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Abstract. Loops in programs are the source of many optimizations for improv-
ing program performance, particularly on modern high-performance architec-
tures as well as vector and multithreaded systems. Techniques such as loop in-
variant code motion, loop unrolling and loop peeling have demonstrated their 
utility in compiler optimizations. However, many of these techniques can only 
be used in very limited cases when the loops are “well-structured” and easy to 
analyze. For instance, loop invariant code motion works only when invariant 
code is inside loops; loop unrolling and loop peeling work effectively when the 
array references are either constants or affine functions of index variable. It is 
our contention that there are many opportunities overlooked by limiting the op-
timizations to well structured loops. In many cases, even “badly-structured” 
loops may be transformed into well structured loops. As a case in point, we 
show how some loop-dependent code can be transformed into loop-invariant 
code by transforming the loops. Our technique described in this paper relies on 
unfolding the loop for several initial iterations such that more opportunities 
may be exposed for many other existing compiler optimization techniques such 
as loop invariant code motion, loop peeling, loop unrolling and so on.  

1   Introduction 

Loops in programs are the source of many optimizations for improving program per-
formance, particularly on modern high-performance architectures as well as vector 
and multithreaded systems. Techniques such as loop invariant code motion, loop peel-
ing and loop unrolling have demonstrated their utility among in compiler optimiza-
tions. However, many of these techniques can only be used in very limited cases when 
the loops are “well-structured” and easy to analyze. For instance, loop invariant code 
motion works only when invariant code is inside loops; loop unrolling and loop peel-
ing work effectively when the loop indices and array references are either constant or 
affine functions. Let us first give a brief review on a few common loop optimization 
techniques such as loop invariant code motion, loop unrolling and loop peeling, and 
discuss the limitations of these techniques. 



 2

1.1  Reviews of A Few Loop Optimization Techniques 

Loop invariant code motion is a well-known loop transformation technique. When a 
computation in a loop does not change during the dynamic execution of the loop, we 
can hoist this computation out of the loop to improve execution time performance. For 
instance, the evaluation of expression a×100 is loop invariant in Fig. 1(a); Fig. 1(b) 
shows a more efficient version of the loop where the loop invariant code has been 
removed from the loop. 

 
                        for (i = 1; i <= 100; i++)   { x = a × 100; y = y + i; }   

(a) A source loop 

                        t = a × 100; for (i = 1; i <= 100; i++) { x = t; y = y + i; } 
                                           (b) The resulting code 
                       
                    Fig. 1. An example for loop invariant code motion 

Modern computer systems exploit both instruction level parallelism (ILP) and 
thread (or task) level parallelism (TLP). Superscalar and VLIW systems rely on ILP 
while multi-threaded and multiprocessor systems rely on TLP. In order to fully benefit 
from ILP or TLP, compilers must perform complex analyses to identify and schedule 
code for the architecture. Typically compilers focus on loops for finding parallelism in 
programs [26], [27]. Sometimes it is necessary to rewrite (or reformat) loops such that 
loop iterations become independent of each other, permitting parallelism. Loop peel-
ing is one such technique [3], [15], [21]. When a loop is peeled, a small number of 
early iterations are removed from the loop body and executed separately. The main 
purpose of this technique is for removing dependencies created by the early iterations 
on the remaining iterations, thereby enabling parallelization. 

The loop in Fig. 2(a) is not parallelizable because of a flow dependence between it-
eration i = 1 and iterations i = 2 .. n. Peeling the first iteration makes the remaining 
iterations fully parallel, as shown in Fig. 2(b). Using vector notation, the loop in Fig. 
2(b) can be rewritten as: a(2: n) = a(1) + b(2: n). That is to say, n − 1 assignments in n 
− 1 iterations of the loop can be executed in parallel. 

 
                             for (i = 1; i <= n; i++) { a[i] = a[1] + b[i]; } 

(a) A source loop 

                             if  (1 <= n) { a[1] = a[1] + b[1]; } 
                             for (i = 2; i <= n; i++) { a[i] = a[1] + b[i]; } 
                          (b) The resulting code after peeling first iteration 
 
                            Fig. 2. The first example for loop peeling 

The loop in Fig. 3(a) is not parallelizable because variable wrap is neither a constant 
nor a linear function of inductive and index variable i. Peeling off the first iteration 
allows the rest of loop to be vectorizable, as shown in Fig. 3(b). The loop in Fig. 3(b) 
can be rewritten as: a(2: n) = b(2: n) + b(1: n-1).   
    Loop unrolling is a technique, which replicates the body of a loop a number of 
times called the unrolling factor u and iterates by step u instead of step 1. It is a fun-
damental technique for generating efficient instructions required to exploit ILP and 
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TLP. Loop unrolling can improve the performance by (i) reducing loop overhead; (ii) 
increasing instruction level parallelism; (iii) improving register, data cache, or TLB 
locality. Fig. 4 shows an example of loop unrolling, Loop overhead is cut in a second 
because one additional iteration is performed before the test and branch at the end of 
the loop. Instruction parallelism is increased because the first and second assignments 
can be executed on pipeline. If array elements are assigned to registers, register local-
ity will improve because a[i] is used twice in the loop body, reducing the number of 
loads per iteration. 

