An Unfolding-Based L oop Optimization Technique

Litong Sond, Krishna Kavt, and Ron Cytroh

! Department of Computer Science,
University of North Texas, Denton, Texas, 76203AUS
{slt, kavi}@s.unt.edu
2 Department of Computer Science and Engineering
Washington University, St. Louis, MO 63130, USA
{cytron}@s. wustl . edu

Abstract. Loops in programs are the source of many optinagratfor improv-
ing program performance, particularly on modernhkpgrformance architec-
tures as well as vector and multithreaded syst@eshniques such as loop in-
variant code motion, loop unrolling and loop peglimve demonstrated their
utility in compiler optimizations. However, many tifese techniques can only
be used in very limited cases when the loops aedl-structured” and easy to
analyze. For instance, loop invariant code moti@rks only when invariant
code is inside loops; loop unrolling and loop paghvork effectively when the
array references are either constants or affinetioms of index variable. It is
our contention that there are many opportunitiesrloeked by limiting the op-
timizations to well structured loops. In many casegen “badly-structured”
loops may be transformed into well structured loofs a case in point, we
show how some loop-dependent code can be transfomte loop-invariant
code by transforming the loops. Our technique dlesdrin this paper relies on
unfolding the loop for several initial iterationsich that more opportunities
may be exposed for many other existing compilemapaition techniques such
as loop invariant code motion, loop peeling, loopalling and so on.

1 Introduction

Loops in programs are the source of many optinoratifor improving program per-
formance, particularly on modern high-performancehitectures as well as vector
and multithreaded systems. Techniques such asih@apant code motion, loop peel-
ing and loop unrolling have demonstrated theirituthmong in compiler optimiza-
tions. However, many of these techniques can oalyded in very limited cases when
the loops are “well-structured” and easy to analfe instance, loop invariant code
motion works only when invariant code is insidegdeploop unrolling and loop peel-
ing work effectively when the loop indices and grraferences are either constant or
affine functions. Let us first give a brief reviema a few common loop optimization
techniques such as loop invariant code motion, loolling and loop peeling, and
discuss the limitations of these techniques.

1.1 Reviewsof A Few Loop Optimization Techniques

Loop invariant code motion is a well-known loopnséormation technique. When a
computation in a loop does not change during theahyc execution of the loop, we
can hoist this computation out of the loop to inygr@xecution time performance. For
instance, the evaluation of expressafi00 is loop invariant in Fig. 1(a); Fig. 1(b)
shows a more efficient version of the loop where libop invariant code has been
removed from the loop.

for (i=1;i <= 100;i++) {x=ax100;y=y+i;}
(a) A source loop

t=ax 100; for (= 1;i <= 100;i++) { x=t;y=y +i; }
(b) The resulting code

Fig. 1. An example for loop invariant code motion

Modern computer systems exploit both instructiomeleparallelism (ILP) and
thread (or task) level parallelism (TLP). Superacand VLIW systems rely on ILP
while multi-threaded and multiprocessor systemg oal TLP. In order to fully benefit
from ILP or TLP, compilers must perform complex lgsas to identify and schedule
code for the architecture. Typically compilers fe@an loops for finding parallelism in
programs [26], [27]. Sometimes it is necessaretarite (or reformat) loops such that
loop iterations become independent of each othemitting parallelism. Loop peel-
ing is one such technique [3], [15], [21]. Whenoap is peeled, a small number of
early iterations are removed from the loop body erdcuted separately. The main
purpose of this technique is for removing depenidsncreated by the early iterations
on the remaining iterations, thereby enabling paliaation.

The loop in Fig. 2(a) is not parallelizable becaofa flow dependence between it-
erationi = 1 and iteration$ = 2 .. n. Peeling the first iteration makes the remaining
iterations fully parallel, as shown in Fig. 2(b)sibg vector notation, the loop in Fig.
2(b) can be rewritten aa(2: n) = a(1) +b(2: n). That is to sayn — 1 assignments in
- 1 iterations of the loop can be executed in palall

for (i = 1;i <=n;i++) { a[i] = a[1] + b[i]; }
(a) A source loop
if (1 <=n) { al1] = a[1] + b[1]; }
foi € 2;i <=n; i++) { a[i] = a[1] + b[i]; }
(b) The resulting codeeapeeling first iteration

Fig. 2. The first example for loop peeling

The loop in Fig. 3(a) is not parallelizable becavagablewrap is neither a constant
nor a linear function of inductive and index vateah Peeling off the first iteration
allows the rest of loop to be vectorizable, as shawFig. 3(b). The loop in Fig. 3(b)
can be rewritten as(2: n) =b(2: n) + b(1: n-1).

