
 1

An Unfolding-Based Loop Optimization Technique

Litong Song1, Krishna Kavi1, and Ron Cytron2

1 Department of Computer Science,
University of North Texas, Denton, Texas, 76203, USA

{slt, kavi}@cs.unt.edu
2 Department of Computer Science and Engineering

Washington University, St. Louis, MO 63130, USA
{cytron}@cs.wustl.edu

Abstract. Loops in programs are the source of many optimizations for improv-
ing program performance, particularly on modern high-performance architec-
tures as well as vector and multithreaded systems. Techniques such as loop in-
variant code motion, loop unrolling and loop peeling have demonstrated their
utility in compiler optimizations. However, many of these techniques can only
be used in very limited cases when the loops are “well-structured” and easy to
analyze. For instance, loop invariant code motion works only when invariant
code is inside loops; loop unrolling and loop peeling work effectively when the
array references are either constants or affine functions of index variable. It is
our contention that there are many opportunities overlooked by limiting the op-
timizations to well structured loops. In many cases, even “badly-structured”
loops may be transformed into well structured loops. As a case in point, we
show how some loop-dependent code can be transformed into loop-invariant
code by transforming the loops. Our technique described in this paper relies on
unfolding the loop for several initial iterations such that more opportunities
may be exposed for many other existing compiler optimization techniques such
as loop invariant code motion, loop peeling, loop unrolling and so on.

1 Introduction

Loops in programs are the source of many optimizations for improving program per-
formance, particularly on modern high-performance architectures as well as vector
and multithreaded systems. Techniques such as loop invariant code motion, loop peel-
ing and loop unrolling have demonstrated their utility among in compiler optimiza-
tions. However, many of these techniques can only be used in very limited cases when
the loops are “well-structured” and easy to analyze. For instance, loop invariant code
motion works only when invariant code is inside loops; loop unrolling and loop peel-
ing work effectively when the loop indices and array references are either constant or
affine functions. Let us first give a brief review on a few common loop optimization
techniques such as loop invariant code motion, loop unrolling and loop peeling, and
discuss the limitations of these techniques.

 2

1.1 Reviews of A Few Loop Optimization Techniques

Loop invariant code motion is a well-known loop transformation technique. When a
computation in a loop does not change during the dynamic execution of the loop, we
can hoist this computation out of the loop to improve execution time performance. For
instance, the evaluation of expression a×100 is loop invariant in Fig. 1(a); Fig. 1(b)
shows a more efficient version of the loop where the loop invariant code has been
removed from the loop.

 for (i = 1; i <= 100; i++) { x = a × 100; y = y + i; }

(a) A source loop

 t = a × 100; for (i = 1; i <= 100; i++) { x = t; y = y + i; }
 (b) The resulting code

 Fig. 1. An example for loop invariant code motion

Modern computer systems exploit both instruction level parallelism (ILP) and
thread (or task) level parallelism (TLP). Superscalar and VLIW systems rely on ILP
while multi-threaded and multiprocessor systems rely on TLP. In order to fully benefit
from ILP or TLP, compilers must perform complex analyses to identify and schedule
code for the architecture. Typically compilers focus on loops for finding parallelism in
programs [26], [27]. Sometimes it is necessary to rewrite (or reformat) loops such that
loop iterations become independent of each other, permitting parallelism. Loop peel-
ing is one such technique [3], [15], [21]. When a loop is peeled, a small number of
early iterations are removed from the loop body and executed separately. The main
purpose of this technique is for removing dependencies created by the early iterations
on the remaining iterations, thereby enabling parallelization.

The loop in Fig. 2(a) is not parallelizable because of a flow dependence between it-
eration i = 1 and iterations i = 2 .. n. Peeling the first iteration makes the remaining
iterations fully parallel, as shown in Fig. 2(b). Using vector notation, the loop in Fig.
2(b) can be rewritten as: a(2: n) = a(1) + b(2: n). That is to say, n − 1 assignments in n
− 1 iterations of the loop can be executed in parallel.

 for (i = 1; i <= n; i++) { a[i] = a[1] + b[i]; }

(a) A source loop

 if (1 <= n) { a[1] = a[1] + b[1]; }
 for (i = 2; i <= n; i++) { a[i] = a[1] + b[i]; }
 (b) The resulting code after peeling first iteration

 Fig. 2. The first example for loop peeling

The loop in Fig. 3(a) is not parallelizable because variable wrap is neither a constant
nor a linear function of inductive and index variable i. Peeling off the first iteration
allows the rest of loop to be vectorizable, as shown in Fig. 3(b). The loop in Fig. 3(b)
can be rewritten as: a(2: n) = b(2: n) + b(1: n-1).
 Loop unrolling is a technique, which replicates the body of a loop a number of
times called the unrolling factor u and iterates by step u instead of step 1. It is a fun-
damental technique for generating efficient instructions required to exploit ILP and

 3

TLP. Loop unrolling can improve the performance by (i) reducing loop overhead; (ii)
increasing instruction level parallelism; (iii) improving register, data cache, or TLB
locality. Fig. 4 shows an example of loop unrolling, Loop overhead is cut in a second
because one additional iteration is performed before the test and branch at the end of
the loop. Instruction parallelism is increased because the first and second assignments
can be executed on pipeline. If array elements are assigned to registers, register local-
ity will improve because a[i] is used twice in the loop body, reducing the number of
loads per iteration.