 
                  for (i = 1; i <= n; i++) { a[i] = b[i] + b[wrap]; wrap = i; } 
                                     (a) A source loop 

                  if  (1 <= n) { a[1] = b[1] + b[wrap]; wrap =  i; } 
                  for (i = 2; i <= n; i++) { a[i] = b[i] + b[i-1]; } 
                 (b) The resulting code after peeling first iteration 
  
                   Fig. 3. The second example for loop peeling 

 

                         for (i = 2; i <= n; i++) { a[i] = a[i-2] + b[i]; } 
                                          (a) A source loop 

        for (i = 2; i <= n-1; i = i+2) { a[i] = a[i-2] + b[i]; a[i+1] = a[i-1] + b[i+1]; } 
        if  (mod(n-2, 2) == 1) { a[n] = a[n-2] + b[n]; } 
                      (b) The resulting code after loop unrolling 
 
                         Fig. 4. An example of loop unrolling 

1.2   Issues 

As we mentioned previously, loop invariant code motion, loop peeling and loop un-
rolling are all very practical and important compiler optimization techniques for to-
day’s architectures. Nevertheless, these techniques are only suitable for well-
structured loops, which are relatively easy to analyze. For loop invariant code motion, 
it works only when there are clearly and easily identifiable invariant code inside loops; 
for loop unrolling and loop peeling, they usually work when subscripts of array refer-
ences are constants or affine functions. In many practical programs, loops are not 
well-structured; but in some cases, these loops may be quasi well-structured ones. 
That is to say, they may be converted into well-structured. For instance, in the loop of 
Fig. 5(a), there is only one invariant expression b × c. If we unfold the loop twice, 
however, we can get the resulting code in Fig. 5(b), which is much more efficient than 
the source loop. This is because: (i) variables x and y become invariant variables in the 
resulting loop, so that assignments x = y + a and y = b × c can be removed from the 
remaining loop; (ii) expression x × y and x > d are invariant expressions in the remain-
ing loop so they can be hoisted outside the remaining loop, which can actually be done 
by the conventional loop invariant code motion; (iii) because expression x > d is in-
variant during the dynamic execution of the remaining loop, it will improve the branch 
predication and significantly decrease branch misses of the conditional contained in 
the remaining loop. This example shows that an effective transformation of badly 
structured loops is possible and desirable. 
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    while (i <= n) { x = y + a; y = b × c; if (x > d) i = i + x × y; else i = i + 1; }         
                                                 (a) A source loop 

    if  (i <= n) { x = y + a; y = b × c; if  (x > d) i = i + x × y; else i = i + 1; } 
    if  (i <= n) { x = y + a; if  (x > d) i = i + x × y; else i = i + 1; } 
    while (i <= n) { if  (x > d) i = i + x × y; else i = i + 1; } 
                 (b) The resulting code after unfolding two iterations 
 
                          Fig. 5. Loop quasi-invariant code motion 

   For the loop in Fig. 6(a), in the two assignments a[i] = b[i] + b[j] and c[i] = c[j] × 
b[i], j and wrap are not constants or affine functions of index variable i, so we have no 
way to directly parallelize any of them, and we can not even unroll the loop since we 
do not know what is going on for loop-carried dependences. If peeling or unfolding the 
loop for two iterations, however, the remaining loop in Fig. 6(b) is very suitable for 
parallelization and loop unrolling. Statement a[i] = b[i] + b[i-2] can be parallelized to 
be a[3: n] = b[3: n] + b[1: n-2], and statement c[i] = c[i-2] × b[i] can be unrolled to be 
c[i] = c[i-2] × b[i]; c[i+1] = c[i-1] × b[i+1]; such that the two statements can be exe-
cuted in parallel since there is no loop-carried dependence among them. Thus, some 
pre-optimizations or transformations based on loop unfolding may be very useful and 
lead to the application of conventional compiler optimization techniques.  

 
   for (i = 1; i <= n; i++) { a[i] = b[i] + b[j]; c[i] = c[j] × b[i]; j = i − wrap; wrap = 1; } 
                                            (a) A source loop 

   if  (1 <= n) { a[1] = b[1] + b[j]; c[1] = c[j] × b[1]; j = 1 − wrap; wrap = 1; } 
   if  (2 <= n) { a[2] = b[2] + b[j]; c[2] = c[j] × b[2]; j = 1; } 
   for (i = 3; i <= n; i++) { a[i] = b[i] + b[i-2]; c[i] = c[i-2] × b[i]; } 
               (b) The resulting code after peeling two iterations 
 

                      Fig. 6. An example for loop peeling and loop unrolling 

In this paper we present a technique that is based on loop dependence analysis, so 
that traditional optimization techniques can benefit from it. In particular, our goal is to 
find a general and systematic way for pre-optimizations of using loop unfolding to 
remove anti-dependences as much as possible. 