Loop unrolling is a technique, which replicatee body of a loop a number of
times called the unrolling factar and iterates by stepinstead of step 1. It is a fun-
damental technique for generating efficient indiars required to exploit ILP and

TLP. Loop unrolling can improve the performance(hyeducing loop overhead; (ii)
increasing instruction level parallelism; (iii) imgving register, data cache, or TLB
locality. Fig. 4 shows an example of loop unrollihg@op overhead is cut in a second
because one additional iteration is performed leefoe test and branch at the end of
the loop. Instruction parallelism is increased Iseathe first and second assignments
can be executed on pipeline. If array elementsiasggned to registers, register local-
ity will improve becausai] is used twice in the loop body, reducing the nembf
loads per iteration.

for (i = 1;i <=n;i++) { a[i] = b[i] + b[wrap]; wrap =1i; }
(a) A sourcep
if (1 <=n) { a[1] = b[1] + b[wrap]; wrap = i; }
fori(= 2;i <=n;i++) { a[i] = b[i] + b[i-1]; }
(b) The resulting code after pegliirst iteration

Fig. 3. The second example for loop peeling

for (i = 2; i <=n; i++){ a[i] = a[i-2] + b[i]; }
(a) A soel loop
for (i = 2;i <=n-1; i =i+2) { a[i] = a[i-2] + b[i]; a[i+1] =a[i-1] + b[i+1]; }
if (mod(n-2, 2) == 1) {a[n] = a[n-2] + b[n]; }
(b) The resulting code aftap unrolling

Fig. 4. An example of loop unrolling
1.2 Issues

As we mentioned previously, loop invariant code iorgtloop peeling and loop un-
rolling are all very practical and important conapiloptimization techniques for to-
day’'s architectures. Nevertheless, these technicres only suitable for well-
structured loops, which are relatively easy to y®l For loop invariant code motion,
it works only when there are clearly and easilyitf@ble invariant code inside loops;
for loop unrolling and loop peeling, they usuallpnk when subscripts of array refer-
ences are constants or affine functions. In mamgtial programs, loops are not
well-structured; but in some cases, these loops beayuasi well-structured ones.
That is to say, they may be converted into wellettired. For instance, in the loop of
Fig. 5(a), there is only one invariant expresdior c. If we unfold the loop twice,
however, we can get the resulting code in Fig.,5¢bhjch is much more efficient than
the source loop. This is because: (i) variaBlaady become invariant variables in the
resulting loop, so that assignmerts y + a andy = b x ¢ can be removed from the
remaining loop; (ii) expressianx y andx > d are invariant expressions in the remain-
ing loop so they can be hoisted outside the remgildop, which can actually be done
by the conventional loop invariant code motioni) (iecause expression> d is in-
variant during the dynamic execution of the renraribop, it will improve the branch
predication and significantly decrease branch reissfethe conditional contained in
the remaining loop. This example shows that ancéffe transformation of badly
structured loops is possible and desirable.

while(i<=n){x=y+ay=bx ¢ if(x>d)i=i+xx y,elsei=i+1;}
) @Gasource loop

if(i<=n{x=y+ay=bx cif(x>d)i=i+xx y;elsei=i+1;}
if i<=n){x=y+aif(x>d)i=i+xx y;elsei=i+1;}
while (i<=n) {if x>d)i=i+xx y;elsei=i+1;}

