either at L1-D
or L2) that is a hit, we decide if a random cache line should be
evicted based on a selected frequency. The data is for different
frequencies of random evictions (or false misses). Higher
frequency of evictions will cause higher performance losses.
For example, if a cache line is evicted at 20% of the time a L-
1D cache access is a hit, we see a geometric mean performance
loss of 170% for SPEC 2017 benchmarks. This is unacceptable
performance loss; however, it can cause significant obfuscation
of cache access times. We anticipate that 5% frequency of
random evictions is adequate to cause sufficient obfuscation
which causes a geometric mean performance loss of 23%. In
our experiments, we evicted both modified and unmodified
data from caches. The performance loss due to random evic-
tions can be minimized if only unmodified data is selected for
random evictions. However, an attacker may circumvent the

impact of random evictions by repeatedly writing the same
data.

Application behavior again causes different amounts of
false misses. Figure 7 shows additional cache misses per
1000 instructions encountered by applications because of using
different rates of random evictions. The figure also includes
L1-D cache accesses per 1000 instructions and cache misses
for 1000 instructions in the baseline. Since we apply random
evictions on every (L1-D) cache access that is a hit, higher
cache accesses can lead to more frequent random evictions.
However, applications that have higher miss rates will likely
see less impact due to random evictions (or fewer additional
cache misses encountered by the applications). Streaming
applications, on the other hand, may not see the effects of false
misses since the randomly evicted data may not be accessed.
Consider for example, lbm and wrf s, both have about the
same number of L1-D accesses per 1000 instructions, but lbm
has higher miss rate (MPKI of 21.36 compared to 2.97 for
wrf s); this leads to more random evictions and additional
cache misses for wrf s than those for lbm. On the other
hand, mcf has higher L1-D accesses (and higher miss rates)
explaining the higher number of additional cache misses
encountered by the application. The benchmark exchange2 s
has fewer L1-D accesses but very low miss rates - indicating
that most of the accesses are hits which causes higher number
of random evictions. It should be noted that higher false misses
can aid in further mitigating side-channel attacks (Figure 2
shows false misses caused significantly more misses than those
caused for Prime&Probe attack).

To simulate turning on protection only when needed (for
example, to protect critical sections) we experimented by
turning-on false misses only for a fraction of the application
execution time. For example, when the false miss strategy
is enabled 10% of the execution time of an application,
false misses are introduced for 50 million instructions (out
of 500 million instructions simulated in our experiments).
Figure 8 shows the geometric mean performance losses for



Benchmark
L1D 

Freq 5% 

L1D

Freq 10%

L1D

Freq 20%

L2 

Freq 5% 

L2

Freq 10%

L2

Freq 20%

bwaves_s 44% 98% 233% 0% 0% 0%

cactuBSSN_s 2% 14% 133% 29% 57% 118%

deepsjeng_s 14% 42% 118% 2% 5% 12%

exchange2_s 6% 16% 79% 0% 0% 0%

fotonik3d_s 8% 24% 102% 2% 5% 12%

imagick_s 55% 184% 530% 1% 6% 15%

lbm_s -2% 31% 152% 1% 2% 3%

leela_s 27% 69% 149% 1% 1% 3%

mcf_s 7% 38% 114% 1% 1% 3%

roms_s 62% 117% 202% 0% 0% 0%

wrf_s 47% 122% 318% 5% 8% 14%

x264_s 35% 83% 175% 0% 1% 2%

xz_s 17% 54% 158% 0% 0% 0%

Geomean 23% 62% 173% 3% 6% 11%

Perfomance Loss(%)

Fig. 6. Average performance loss using random evictions (FalseMiss Scheme) at different eviction frequencies in L1D and L2 caches

the SPEC 2017 benchmarks. As can be seen, if random
evictions are applied only 10% of the applications’ execution,
we only see a geometric mean performance loss of 2% at 5%
random eviction rate at L1-D level (not 23% if the random
eviction takes place during entire execution times as shown
in Figure 6). Even when false misses are introduced for half
of the application execution, the geometric mean performance
loss is 9% at 5% random eviction rate. We feel that security
protection should be used only when needed - to protect
critical segments of applications which minimizes performance
losses.

The performance loss at L2 due to random evictions is sig-
nificantly smaller since there are significantly fewer accesses
to L2. We only select cache data for eviction when L2 cache
is accessed and the access is a hit.