2   Preliminaries 

This section provides the background necessary for the rest of the paper, including a 
simple language we will use to describe our loop optimization technique and the well-
known static single assignment (SSA) form. 

2.1   DO-language 

For the purpose of describing our technique, we first introduce a simple imperative 
language, shown in Fig. 7; the semantics is similar to C. For the sake of simplifying 
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the presentation, we assume a call-by-value semantics for function parameters, assume 
freedom of side effects, and we treat all functions as primitive operations. 

 
  Sts  ::= St | St; Sts   
  St      ::= Ass | Cond | Loop | Call  
  Ass     ::= Var = Exp  
  Cond  ::= if (Exp) { Sts } else { Sts } 
  Loop ::= for (Var = Exp; Exp; Var = Var + Exp) { Sts } | while (Exp) do { Sts } 
  Call ::= f(Exp*) 
  Exp      ::= Var | Const | Op(Exp*) | Call 
  Op ::= + | – | × | / | > | < | <= | >= | = | ! | 
 
                             Fig. 7. The syntax of the DO-language 

2.2   Static Single Assignment 

Variables inside a loop may be modified for multiple times. In order to perform de-
pendency analyses, it is necessary to distinguish the modifications. Here, we make use 
of the well-known static single assignment (SSA) [10] for this purpose. SSA form is a 
program representation in which every variable is assigned only once, and every use 
of the variable is defined by that assignment. Most compilers use SSA representations 
for performing optimizations. Here we use the term to refer to variables as φ-variables 
assigned by φ-function. An efficient algorithm that converts a program into SSA form 
with linear time complexity (in term of the size of the original program) was presented 
in [9]. 

 
                  x = …; … = x;                                  x1 = …; … = x1; 
                  x = …; … = x;                                  x2 = …; … = x2; 
                       (a)  straight-line code and its SSA form 

if  (test) { x = …; } else { x = …; }                     if (test) { x1 = …; } else { x2 = …; } x3 = φ(x1, x2);    
                       (b) conditional and its SSA form 
 
                               Fig. 8. SSA form transformation 

3  Quasi Invariant and Quasi Index Variables 

The invariant variables of a loop are those variables whose values are invariant in all 
the iterations of the loop. The index variable of a loop is a variable whose values in 
successive iterations form an arithmetic progression. Index variables are often used in 
array subscripts. Here, we present four notions: 
� Quasi invariant variable. A variable that is not invariant inside a loop but will 

become invariant after a small number of iterations of the loop. 
� Quasi index variable. A variable that is not an index variable but will become 

equal to an affine function of the index variable after a small number of iterations 
of the loop. 
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� Unfolding factor of quasi invariant variable. If a quasi invariant variable be-
comes invariant after at least n iterations of a loop, n is referred to as the unfold-
ing factor of the variable. 

� Unfolding factor of quasi index variable. If a quasi index variable becomes an 
affine function of the index variable after at least n iterations of a loop, n is re-
ferred to as the unfolding factor of the variable. 

For instance, in Fig. 5, x and y are quasi invariant variables, and their unfolding fac-
tors are 2 and 1, respectively; in Fig. 6, wrap is a quasi invariant variable but j is a 
quasi index variable, and their unfolding factors are 1 and 2, respectively. Now, we 
face two issues: (i) identifying quasi invariant and quasi index variables; (ii) calculat-
ing the unfolding factors of these variables. 

4   Variable Dependences 

Compiler usually relies on both control and data dependence analyses for performing 
optimizations [5], [27]. These dependencies relate to those among statements. In our 
case, we only rely on dependencies among variables. We recognize two forms of data 
dependences: true data dependence, anti-data dependence, and two forms of control 
dependences: true control dependence, anti-control dependence. 
� True data dependence. The first statement stores into variable x that is later read 

by the second statement: 
        S1:  x = … ;       S2:  y = … x ;  
We say y has a true data dependence to x, and denote the dependence as y δd x. 