 for (i = 1; i <= n; i++) { a[i] = b[i] + b[wrap]; wrap = i; }
 (a) A source loop

 if (1 <= n) { a[1] = b[1] + b[wrap]; wrap = i; }
 for (i = 2; i <= n; i++) { a[i] = b[i] + b[i-1]; }
 (b) The resulting code after peeling first iteration

 Fig. 3. The second example for loop peeling

 for (i = 2; i <= n; i++) { a[i] = a[i-2] + b[i]; }
 (a) A source loop

 for (i = 2; i <= n-1; i = i+2) { a[i] = a[i-2] + b[i]; a[i+1] = a[i-1] + b[i+1]; }
 if (mod(n-2, 2) == 1) { a[n] = a[n-2] + b[n]; }
 (b) The resulting code after loop unrolling

 Fig. 4. An example of loop unrolling

1.2 Issues

As we mentioned previously, loop invariant code motion, loop peeling and loop un-
rolling are all very practical and important compiler optimization techniques for to-
day’s architectures. Nevertheless, these techniques are only suitable for well-
structured loops, which are relatively easy to analyze. For loop invariant code motion,
it works only when there are clearly and easily identifiable invariant code inside loops;
for loop unrolling and loop peeling, they usually work when subscripts of array refer-
ences are constants or affine functions. In many practical programs, loops are not
well-structured; but in some cases, these loops may be quasi well-structured ones.
That is to say, they may be converted into well-structured. For instance, in the loop of
Fig. 5(a), there is only one invariant expression b × c. If we unfold the loop twice,
however, we can get the resulting code in Fig. 5(b), which is much more efficient than
the source loop. This is because: (i) variables x and y become invariant variables in the
resulting loop, so that assignments x = y + a and y = b × c can be removed from the
remaining loop; (ii) expression x × y and x > d are invariant expressions in the remain-
ing loop so they can be hoisted outside the remaining loop, which can actually be done
by the conventional loop invariant code motion; (iii) because expression x > d is in-
variant during the dynamic execution of the remaining loop, it will improve the branch
predication and significantly decrease branch misses of the conditional contained in
the remaining loop. This example shows that an effective transformation of badly
structured loops is possible and desirable.

 4

 while (i <= n) { x = y + a; y = b × c; if (x > d) i = i + x × y; else i = i + 1; }
 (a) A source loop

 if (i <= n) { x = y + a; y = b × c; if (x > d) i = i + x × y; else i = i + 1; }
 if (i <= n) { x = y + a; if (x > d) i = i + x × y; else i = i + 1; }
 while (i <= n) { if (x > d) i = i + x × y; else i = i + 1; }
 (b) The resulting code after unfolding two iterations

 Fig. 5. Loop quasi-invariant code motion

 For the loop in Fig. 6(a), in the two assignments a[i] = b[i] + b[j] and c[i] = c[j] ×
b[i], j and wrap are not constants or affine functions of index variable i, so we have no
way to directly parallelize any of them, and we can not even unroll the loop since we
do not know what is going on for loop-carried dependences. If peeling or unfolding the
loop for two iterations, however, the remaining loop in Fig. 6(b) is very suitable for
parallelization and loop unrolling. Statement a[i] = b[i] + b[i-2] can be parallelized to
be a[3: n] = b[3: n] + b[1: n-2], and statement c[i] = c[i-2] × b[i] can be unrolled to be
c[i] = c[i-2] × b[i]; c[i+1] = c[i-1] × b[i+1]; such that the two statements can be exe-
cuted in parallel since there is no loop-carried dependence among them. Thus, some
pre-optimizations or transformations based on loop unfolding may be very useful and
lead to the application of conventional compiler optimization techniques.

 for (i = 1; i <= n; i++) { a[i] = b[i] + b[j]; c[i] = c[j] × b[i]; j = i − wrap; wrap = 1; }
 (a) A source loop

 if (1 <= n) { a[1] = b[1] + b[j]; c[1] = c[j] × b[1]; j = 1 − wrap; wrap = 1; }
 if (2 <= n) { a[2] = b[2] + b[j]; c[2] = c[j] × b[2]; j = 1; }
 for (i = 3; i <= n; i++) { a[i] = b[i] + b[i-2]; c[i] = c[i-2] × b[i]; }
 (b) The resulting code after peeling two iterations

 Fig. 6. An example for loop peeling and loop unrolling

In this paper we present a technique that is based on loop dependence analysis, so
that traditional optimization techniques can benefit from it. In particular, our goal is to
find a general and systematic way for pre-optimizations of using loop unfolding to
remove anti-dependences as much as possible.

2 Preliminaries

This section provides the background necessary for the rest of the paper, including a
simple language we will use to describe our loop optimization technique and the well-
known static single assignment (SSA) form.