Benchmark
L1-D Accesses

per 1000

instructions

L1-D Misses

per 1000

instructions

L1D 

Freq 5% 

L1D

Freq 10%

L1D

Freq 20%

bwaves_s 286.80 3.95 15.05 43.85 127.00

cactuBSSN_s 474.63 2.92 22.40 50.36 184.13

deepsjeng_s 402.52 0.28 20.04 42.02 92.87

exchange2_s 158.94 0.00 8.10 16.53 37.98

fotonik3d_s 395.64 0.05 19.65 39.73 80.30

imagick_s 425.87 7.38 21.18 61.04 192.48

lbm_s 333.96 21.36 0.99 25.27 90.56

leela_s 361.94 0.15 29.81 38.02 95.27

mcf_s 459.63 15.51 14.89 41.81 200.91

roms_s 335.88 11.60 24.17 42.05 104.91

wrf_s 331.86 2.97 16.31 43.48 123.58

x264_s 362.58 0.06 19.41 42.14 89.32

xz_s 383.38 0.25 19.09 40.77 93.45

Geomean 351.78 0.71 14.68 38.92 106.94

Baseline  Additional L1 MPKI

Fig. 7. Additional L1 Misses per Kilo Instructions for different frequencies
of random evictions

Protection 

activation time (%)

L1D 

Freq 5% 

L1D

Freq 10%

L1D

Freq 20%

10% 2% 5% 16%

50% 9% 26% 81%

100% 23% 62% 173%

Perfomance Loss(%)

Fig. 8. Performance Loss when random evictions at L1-D are activated only
for a portion of application execution times

C. Combined Analysis

In the final set of experiments, we used both Guard Cache
(i.e., false hits) and random evictions (i.e., false misses). The
performance losses are similar to those when only false misses
are in place. The performance impact of Guard Cache was
negligible. The results are very similar to those shown in
Figure 6.

D. Discussion

Our research should be compared with techniques that
focus on mitigating side-channel attacks. As will be described
in Section IV, known techniques reported average losses
ranging between 1% and 15% for various SPEC benchmarks
(SPEC2000, SPEC2006 and SPEC2017). Many of these tech-
niques require changes to cache addressing, ability to lock
cache sets for different processes, or encrypting addresses.
Our techniques proposed in this paper (i.e., false hits and
false misses) require minimal changes to cache memories and
insignificant increase in hardware. As we have shown, even
a small Guard Cache can cause sufficient difficulty to side-
channel attacks. Additional techniques such as randomly not
storing data evicted from primary caches (L1-D or L2) in
Guard Cache or using Guard Caches as Miss Caches can
make it difficult for the attacker to determine the presence
of a Guard Cache or the size of such a resource. Likewise, we



have already demonstrated the use of false misses with random
evictions can be used only during a portion of execution.
Additional techniques such as randomly turning on random
evictions and turning off or randomly increasing the duration
of false misses ian be explored.

We use very small Guard Caches (1KiB-2KiB at L1 or
2KiB-4KiB at L2) requiring very minimal additional hardware.
The hardware needed for random evictions is also minimal.
Our techniques can be used along with other approaches for
mitigating cache side-channel attacks such as those described
in Section IV. However, the combination of techniques may
cause higher performance losses while possibly providing
higher levels of protection against security attacks.

IV. RELATED RESEARCH

We will summarize some key works on cache side-channel
attacks that are most closely related to our research.

1) Cache Side-Channel Attacks: Most common side-
channel attacks were reported in [6], [7], [16], [17].