� Anti-data dependence. The first statement reads x into which the second state-
ment later stores: 

        S1:  y = … x ;    S2:  x = … ; 
We say y has an anti-data dependence to x, and denote the dependence as y δd

- x. 
� True control dependence. The first statement stores into variable x that is later 

read by the test of second statement (conditional): 
        S1:  x = … ;      S2:  if (… x) y = … ; else y = … ; 

� Anti-control dependence. The test of first statement (conditional) reads x into 
which the second statement later stores: 

        S1:  if (… x) y = … else y = … ;     S2:  x = … ; 
We say y has an anti-control dependence to x and denote it as y δc

- x. 
According to the definitions above, the variable dependences in Fig. 5(a) and Fig. 6(a) 
should be: x δd

- y,   x δc i,   i δd i,  j δd
- wrap,   j δd i,   i δd i 

Note that we only discuss the dependences between scalar variables here. 

5   An Extension of Control Dependences 

In Sect. 4 we presented two general notions for control dependences. In this section, 
we present special cases of conditionals to elaborate on control dependences. Variable 
assignments inside conditionals can be distinguished into two cases: 
� A variable is assigned inside both then-part and else-part of a conditional: 
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    for (i = 1; i <= n ; i++)  { if  (test) { x1 = e1; } else { x2 = e2; } x3 = φ(x1, x2); }  
The assignment to a quasi invariant variable can be removed after the variable be-
comes invariant, and the symbolic value (an affine function) of a quasi index vari-
able might be substituted for references to the variable after it is equal to an affine 
function. Whether x1 = e1 or x2 = e2 can be removed or not, is dependent on not only 
e1 or e2 but also test. If test is variant then neither x1 = e1 nor x2 = e2 can be removed 
even if e1 or e2 may be invariant. Otherwise, x3 might be assigned to an incorrect 
value. By contrast, if test is invariant then either x1 = e1 or x2 = e2 can be removed as 
long as e1 or e2 is invariant. This is because the selection of the value of x3 is invari-
ant inside the remaining loop. 

� A variable is assigned both inside one branch of a conditional and outside the 
conditional: 
    for (i = 1; i <= n ; i++) { x1 = e1 ; if ( test) { x2 = e2 ; } x3 = φ(x1, x2); }  
Similar to case 1, both x1 and x2 are control dependent on test. In addition, we dis-
tinguish between two cases as below: 
� There exist references to x1. 

Because the value of test is unknown, x1 = e1 can not be removed even if the test 
is invariant. Note that x1, x2 and x3 will be renamed to be a same name in result-
ing program, which will be described in Sect. 8. Accordingly, x2 = e2 can not be 
removed either. If x1 and x2 are φ-variables, their operands can not be removed 
either, and thus a recursive processing is needed to determine which assignments 
can not be removed from the resulting loop. Assuming that we use γ to denote 
the closure of this kind of variables, and σ to denote the variables already han-
dled, γ will be defined as follows: 
                 σ                                  if x∈σ   
  γ(x)σ=     σ∪{ x}                          if x∉σ∧x∉φ-variables   
                 γ(x1)σ∪{ x}∪γ(x2)σ∪{ x}     if x∉σ∧x = φ(x1, x2) 

� There exists no reference to x1. 
Because x1 = e1 is outside the conditional, x2 = e2 can be removed only when as-
signment x1 = e1 is removed (otherwise x3 will be always equal to x1). The special 
dependence between x1 and x2 is actually an ad hoc true control dependence, 
which is still denoted by x2 δc x1. 

After the analysis of control dependences, we need to collect all the related depend-
ences introduced by φ-functions. A φ-function is temporarily introduced only for static 
analysis and it will be removed in resulting programs, so any control dependence 
introduced by a φ-variable is actually a dependence introduced by the operand vari-
ables of the φ-variable. This is a recursive process and a closure should be computed. 
Assuming that there exists a control dependence denoted as x1 δc x2, function ϕ is used 
to denote the closure, and σ is used to denote the dependences already handled, func-
tion ϕ can be defined as follows: 

             σ                                                       if x δc y∧(x δc y)∈σ  
ϕ(x)σ  =      σ∪{( x δc y)}                                      if x δc y∧(x δc y)∉σ∧y∉φ-variables   

             ϕ(x, y1)σ∪{( x δc y)}∪ϕ(x, y2)σ∪{( x δc y)}     if x δc y∧(x δc y)∉σ∧y = φ(y1, y2) 

For instance, suppose we have the following program segment inside a loop: 
x1 = 1; if (i > j) { if  (k > 5) { x2 = 2; } else { x3 = 3; } x4 = φ(x2, x3); } x5 = φ(x1, x4); 
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We can compute the following dependences: x1 δc i, x1 δc j, x2 δc i, x2 δc j, x2 δc k, x2 δc 
x1, x3 δc i, x3 δc j, x3 δc k, x3 δc x1, x4 δc i, x4 δc j, x4 δc x1 