2.1 DO-language

For the purpose of describing our technique, we first introduce a simple imperative
language, shown in Fig. 7; the semantics is similar to C. For the sake of simplifying

 5

the presentation, we assume a call-by-value semantics for function parameters, assume
freedom of side effects, and we treat all functions as primitive operations.

 Sts ::= St | St; Sts
 St ::= Ass | Cond | Loop | Call
 Ass ::= Var = Exp
 Cond ::= if (Exp) { Sts } else { Sts }
 Loop ::= for (Var = Exp; Exp; Var = Var + Exp) { Sts } | while (Exp) do { Sts }
 Call ::= f(Exp*)
 Exp ::= Var | Const | Op(Exp*) | Call
 Op ::= + | – | × | / | > | < | <= | >= | = | ! |

 Fig. 7. The syntax of the DO-language

2.2 Static Single Assignment

Variables inside a loop may be modified for multiple times. In order to perform de-
pendency analyses, it is necessary to distinguish the modifications. Here, we make use
of the well-known static single assignment (SSA) [10] for this purpose. SSA form is a
program representation in which every variable is assigned only once, and every use
of the variable is defined by that assignment. Most compilers use SSA representations
for performing optimizations. Here we use the term to refer to variables as φ-variables
assigned by φ-function. An efficient algorithm that converts a program into SSA form
with linear time complexity (in term of the size of the original program) was presented
in [9].

 x = …; … = x; x1 = …; … = x1;
 x = …; … = x; x2 = …; … = x2;
 (a) straight-line code and its SSA form

if (test) { x = …; } else { x = …; } if (test) { x1 = …; } else { x2 = …; } x3 = φ(x1, x2);
 (b) conditional and its SSA form

 Fig. 8. SSA form transformation

3 Quasi Invariant and Quasi Index Variables

The invariant variables of a loop are those variables whose values are invariant in all
the iterations of the loop. The index variable of a loop is a variable whose values in
successive iterations form an arithmetic progression. Index variables are often used in
array subscripts. Here, we present four notions:
� Quasi invariant variable. A variable that is not invariant inside a loop but will

become invariant after a small number of iterations of the loop.
� Quasi index variable. A variable that is not an index variable but will become

equal to an affine function of the index variable after a small number of iterations
of the loop.

 6

� Unfolding factor of quasi invariant variable. If a quasi invariant variable be-
comes invariant after at least n iterations of a loop, n is referred to as the unfold-
ing factor of the variable.

� Unfolding factor of quasi index variable. If a quasi index variable becomes an
affine function of the index variable after at least n iterations of a loop, n is re-
ferred to as the unfolding factor of the variable.

For instance, in Fig. 5, x and y are quasi invariant variables, and their unfolding fac-
tors are 2 and 1, respectively; in Fig. 6, wrap is a quasi invariant variable but j is a
quasi index variable, and their unfolding factors are 1 and 2, respectively. Now, we
face two issues: (i) identifying quasi invariant and quasi index variables; (ii) calculat-
ing the unfolding factors of these variables.

4 Variable Dependences

Compiler usually relies on both control and data dependence analyses for performing
optimizations [5], [27]. These dependencies relate to those among statements. In our
case, we only rely on dependencies among variables. We recognize two forms of data
dependences: true data dependence, anti-data dependence, and two forms of control
dependences: true control dependence, anti-control dependence.
� True data dependence. The first statement stores into variable x that is later read

by the second statement:
 S1: x = … ; S2: y = … x ;
We say y has a true data dependence to x, and denote the dependence as y δd x.

� Anti-data dependence. The first statement reads x into which the second state-
ment later stores:

 S1: y = … x ; S2: x = … ;
We say y has an anti-data dependence to x, and denote the dependence as y δd

- x.
� True control dependence. The first statement stores into variable x that is later

read by the test of second statement (conditional):
 S1: x = … ; S2: if (… x) y = … ; else y = … ;

� Anti-control dependence. The test of first statement (conditional) reads x into
which the second statement later stores:

 S1: if (… x) y = … else y = … ; S2: x = … ;
We say y has an anti-control dependence to x and denote it as y δc

- x.
According to the definitions above, the variable dependences in Fig. 5(a) and Fig. 6(a)
should be: x δd

- y, x δc i, i δd i, j δd
- wrap, j δd i, i δd i

Note that we only discuss the dependences between scalar variables here.

5 An Extension of Control Dependences

In Sect. 4 we presented two general notions for control dependences. In this section,
we present special cases of conditionals to elaborate on control dependences. Variable
assignments inside conditionals can be distinguished into two cases:
� A variable is assigned inside both then-part and else-part of a conditional:

 7

 for (i = 1; i <= n ; i++) { if (test) { x1 = e1; } else { x2 = e2; } x3 = φ(x1, x2); }
The assignment to a quasi invariant variable can be removed after the variable be-
comes invariant, and the symbolic value (an affine function) of a quasi index vari-
able might be substituted for references to the variable after it is equal to an affine
function. Whether x1 = e1 or x2 = e2 can be removed or not, is dependent on not only
e1 or e2 but also test. If test is variant then neither x1 = e1 nor x2 = e2 can be removed
even if e1 or e2 may be invariant. Otherwise, x3 might be assigned to an incorrect
value. By contrast, if test is invariant then either x1 = e1 or x2 = e2 can be removed as
long as e1 or e2 is invariant. This is because the selection of the value of x3 is invari-
ant inside the remaining loop.