One approach to prevent such attacks is to disallow shar-
ing of cache memories. Dynamically Allocated Way Guard
(DAWG) [18] is a mechanism to secure way partitioning of
set associative caches. Depending on how much of the cache
is set aside for partitioning and if the partitioning is applied at
L2 or L3 cache, the average performance loss for SPEC2006
benchmarks ranges between 7% to 15%. In Partition Locked
Cache (PLcache) [19], each cache line is augmented with a
process ID field and a lock bit L (to prevent other processes
from evicting data). PLCache reported an average of 2%
performance loss for SPEC2000 benchmarks. NewCache [20]
replaces the fixed address decoder of a direct mapped cache
with a dynamic (inverse) line-number mapper, which can be
implemented by content addressable memory (CAM). The
researchers report an average loss of 1% for SPEC2000
benchmarks. Ceaser [21] is another architecture based on
randomized mappings, which employs a Low-Latency Block-
Cipher (LLBC) to translate the physical line-address into an
encrypted line-address, and access the cache with this en-
crypted line-address. In addition, Ceaser periodically changes
the encryption key and performs dynamic-remapping to im-
prove robustness. Since the technique is applied only at LLC,
the researchers report an average performance penalty of 1%
for SPEC2006 benchmarks. ScatterCache [22] is also based on
randomized mappings by associating each address with a set
of up to n-ways. In [23], the authors modify LRU replacement
for shared caches (L2 or LLC) to prevent the eviction of victim
data by an attacker. However, this requires additional bits with
cache lines to track which core contains a copy of the data.
It should be noted that victim’s data may still be evicted if
no other possible cache line can be found for eviction. But
it may be possible to augment this technique with a Guard
Cache to capture victim’s data if it is evicted. The authors
also restrict the use of CLFULSH from user space. In a related
work [24], the authors delay bringing shared data into higher
level caches (e.g., L1) on the first access, making the access
appear as a miss. Our approach is more general and combines

several different randomization techniques to increase the level
of obfuscation.

2) Speculative and Cache Side-Channel Attacks: Some side
channel attacks are based on speculative execution [4], [7],
[18], [25], [26]. Since our focus is on cache timing attacks, we
will not include discussion of techniques specifically designed
for preventing or mitigating such attacks (see for example,
[14], [27], [28]).

3) Other Randomization Techniques: Random Fill Cache
Architecture [29] replaces demand fetch with random cache fill
within a configurable neighborhood window: the missing data
is sometimes provided directly to the processor without bring-
ing to cache. This may help in obfuscating cache timing, there
were no reported studies on the effectiveness of this approach
or potential performance impacts. Covert-Enigma [30] is a
random perturbation-based defense technique that introduces
random timing delays to memory accesses. Ghost Thread [31]
is a defense mechanism against side channel attacks through a
flexible library that injects random cache accesses in the same
address region than the protected process. It uses additional
threads to cause these random accesses, which can be invoked
through library calls. ClepsydraCache [32] assigns each cache
entry a random time-to-live to reduce conflicts on cache
addresses. The idea is obfuscating conflict-based evictions
with time-based evictions. This solution is applicable to LLC
with a minimal performance overhead.

V. CONCLUSIONS AND FUTURE WORK

Cache side-channel attacks use access latencies to determine
if an access is a cache hit or a miss. Attackers may deliberately
evict specific cache lines and observe to see if the victim
accesses that data (causing a miss on the access). A cache
miss causes longer latency and the attacker can observe the
delays using available performance counters.

We proposed and evaluated techniques to obfuscate the
timing by introducing false hits and false misses. We use a
small Guard Cache (a fully associative cache with very similar
access latencies as the primary data caches) to cause false
hits. We use Guard Cache as both a ”Victim Cache” and
a ”Miss Cache”. These different techniques of obfuscating
cache timing can be combined randomly to further increase
noise in the cache timing. We collected performance data using
different Guard Cache sizes; 1KiB to 2KiB at L1-D and 2KiB-
4KiB at L2 cache levels. We varied the percentage of the time
the Guard Cache is activated as a Miss Cache and as a Victim
Cache. We have seen negligible impact on performance; but
we have shown that the use of a Guard Cache can prevent
several side-channel attacks. Additionally, we randomly evict
data from primary cache, potentially causing a cache miss
when a hit is expected. We have collected performance data
by varying the frequency of random evictions. As can be ex-
pected, higher eviction frequencies lead to higher performance
losses, but potentially greater obfuscation of cache timing. Our
techniques incur very minimal hardware (small amounts of
Guard Caches) and minimal complexity to vary the frequency
of random evictions. We believe that the mitigation techniques



should be amenable to being deployed only when needed. The
protection should be turned on only when executing critical
code segments, and turned off otherwise. It may also be
possible to turn-on protection automatically when an attack
is detected or suspected. Numerous approaches for detecting
different types of hardware attacks have been described in
the literature, see for example [33]–[35]. Any of these or
other techniques can be used to detect and enable safe mode
operation. We have shown that performance loss due to false
misses can be minimal if random evictions are turned on only a
for short duration. It may then be possible to gradually increase
the frequency of evictions to increase the level of obfuscation,
trading off performance with higher levels of attack mitigation.
Both Guard Caches and random evictions have significantly
smaller impact on performance at L2 level since there are
significantly fewer accesses to L2 cache.
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