6   Dependence Relation Graph 

Based on the two types of data dependences and two types of control dependences, we 
can construct a directed graph called dependence relation graph. 
Definition 1 (Dependence relation graph). The dependence relation graph (DRG) of 
a loop is a directed graph (V, E), where 
    V  = { x | x is a variable modified inside the loop}; 
    E  = { a directed real thin line from x to y | y δd x }∪{ a directed real bold line from 
x to y | y δc x }∪{ a directed dotted thin line from x to y | y δd

- x }∪{ a directed dotted 
bold line from x to y | y δc

- x } 
 

for (i = 1; i <= n; i++) { 
    a[i] = p[x] + q[y+k]; 
    if (odd(t)) { w = i − 1; b[i] = b[w] + c[z]; } else { w = i;  k = d;  b[i] = b[w] + c[z]; } 
    t = j + z;  z = 2;  x = y;  y = i + 1; 
} 
                                 (a) A source loop 

for [ x1 = φ(x0, x2);  t1 = φ(t0, t2);  z1 = φ(z0, z2); y1 = φ(y0, y2);  k1 = φ(k0, k3);  w1 = φ(w0, w4); ] 
       (i = 1; i <= n; i++) { 
    a[i] = p[x1] + q[y1+k1]; 
    if (odd(t1)) { w2 = i − 1; b[i] = b[w2] + c[z1]; } else { w3 = i; k2 = d; b[i] = b[w3] + c[z1]; } 
    w4 = φ(w2, w3); k3 = φ(k1, k2); t2 = j + z1; z2 = 2; x2 = y1; y2 = i + 1; 
}  
                        (b) The corresponding SSA form 

 
                            Fig. 9. An example for SSA form conversion 

For instance, assuming that we have a program segment shown in Fig. 9, the DRG for 
this program is shown in Fig. 10. Here, the semantics of loop for [ Sts ] (Var = Exp; 
Exp; Var = Var + Exp) { Sts } means that statements in [ Sts ] will be executed before 
the evaluation of loop test. Note that this intermediate form is only used for static 
analysis and it will be converted back to original form after optimization.  

            
 
       k2                k3               k1                  i                 y2                        

 
                          

       z1                t1                w2               w1                y1                 
                                           

 
       z2                   t2                w3               w4               x2                 x1   

 
                                        �: δd  

�
: δc  � : δd

-  �: δc
- 

 
                      Fig. 10. The DRG of the loop in Fig. 9 
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7   Identifying Quasi Invariant/Index Variables and Computing 
Their Unfolding Factors 

In Sect. 3 we defined quasi invariant variables, quasi index variables and their unfold-
ing factors. Using dependence relation graphs, we can identify quasi invariant vari-
ables and quasi index variables, and efficiently compute their unfolding factors. 

7.1   Quasi Invariant Variables and Unfolding Factors 

� Quasi invariant variable. For any vertex on the DRG of a loop, if among all the 
paths ending in this vertex, there is no path that contains a vertex that is a vertex 
on a strongly connected path, then the variable corresponding to the vertex is a 
quasi invariant variable. 

� Unfolding factor of quasi invariant variable. For any quasi invariant variable x 
on a DRG, the unfolding factor of x is equal to max{ n | n = the number of de-
pendence δd

- edges (represented by directed thin dotted line) and dependence δc
- 

edges (represented by directed bold dotted line) on a path ending in x }.  
For instance, in Fig. 10, t1, t2, z1, z2, k1, k2 and k3 are all quasi invariant variables, but 
the other variables are not because each of them is on a path which contains a strongly 
connected graph. Because there is a path ending in quasi invariant variable t1 and this 
path contains two (maximum) directed thin dotted lines, the unfolding factor of t1 is 2. 
In the same way, the unfolding factors of quasi invariant variables t2, z1, z2, k1, k2 and 
k3 are 1, 1, 0, 3, 2 and 2, respectively. 

7.2   Quasi Index Variables and Unfolding Factors  

For any variable assigned inside a loop, it must be either a quasi invariant variable or a 
variant variable. We can further distinguish three types of variant variables: (i) index 
variables; (ii) quasi index variables; (iii) others. Identification of index variables has 
been studied by many others, thus we assume here that index variables have been iden-
tified. Our goal is to identify quasi index variables. Within a loop, if the test of a condi-
tional is variant, then all variables assigned inside the branches of the conditional are 
not quasi index variables, since any reference to a quasi index variable can be replaced 
by an affine function of index variable after a small number of loop iterations.  
� Quasi Index variable. For any variant variable (non-invariant variable and non-

quasi-invariant variable) x on the DRG of a loop, if any path ending in the vertex 
of x contains, only vertexes of index, quasi index or quasi invariant variables, and 
contains neither δc dependence edges nor δc

- dependence edges that starts from a 
vertex of variant variable, then x is a quasi index variable. 