� A variable is assigned both inside one branch of a conditional and outside the
conditional:
 for (i = 1; i <= n ; i++) { x1 = e1 ; if (test) { x2 = e2 ; } x3 = φ(x1, x2); }
Similar to case 1, both x1 and x2 are control dependent on test. In addition, we dis-
tinguish between two cases as below:
� There exist references to x1.

Because the value of test is unknown, x1 = e1 can not be removed even if the test
is invariant. Note that x1, x2 and x3 will be renamed to be a same name in result-
ing program, which will be described in Sect. 8. Accordingly, x2 = e2 can not be
removed either. If x1 and x2 are φ-variables, their operands can not be removed
either, and thus a recursive processing is needed to determine which assignments
can not be removed from the resulting loop. Assuming that we use γ to denote
the closure of this kind of variables, and σ to denote the variables already han-
dled, γ will be defined as follows:
 σ if x∈σ
 γ(x)σ= σ∪{ x} if x∉σ∧x∉φ-variables
 γ(x1)σ∪{ x}∪γ(x2)σ∪{ x} if x∉σ∧x = φ(x1, x2)

� There exists no reference to x1.
Because x1 = e1 is outside the conditional, x2 = e2 can be removed only when as-
signment x1 = e1 is removed (otherwise x3 will be always equal to x1). The special
dependence between x1 and x2 is actually an ad hoc true control dependence,
which is still denoted by x2 δc x1.

After the analysis of control dependences, we need to collect all the related depend-
ences introduced by φ-functions. A φ-function is temporarily introduced only for static
analysis and it will be removed in resulting programs, so any control dependence
introduced by a φ-variable is actually a dependence introduced by the operand vari-
ables of the φ-variable. This is a recursive process and a closure should be computed.
Assuming that there exists a control dependence denoted as x1 δc x2, function ϕ is used
to denote the closure, and σ is used to denote the dependences already handled, func-
tion ϕ can be defined as follows:

 σ if x δc y∧(x δc y)∈σ
ϕ(x)σ = σ∪{(x δc y)} if x δc y∧(x δc y)∉σ∧y∉φ-variables

 ϕ(x, y1)σ∪{(x δc y)}∪ϕ(x, y2)σ∪{(x δc y)} if x δc y∧(x δc y)∉σ∧y = φ(y1, y2)

For instance, suppose we have the following program segment inside a loop:
x1 = 1; if (i > j) { if (k > 5) { x2 = 2; } else { x3 = 3; } x4 = φ(x2, x3); } x5 = φ(x1, x4);

 8

We can compute the following dependences: x1 δc i, x1 δc j, x2 δc i, x2 δc j, x2 δc k, x2 δc
x1, x3 δc i, x3 δc j, x3 δc k, x3 δc x1, x4 δc i, x4 δc j, x4 δc x1

6 Dependence Relation Graph

Based on the two types of data dependences and two types of control dependences, we
can construct a directed graph called dependence relation graph.
Definition 1 (Dependence relation graph). The dependence relation graph (DRG) of
a loop is a directed graph (V, E), where
 V = { x | x is a variable modified inside the loop};
 E = { a directed real thin line from x to y | y δd x }∪{ a directed real bold line from
x to y | y δc x }∪{ a directed dotted thin line from x to y | y δd

- x }∪{ a directed dotted
bold line from x to y | y δc

- x }

for (i = 1; i <= n; i++) {
 a[i] = p[x] + q[y+k];
 if (odd(t)) { w = i − 1; b[i] = b[w] + c[z]; } else { w = i; k = d; b[i] = b[w] + c[z]; }
 t = j + z; z = 2; x = y; y = i + 1;
}
 (a) A source loop

for [x1 = φ(x0, x2); t1 = φ(t0, t2); z1 = φ(z0, z2); y1 = φ(y0, y2); k1 = φ(k0, k3); w1 = φ(w0, w4);]
 (i = 1; i <= n; i++) {
 a[i] = p[x1] + q[y1+k1];
 if (odd(t1)) { w2 = i − 1; b[i] = b[w2] + c[z1]; } else { w3 = i; k2 = d; b[i] = b[w3] + c[z1]; }
 w4 = φ(w2, w3); k3 = φ(k1, k2); t2 = j + z1; z2 = 2; x2 = y1; y2 = i + 1;
}
 (b) The corresponding SSA form

 Fig. 9. An example for SSA form conversion

For instance, assuming that we have a program segment shown in Fig. 9, the DRG for
this program is shown in Fig. 10. Here, the semantics of loop for [Sts] (Var = Exp;
Exp; Var = Var + Exp) { Sts } means that statements in [Sts] will be executed before
the evaluation of loop test. Note that this intermediate form is only used for static
analysis and it will be converted back to original form after optimization.

 k2 k3 k1 i y2

 z1 t1 w2 w1 y1

 z2 t2 w3 w4 x2 x1

 �: δd

�
: δc � : δd

- �: δc
-

 Fig. 10. The DRG of the loop in Fig. 9

 9

7 Identifying Quasi Invariant/Index Variables and Computing
Their Unfolding Factors

In Sect. 3 we defined quasi invariant variables, quasi index variables and their unfold-
ing factors. Using dependence relation graphs, we can identify quasi invariant vari-
ables and quasi index variables, and efficiently compute their unfolding factors.

7.1 Quasi Invariant Variables and Unfolding Factors

� Quasi invariant variable. For any vertex on the DRG of a loop, if among all the
paths ending in this vertex, there is no path that contains a vertex that is a vertex
on a strongly connected path, then the variable corresponding to the vertex is a
quasi invariant variable.

� Unfolding factor of quasi invariant variable. For any quasi invariant variable x
on a DRG, the unfolding factor of x is equal to max{ n | n = the number of de-
pendence δd

- edges (represented by directed thin dotted line) and dependence δc
-

edges (represented by directed bold dotted line) on a path ending in x }.
For instance, in Fig. 10, t1, t2, z1, z2, k1, k2 and k3 are all quasi invariant variables, but
the other variables are not because each of them is on a path which contains a strongly
connected graph. Because there is a path ending in quasi invariant variable t1 and this
path contains two (maximum) directed thin dotted lines, the unfolding factor of t1 is 2.
In the same way, the unfolding factors of quasi invariant variables t2, z1, z2, k1, k2 and
k3 are 1, 1, 0, 3, 2 and 2, respectively.

7.2 Quasi Index Variables and Unfolding Factors

For any variable assigned inside a loop, it must be either a quasi invariant variable or a
variant variable. We can further distinguish three types of variant variables: (i) index
variables; (ii) quasi index variables; (iii) others. Identification of index variables has
been studied by many others, thus we assume here that index variables have been iden-
tified. Our goal is to identify quasi index variables. Within a loop, if the test of a condi-
tional is variant, then all variables assigned inside the branches of the conditional are
not quasi index variables, since any reference to a quasi index variable can be replaced
by an affine function of index variable after a small number of loop iterations.
� Quasi Index variable. For any variant variable (non-invariant variable and non-

quasi-invariant variable) x on the DRG of a loop, if any path ending in the vertex
of x contains, only vertexes of index, quasi index or quasi invariant variables, and
contains neither δc dependence edges nor δc

- dependence edges that starts from a
vertex of variant variable, then x is a quasi index variable.

� Unfolding factor of quasi-index variable. For any quasi index variable x on a
DRG, the unfolding factor of x is equal to max{ n | n = the number of δd

- edges
(represented by directed thin dotted line) and δc

- edges (represented by directed
bold dotted line) on a path that ends in x and contains no strongly connected
graph. }.

 10

For instance, in Fig. 10, y1, y2, x1, x2, w1, w2, w3 and w4 are quasi index variables, and
their unfolding factors are 1, 0, 2, 1, 3, 2, 2 and 2, respectively.

8 Algorithms of Evaluating Quasi Invariant/Index Variables and
Unfolding Factors

In this section, we present efficient algorithms for identifying quasi invariant/index
variables and computing their unfolding factors. The main work of this paper is di-
vided into two phases: 1. Quasi invariance/index analysis that includes (i) detecting
dependences among variables and (ii) identifying quasi invariant/index variables and
computing their unfolding factors; 2. Loop unfolding. We already discussed how to
detect dependences among variables. Based on the dependences, we present two effi-
cient algorithms to identify quasi invariant/index variables and to compute their un-
folding factors. Alg. 1 is based on the well-known algorithm presented by Warshall
[24]. The time complexities of Warshall algorithm is O(n3) in the worst case, where n
is the number of the variables modified inside a given loop. Assume that there are n
variables x1 … xn modified inside a given loop, and five Boolean n×n matrices Φδd,

Φδd
-, Φδc, Φδc

- indicating δd, δd
-, δc, δc

- dependence relations among these variables,

respectively. Φ=Φδd∨Φδd
-∨Φδc∨Φδc

-. Here, for any two variables xi and xj, we have:
 Φδd(i, j) = 1, if xi δd xj Φδc(i, j) = 1, if xi δc xj

 0, otherwise 0, otherwise

 Φδd
-(i, j) = 1, if xi δd

- xj Φδc
-(i, j) = 1, if xi δc

- xj
 0, otherwise 0, otherwise

Moreover, suppose Ix denotes the set of index variables, Qiv denotes the set of

quasi invariant variables and Qix denotes the set of quasi index variables.
Alg. 1 (identifying quasi invariant vs index variables)
Input: Φ, Ix
Output: Qiv, Qix
Begin
 for (i = 1; i <= n; i++)
 for (j = 1; j <= n; j++)
 if (Φ(j, i)) for (k = 1; k <= n; k++) { Φ(j, k) = Φ(j, k)∨Φ(i, k); }
 Qiv = {xi | ∀i(1≤i≤n)∀j(1≤j≤n)•(Φ(i, j)→¬Φ(j, j))};
 Qix = {xi | ∀i(1≤i≤n)•(xi∉Qiv∧∀j(1≤j≤n)•(Φ(i, j)→¬Φ(j, j)∨(Φ(j, j)∧ xj∈Ix)))};
End