� Unfolding factor of quasi-index variable. For any quasi index variable x on a 
DRG, the unfolding factor of x is equal to max{ n | n = the number of δd

- edges 
(represented by directed thin dotted line) and δc

- edges (represented by directed 
bold dotted line) on a path that ends in x and contains no strongly connected 
graph. }. 
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For instance, in Fig. 10, y1, y2, x1, x2, w1, w2, w3 and w4 are quasi index variables, and 
their unfolding factors are 1, 0, 2, 1, 3, 2, 2 and 2, respectively. 

8   Algorithms of Evaluating Quasi Invariant/Index Variables and 
Unfolding Factors 

In this section, we present efficient algorithms for identifying quasi invariant/index 
variables and computing their unfolding factors. The main work of this paper is di-
vided into two phases: 1. Quasi invariance/index analysis that includes (i) detecting 
dependences among variables and (ii) identifying quasi invariant/index variables and 
computing their unfolding factors; 2. Loop unfolding. We already discussed how to 
detect dependences among variables. Based on the dependences, we present two effi-
cient algorithms to identify quasi invariant/index variables and to compute their un-
folding factors. Alg. 1 is based on the well-known algorithm presented by Warshall 
[24]. The time complexities of Warshall algorithm is O(n3) in the worst case, where n 
is the number of the variables modified inside a given loop. Assume that there are n 
variables x1 … xn modified inside a given loop, and five Boolean n×n matrices Φδd, 

Φδd
-, Φδc, Φδc

- indicating δd, δd
-, δc, δc

- dependence relations among these variables, 

respectively. Φ=Φδd∨Φδd
-∨Φδc∨Φδc

-. Here, for any two variables xi and xj, we have: 
 Φδd(i, j) =      1,   if xi δd xj           Φδc(i, j) =        1,  if xi δc xj     

                  0,   otherwise                              0,  otherwise  

 Φδd
-(i, j) =     1,   if xi δd

- xj              Φδc
-(i, j) =     1,   if xi δc

- xj       
                       0,  otherwise                                 0,  otherwise 
 
Moreover, suppose Ix denotes the set of index variables, Qiv denotes the set of 

quasi invariant variables and Qix denotes the set of quasi index variables. 
Alg. 1 (identifying quasi invariant vs index variables) 
Input:   Φ, Ix 
Output: Qiv, Qix 
Begin 
      for (i = 1; i <= n; i++)  
      for (j = 1; j <= n; j++)  
           if (Φ(j, i)) for (k = 1; k <= n; k++)  { Φ(j, k) = Φ(j, k)∨Φ(i, k);  }  
      Qiv = {xi | ∀i(1≤i≤n)∀j(1≤j≤n)•(Φ(i, j)→¬Φ(j, j))}; 
      Qix = {xi | ∀i(1≤i≤n)•(xi∉Qiv∧∀j(1≤j≤n)•(Φ(i, j)→¬Φ(j, j)∨(Φ(j, j)∧ xj∈Ix)))}; 
End 

 
The worst case time complexity of Alg. 1 is O(n3). Note that Ix is a subset of set 

Qix. While computing the unfolding factors of quasi invariant/index variables, we can 
exploit the well-known algorithm of Floyd[13] for computing the shortest distance 
between a pair of vertexes. Because the main focus of computing unfolding factors is 
anti-dependences, we suppose the length of each anti-dependence edge to be 1 and 
that of each true dependence edge to be 0. Floyd’s algorithm was originally used to 
compute the shortest path between a pair of vertexes on a directed graph, but we need 
to compute the longest path here. If a directed graph does not contain any strongly 
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connected subgraphs, then essentially there will be no difference between computing 
shortest and longest paths between a pair of vertexes when using Floyd’s algorithm. If 
we delete all the edges starting from or ending in index variable, then all the paths 
ending in a quasi index variable should not contain any strongly connected graph. In 
addition to the variables used in Alg. 1, we utilize two additional integer n×n matrices 
℘IV and ℘IX defined as: ℘Iv=℘Ix=Φδd

-∨Φδc
-. ω(x) indicates the unfolding factor of 

variable x. Alg. 2 is a variation of Floyd’s algorithm, its worst-case time complexity is 
O(n3). 
Alg. 2 (computing the unfolding factors of quasi invariant vs index variables) 
Input:   Φ, Ix, Qiv, Qix, ℘Iv, ℘Ix 
Output:  ω 
Begin 
   //Computing the unfolding factors of quasi invariant variables. 
   for any xi∈Qiv 
   for any xj∈Qiv 
   for any xk∈Qiv 
      if (Φ(j, i)∧Φ(i, k)∧Φ(j, k))  
          if (℘Iv(j, k) < ℘Iv(j, i) + ℘Iv(i, k))  ℘Iv(j, k) = ℘Iv(j, i) + ℘Iv(i, k);  
   for any xi∈Qiv  ω(xi) = max{ ℘Iv(j, i) | xj∈Qiv};  