The worst case time complexity of Alg. 1 is O(n3). Note that Ix is a subset of set

Qix. While computing the unfolding factors of quasi invariant/index variables, we can
exploit the well-known algorithm of Floyd[13] for computing the shortest distance
between a pair of vertexes. Because the main focus of computing unfolding factors is
anti-dependences, we suppose the length of each anti-dependence edge to be 1 and
that of each true dependence edge to be 0. Floyd’s algorithm was originally used to
compute the shortest path between a pair of vertexes on a directed graph, but we need
to compute the longest path here. If a directed graph does not contain any strongly

 11

connected subgraphs, then essentially there will be no difference between computing
shortest and longest paths between a pair of vertexes when using Floyd’s algorithm. If
we delete all the edges starting from or ending in index variable, then all the paths
ending in a quasi index variable should not contain any strongly connected graph. In
addition to the variables used in Alg. 1, we utilize two additional integer n×n matrices
℘IV and ℘IX defined as: ℘Iv=℘Ix=Φδd

-∨Φδc
-. ω(x) indicates the unfolding factor of

variable x. Alg. 2 is a variation of Floyd’s algorithm, its worst-case time complexity is
O(n3).
Alg. 2 (computing the unfolding factors of quasi invariant vs index variables)
Input: Φ, Ix, Qiv, Qix, ℘Iv, ℘Ix
Output: ω
Begin
 //Computing the unfolding factors of quasi invariant variables.
 for any xi∈Qiv
 for any xj∈Qiv
 for any xk∈Qiv
 if (Φ(j, i)∧Φ(i, k)∧Φ(j, k))
 if (℘Iv(j, k) < ℘Iv(j, i) + ℘Iv(i, k)) ℘Iv(j, k) = ℘Iv(j, i) + ℘Iv(i, k);
 for any xi∈Qiv ω(xi) = max{ ℘Iv(j, i) | xj∈Qiv};

//Computing the unfolding factors of quasi index variables.
for any xi∈Ix
for any xj∈Ix
 ℘Ix(i, j) = Φ(i, j) = 0;
for any xi∈Qix
for any xj∈Qix for any xk∈Qix
 if (Φ(j, i)∧Φ(i, k)∧Φ(j, k))
 if (℘Iv(i, k) < ℘Iv(j, i) + ℘Iv(i, k)) ℘Iv(j, k) = ℘Iv(j, i) + ℘Iv(i, k);

for any xi∈Qix
 ω(xi) = max{ ℘Iv(j, i) | xj∈Qix};

End

9 Loop Unfolding

After identifying the set of quasi invariant/index variables and figuring out their unfold-
ing factors by using Alg. 1 and Alg. 2, all that remains now is to select the maximum
unfolding factors as the number of iterations that should be unfolded. Because source
programs have been converted into SSA form for the purpose of static analysis, it is
necessary to convert the SSA form back into original source forms. The main issue to
deal with is the removal of all φ-functions. For any φ-variable x (say defined as x3 =
φ(x1, x2)), each reference to x3 is actually a reference to x1 or x2. To preserve the cor-
rectness of semantics, we must use a same name for x1, x2 and x3 such that each refer-
ence to x3 will actually be a reference to x1 or x2. The following two cases must be
considered.
� Either x1 or x2 is a φ-variable. We recursively rename until no new φ-variable is

encountered.

 12

� x3 is an operand of another φ-variable. Suppose x3 is an operand of another φ-
variable (e.g., y = φ(z, x3)), y, z and x3 should also be renamed using the same
name. The process continues recursively until no new φ-variable is encountered.

Assuming that function α is used to compute the set of variables that should be re-
named by a same name, and σ denotes the set of variables already handled, α is de-
fined as below:

α(x)σ = σ if x∈σ
 σ∪{ x} if x is not a φ-variable
 α(y)σ∪{ x}∪α(z)σ∪{ x}∪β(x)σ∪{ x} if x = φ(y, z)

β(x)σ = σ if x∈σ or x is not an argument of a φ-function
 α(z)σ∪{ y}∪β(y)σ∪{ y} if y = φ(x, z)

For instance, in Fig. 9 there are two φ-function assignments: w1 = φ(w0, w4) and w4

= φ(w2, w3). All the variables in the set α(w1) = α(w4) = {w1, w0, w2, w3} should be
renamed by the same name (e.g., w). Similarly, the variables in each of the sets {x1, x0,
x2}, { y1, y0, y2}, { z1, z0, z2}, { t1, t0, t2}, { k1, k0, k2, k3} should be renamed with same
names, respectively. After renaming variables, we can unfold loops. The unfolded
code of Fig. 9 is shown in Fig. 11. After unfolding a loop, the assignment to each
quasi invariant variable can be eliminated since the variable becomes invariant inside
the remaining loop. In the remaining loop, each quasi index variable is substituted for
a linear expression of index variable. Thus any reference to a quasi index variable can
be replaced by the corresponding linear expression of index variable. For instance, x
and y are equal to i − 1 and i, and w in then-part and else-part are equal to i − 1 and i,
respectively. In the remaining loop of Fig. 11, a[i] = p[i−1] + q[i+k], b[i] = b[i] + c[2]
can be vectorized as a[3: n] = p[2: n−1] + q[3+k: n+k], b[3: n] = b[3: n] + c[2], re-
spectively.

if (1 <= n) {
 a[1] = p[x] + q[y+k];
 if (odd(t)) { w = 0; b[1] = b[0] + c[z]; } else { w = 1; k = d; b[1] = b[1] + c[z]; }
 t = j + z; z = 2; x = y; y = 2;
}
if (2 <= n) {
 a[2] = p[x] + q[2+k];
 if (odd(t)) { w = 1; b[2] = b[1] + c[2]; } else { w = 2; k = d; b[2] = b[2] + c[2]; }
 t = j + 2; x = y; y = 3;
}
if (3 <= n) {
 a[3] = p[2] + q[3+k];
 if (odd(t)) { w = 2; b[3] = b[2] + c[2]; } else { w = 3; k = d; b[3] = b[3] + c[2]; }
 t = j + 2; x = y; y = 4;
}
for (i = 4; i <= n; i++) {
 a[i] = p[i–1] + q[i+k];
 if (odd(t)) { w = i − 1; b[i] = b[i−1] + c[2]; } else { w = i; b[i] = b[i] + c[2]; }
 x = y; y =i + 1;
}

 Fig. 11. The unfolded code of Fig. 9

 13

10 Related Work

As three code optimization techniques, loop invariant code motion, loop unrolling and
loop peeling have widely been studied and used by compilers. A comprehensive sur-
vey of these and other source level optimization can be found in [4]. A more recent
survey of many state of the art optimization techniques for high performance architec-
tures can be found in [2], [19].

Loop invariant code motion was originally mentioned in [1]. The notion of quasi
invariant grew out of our work on partial evaluation [21]. Loop quasi invariant code
motion is an extension of loop invariant code motion, which hoists invariant code to
outside of loops by unfolding loops for a small number of iterations. A recently devel-
oped transformation is partial redundancy elimination (PRE), which is a global opti-
mization technique, generalizing the removal of common sub-expressions and loop-
invariant computations. Initial implementation of PRE failed to completely remove the
redundancies [20], [23]. More recent PRE algorithms based on control flow
restructuring [6], [24] can achieve a complete PRE and are capable of eliminating
loop quasi invariant code. However, these techniques have exponential (worst-case)
time complexity as well as code size explosion resulting from replication of the code.
Our techniques statically determine a finite fixed point of computations induced by
assignments, loops and conditionals and tries to compute the optimal unfolding factors
to get maximal code motion and parallelization; and our algorithm has a polynomial
time complexity.

Loop peeling was originally mentioned in [15], and automatic loop peeling tech-
niques were discussed in [16]. August [3] showed how loop peeling can be applied in
practice, and elucidated how this optimization alone may not increase program per-
formance, but may expose opportunities for other optimization leading to performance
improvements. August [3] used only heuristic loop peeling techniques. We feel that
when applied to new and innovative architectures such as the SDF [14] (Scheduled
Dataflow architecture, a decoupled memory/execution, multithreaded architecture
using non-blocking threads), our pre-optimization approach may prove to be of sig-
nificant importance. The benefits of loop unrolling have been studied for various ar-
chitectures [11]. It is a fundamental technique for generating the long instruction se-
quences required by VLIW machines [12]. A key issue in applying loop peeling and
loop unrolling is the number of iterations that must be peeled off or replicated from
the loop body. Current techniques use heuristic or ad hoc techniques that are based on
loop-carried dependence analysis.

Many optimization techniques can be formalized conveniently using static single
assignments, including the elimination of partial redundancies [16], constant propaga-
tion [7], [17], and code motion [10]. We followed the same approach to express our
loop optimization technique.

11 Conclusion and Future Work

In this paper, we presented a loop oriented optimization technique based on depend-
ence analysis. In particular, our technique detects anti-dependencies among variables

 14

involved in loop, and then tries to remove some anti-dependencies as much as possible
by unfolding loops for a small number of iterations. After the removal of quasi invari-
ant variables and the substitution of quasi index variables for linear functions of index
variables, there will be only inductive variables inside loops, and thus loops will be
relatively clean and easy to analyze and expose more opportunities for other optimiza-
tion leading to performance improvements. Exploiting this technique, we can extend
conventional loop invariant code motion to loop quasi invariant code motion, which is
capable of moving not only invariant code but also quasi invariant code. Loop quasi
invariant code motion is well-suited as a supporting transformation in compilers, par-
tial evaluators, and other program transformers. Moreover, removing loop-
independent dependences may make static analysis based on loop-carried dependence
easier, which will be very beneficial to many other optimizations leading to perform-
ance improvements such as loop unrolling, loop peeling and so on. Our technique has
the potential to increase the accuracy of program analyses and to expose newer pro-
gram optimizations (e.g., branch predication, for extracting instruction-level parallel-
ism from programs.), which are of central importance to many compilers and program
transformations. The algorithms presented in this paper uses the infrastructure already
present in many compilers, such as dependence graphs and static single assignments.
Thus they do not require fundamental changes to existing systems. The application of
this technique to our ongoing compiler for the multithreaded architecture SDF, and
larger practical programs is hoped to reveal the significance of the work presented
here. To the best of our knowledge, this is the first attempt of systematically making
use of loop-independent dependences among variables to unfold loops for optimiza-
tion.