//Computing the unfolding factors of quasi index variables.  
for any xi∈Ix 
for any xj∈Ix   
    ℘Ix(i, j) = Φ(i, j) = 0;    
for any xi∈Qix 
for any xj∈Qix for any xk∈Qix 
   if (Φ(j, i)∧Φ(i, k)∧Φ(j, k))  
       if (℘Iv(i, k) < ℘Iv(j, i) + ℘Iv(i, k)) ℘Iv(j, k) = ℘Iv(j, i) + ℘Iv(i, k); 

for any xi∈Qix  
   ω(xi) = max{ ℘Iv(j, i) | xj∈Qix}; 

End 

9   Loop Unfolding 

After identifying the set of quasi invariant/index variables and figuring out their unfold-
ing factors by using Alg. 1 and Alg. 2, all that remains now is to select the maximum 
unfolding factors as the number of iterations that should be unfolded. Because source 
programs have been converted into SSA form for the purpose of static analysis, it is 
necessary to convert the SSA form back into original source forms. The main issue to 
deal with is the removal of all φ-functions. For any φ-variable x (say defined as x3 = 
φ(x1, x2)), each reference to x3 is actually a reference to x1 or x2. To preserve the cor-
rectness of semantics, we must use a same name for x1, x2 and x3 such that each refer-
ence to x3 will actually be a reference to x1 or x2. The following two cases must be 
considered. 
� Either x1 or x2 is a φ-variable. We recursively rename until no new φ-variable is 

encountered. 
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� x3 is an operand of another φ-variable. Suppose x3 is an operand of another φ-
variable (e.g., y = φ(z, x3)), y, z and x3 should also be renamed using the same 
name. The process continues recursively until no new φ-variable is encountered. 

Assuming that function α is used to compute the set of variables that should be re-
named by a same name, and σ denotes the set of variables already handled, α is de-
fined as below: 

α(x)σ =     σ                                                                     if x∈σ 
                σ∪{ x}                                           if x is not a φ-variable 
           α(y)σ∪{ x}∪α(z)σ∪{ x}∪β(x)σ∪{ x}       if x = φ(y, z) 

β(x)σ =     σ                                 if x∈σ or x is not an argument of a φ-function 
           α(z)σ∪{ y}∪β(y)σ∪{ y}      if y = φ(x, z) 

For instance, in Fig. 9 there are two φ-function assignments: w1 = φ(w0, w4) and w4 

= φ(w2, w3). All the variables in the set α(w1) = α(w4) = {w1, w0, w2, w3} should be 
renamed by the same name (e.g., w). Similarly, the variables in each of the sets {x1, x0, 
x2}, { y1, y0, y2}, { z1, z0, z2}, { t1, t0, t2}, { k1, k0, k2, k3} should be renamed with same 
names, respectively. After renaming variables, we can unfold loops. The unfolded 
code of Fig. 9 is shown in Fig. 11. After unfolding a loop, the assignment to each 
quasi invariant variable can be eliminated since the variable becomes invariant inside 
the remaining loop. In the remaining loop, each quasi index variable is substituted for 
a linear expression of index variable. Thus any reference to a quasi index variable can 
be replaced by the corresponding linear expression of index variable. For instance, x 
and y are equal to i − 1 and i, and w in then-part and else-part are equal to i − 1 and i, 
respectively. In the remaining loop of Fig. 11, a[i] = p[i−1] + q[i+k], b[i] = b[i] + c[2] 
can be vectorized as a[3: n] = p[2: n−1] + q[3+k: n+k], b[3: n] = b[3: n] + c[2], re-
spectively.  

 
if  (1 <= n) { 
    a[1] = p[x] + q[y+k]; 
    if (odd(t)) { w = 0; b[1] = b[0] + c[z]; } else { w = 1; k = d; b[1] = b[1] + c[z]; }  
    t = j + z; z = 2; x = y; y = 2;  
} 
if  (2 <= n) {  
    a[2] = p[x] + q[2+k]; 
    if (odd(t)) { w = 1; b[2] = b[1] + c[2]; } else { w = 2; k = d; b[2] = b[2] + c[2]; } 
    t = j + 2; x = y; y = 3;  
} 
if  (3 <= n) { 
    a[3] = p[2] + q[3+k]; 
    if (odd(t)) { w = 2; b[3] = b[2] + c[2]; } else { w = 3; k = d; b[3] = b[3] + c[2]; }  
    t = j + 2; x = y; y = 4;  
} 
for (i = 4; i <= n; i++) { 
     a[i] = p[i–1] + q[i+k]; 
     if (odd(t)) { w = i − 1; b[i] = b[i−1] + c[2]; } else { w = i; b[i] = b[i] + c[2]; } 
     x = y;  y =i + 1; 
} 

           
                        Fig. 11. The unfolded code of Fig. 9 
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10   Related Work 

As three code optimization techniques, loop invariant code motion, loop unrolling and 
loop peeling have widely been studied and used by compilers. A comprehensive sur-
vey of these and other source level optimization can be found in [4]. A more recent 
survey of many state of the art optimization techniques for high performance architec-
tures can be found in [2], [19].  

Loop invariant code motion was originally mentioned in [1]. The notion of quasi 
invariant grew out of our work on partial evaluation [21]. Loop quasi invariant code 
motion is an extension of loop invariant code motion, which hoists invariant code to 
outside of loops by unfolding loops for a small number of iterations. A recently devel-
oped transformation is partial redundancy elimination (PRE), which is a global opti-
mization technique, generalizing the removal of common sub-expressions and loop-
invariant computations. Initial implementation of PRE failed to completely remove the 
redundancies [20], [23]. More recent PRE algorithms based on control flow 
restructuring [6], [24] can achieve a complete PRE and are capable of eliminating 
loop quasi invariant code. However, these techniques have exponential (worst-case) 
time complexity as well as code size explosion resulting from replication of the code. 
Our techniques statically determine a finite fixed point of computations induced by 
assignments, loops and conditionals and tries to compute the optimal unfolding factors 
to get maximal code motion and parallelization; and our algorithm has a polynomial 
time complexity. 

Loop peeling was originally mentioned in [15], and automatic loop peeling tech-
niques were discussed in [16]. August [3] showed how loop peeling can be applied in 
practice, and elucidated how this optimization alone may not increase program per-
formance, but may expose opportunities for other optimization leading to performance 
improvements. August [3] used only heuristic loop peeling techniques. We feel that 
when applied to new and innovative architectures such as the SDF [14] (Scheduled 
Dataflow architecture, a decoupled memory/execution, multithreaded architecture 
using non-blocking threads), our pre-optimization approach may prove to be of sig-
nificant importance. The benefits of loop unrolling have been studied for various ar-
chitectures [11]. It is a fundamental technique for generating the long instruction se-
quences required by VLIW machines [12]. A key issue in applying loop peeling and 
loop unrolling is the number of iterations that must be peeled off or replicated from 
the loop body. Current techniques use heuristic or ad hoc techniques that are based on 
loop-carried dependence analysis. 

Many optimization techniques can be formalized conveniently using static single 
assignments, including the elimination of partial redundancies [16], constant propaga-
tion [7], [17], and code motion [10]. We followed the same approach to express our 
loop optimization technique. 

11   Conclusion and Future Work 

In this paper, we presented a loop oriented optimization technique based on depend-
ence analysis. In particular, our technique detects anti-dependencies among variables 
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involved in loop, and then tries to remove some anti-dependencies as much as possible 
by unfolding loops for a small number of iterations. After the removal of quasi invari-
ant variables and the substitution of quasi index variables for linear functions of index 
variables, there will be only inductive variables inside loops, and thus loops will be 
relatively clean and easy to analyze and expose more opportunities for other optimiza-
tion leading to performance improvements. Exploiting this technique, we can extend 
conventional loop invariant code motion to loop quasi invariant code motion, which is 
capable of moving not only invariant code but also quasi invariant code. Loop quasi 
invariant code motion is well-suited as a supporting transformation in compilers, par-
tial evaluators, and other program transformers. Moreover, removing loop-
independent dependences may make static analysis based on loop-carried dependence 
easier, which will be very beneficial to many other optimizations leading to perform-
ance improvements such as loop unrolling, loop peeling and so on. Our technique has 
the potential to increase the accuracy of program analyses and to expose newer pro-
gram optimizations (e.g., branch predication, for extracting instruction-level parallel-
ism from programs.), which are of central importance to many compilers and program 
transformations. The algorithms presented in this paper uses the infrastructure already 
present in many compilers, such as dependence graphs and static single assignments. 
Thus they do not require fundamental changes to existing systems. The application of 
this technique to our ongoing compiler for the multithreaded architecture SDF, and 
larger practical programs is hoped to reveal the significance of the work presented 
here. To the best of our knowledge, this is the first attempt of systematically making 
use of loop-independent dependences among variables to unfold loops for optimiza-
tion. 
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