References

 1. Aho A. V., Sethi R., Ullman J. D., “Compilers: Principles, Techniques, and Tools”, Addi-
son-Wesley, Reading, Mass, 1986.

 2. Allen R., Kennedy K., “Optimization Compilers for Modern Architectures”, Morgan Kauf-
mann Publishers, 2002.

 3. August D. I., “Hyperblock performance optimizations for ILP processors”, M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1996.

 4. Bacon D. F., and Graham S. L., “Compiler transformations for high-performance comput-
ing”, ACM Computing Surveys, December 1994, Vol. 26, No. 4, pp.345-420.

 5. Banerjee, U., “An introduction to a formal theory of dependence analysis”, Journal of Su-
percomput. Vol. 2, No.2, 1988, pp.133-149.

 6. Bodik R., Gupta R., Soffa M. L., “Complete removal of redundant expressions”, Prod. ACM
Conf. On Programming Language Design and Implementation, pp.1-14, ACM Press, 1998.

 7. Bulyonkov M. A., Kochetov D. V., “Practical aspects of specialization of Algol-like pro-
grams”, eds. Dancy O., Glueck R., Thiemann P., “Partial Evaluation”, Proceedings. LNCS,
Vol. 1110, pp.17-32, Springer-Verlag, 1996.

 8. Cocke J., Schwartz J. T., “Programming languages and their compilers (preliminary
notes)”, 2nd ed. Courant Institute of Mathematical Science, New York University, New
York.

 15

 9. Cytron R., Ferrante J., “Efficiently computing static single assignment form and the control
dependence graph”, ACM TOPLAS, October, 1991, Vol. 13, No. 4, pp.451-490.

10. Cytron R., Lowry A., Zadeck F. K., “Code motion of control structures in high-level lan-
guages”, Conference Record of the 13th ACM Symposium on Principle of Programming
Languages, pp.70-85, ACM Press, 1986

11. Dongarra J., Hind A. R., “Unrolling loops in Fortran”, Softw. Pract. Exper., Vol. 9, No. 3,
pp.219-226, 1979.

12. Ellis J. R., “Building: A Compiler for VLIW Architecture”, ACM Doctoral Dissertation
Award. MIT Press, Cambridge, Mass, 1986.

13. Floyd R. W., “Algorithm 97: shortest path”, Communications of the ACM, 1962, Vol. 5,
No. 6, pp.345.

14. Kavi K. M., Giorgi R. and Arul J., “Scheduled Dataflow: Execution paradigm, architecture
and performance evaluation”, IEEE Transactions on Computer, Vol. 50, No. 8, pp.834-846,
Aug. 2001.

15. Lin D. C., “Compiler support for predicated execution in superscalar processors”, M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1992.

16. Mahlke S. A., “Exploiting instruction level parallelism in the presence of conditional
branches”, Ph.D. thesis, Department of Electrical and Computer Engineering, University of
Illinois, Urbana, IL, 1995.

17. Metzger R., Stroud S., “Interprocedual constant propagation: An empirical study”, ACM
Letters on Programming Languages and Systems, Vol. 2, No.1, pp.213-232, 1993.

18. Padua D. A., and Wolfe M. J., “Advanced compiler optimizations for supercomputers”,
Communications of the ACM, December 1986, Vol. 29, No. 12, pp.1184-1201.

19. Pande S., Agrawal D. P., (Eds.) “Compiler Optimizations for Scalable Parallel Systems”,
LNCS 1808, Springer, 1998.

20. Rosen B. K., Wegman M. N., and Zadeck F. K., “Global value numbers and redundant
computations”, Conference Record of the 15th ACM Symposium on Principles of Pro-
gramming Languages, ACM Press, 1988, pp.12-27.

21. Song L., “Studies on Termination Methods of Partial Evaluation”, Ph.D. thesis, Department
of Computer Science, Waseda University, Tokyo, Japan, 2001.

22. Steffen B., “Property oriented expansion”, Symposium on Static Analysis, LNCS 1145,
pp.22-41, Springer-Verlag, 1996.

23. Steffen B., Knoop J., Rüthing O., “The value flow graph: A program representation for
optimal program transformations”, ed. Jones N. D., ESOP’90, LNCS 432, pp.389-405,
Springer-Verlag, 1990.

24. Warshall S., “A theorem on Boolean matrices”, Journal of the ACM, January 1962, Vol. 9,
No. 1, pp.11-12.

25. Wolfe, M. J., “Optimizing supercompilers for supercomputers”, Research Monographs in
Parallel and Distributed Computing, MIT Press, Cambridge, Mass.

26. Wolfe, M. J., “High performance compilers for parallel computing”, Addison-Wesley Pub-
lishing Company, Inc., 1996.

27. Zima H., and Chapman B., “Supercompiler for parallel and vector computers”, Frontier,
Series, ACM Press, 1990.