(b) The resulting code after udiog two iterations

Fig. 5. Loop quasi-invariant code motion

For the loop in Fig. 6(a), in the two assignmeiit] = b[i] + b[j] andc[i] = cJj] x
b[i], j andwrap are not constants or affine functions of indexatalei, so we have no
way to directly parallelize any of them, and we can even unroll the loop since we
do not know what is going on for loop-carried degesmces. If peeling or unfolding the
loop for two iterations, however, the remaininggoo Fig. 6(b) is very suitable for
parallelization and loop unrolling. Statemeifif = b[i] + b[i-2] can be parallelized to
bea[3: n] =b[3: n] + b[1: n-2], and statemerdi] = c[i-2] x b[i] can be unrolled to be
c[i] = c[i-2] x b[i]; c[i+1] = c[i-1] x b[i+1]; such that the two statements can be exe-
cuted in parallel since there is no loop-carriegateglence among them. Thus, some
pre-optimizations or transformations based on loofolding may be very useful and
lead to the application of conventional compiletimjzation techniques.

for (i = 1;i <=n; i++) { afi] = b[i] + b[j]; c[i] = c[j] x b[i]; j =i —wrap; wrap = 1; }
(a) Busce loop

it (1 <=n){ a[1] =b[1] + b[i]; ¢[1] = c[i] x b[1];j=1-wrap; wrap=1;}
if (2 <=n){ a[2] =b[2] + b[j]; c[2] = c[i] x b[2];j=1;}
for (i = 3;i <=n; i++) { ai] = b[i] + b[i-2]; c[i] = c[i-2] x b[i]; }

(b) The resulting code after peeling iterations

Fig. 6. An example for loop peeling and loop unrolling

In this paper we present a technique that is basddop dependence analysis, so
that traditional optimization techniques can bearfedim it. In particular, our goal is to
find a general and systematic way for pre-optinizet of using loop unfolding to
remove anti-dependences as much as possible.

2 Preliminaries

This section provides the background necessarth®orest of the paper, including a
simple language we will use to describe our loopngigation technique and the well-
known static single assignment (SSA) form.

2.1 DO-language

For the purpose of describing our technique, w& fitroduce a simple imperative
language, shown in Fig. 7; the semantics is simda€. For the sake of simplifying

the presentation, we assume a call-by-value seosdfiati function parameters, assume
freedom of side effects, and we treat all functiaggrimitive operations.

Ss =SS Ss

S ::=Ass |Cond | Loop | Call

Ass »:=Var = Exp

Cond = if (Exp) { Ss}else {Ss}

Loop .= for (Var = Exp; Exp; Var = Var + Exp) { Ss} | while (Exp) do { Ss}
Call = f(Exp*)

Exp ::=Var | Const | Op(Exp*) | Call

Op ==k > <)<= 1> =]

Fig. 7. The syntax of the DO-language
2.2 Static Single Assignment

Variables inside a loop may be modified for mukigimes. In order to perform de-
pendency analyses, it is necessary to distinghshmiodifications. Here, we make use
of the well-known static single assignment (SSA)][fbr this purpose. SSA form is a
program representation in which every variablessigned only once, and every use
of the variable is defined by that assignment. Mmshpilers use SSA representations
for performing optimizations. Here we use the téomefer to variables agvariables
assigned byp-function. An efficient algorithm that converts eogram into SSA form
with linear time complexity (in term of the sizetbe original program) was presented
in [9].

yee =X X1= o) e = X1
sy e T X ::> X2= g s =X
(a) straight-line code arsdSSA form

if (test) { x=...; Yelse{x=...;} ::> ifitest) { x1=...; } else {x2=...; } X3= @(X1, X2);
(b) conditional and its S®AmM

Fig. 8. SSA form transformation

3 Quasi Invariant and Quasi Index Variables

The invariant variables of a loop are those vaeshihose values are invariant in all
the iterations of the loop. The index variable dbap is a variable whose values in
successive iterations form an arithmetic progresdizdex variables are often used in
array subscripts. Here, we present four notions:
[J Quas invariant variable. A variable that is not invariant inside a loop but will
become invariant after a small number of iterations of the loop.
[J Quas index variable. A variable that is not an index variable but will become
equal to an affine function of the index variable after a small number of iterations
of the loop.

71 Unfolding factor of quas invariant variable. If a quas invariant variable be-
comes invariant after at least n iterations of a loop, nisreferred to as the unfold-
ing factor of the variable.

71 Unfolding factor of quas index variable. If a quasi index variable becomes an
affine function of the index variable after at least n iterations of a loop, n is re-
ferred to as the unfolding factor of the variable.

For instance, in Fig. 5 andy are quasi invariant variables, and their unfoldiag

tors are 2 and 1, respectively; in Fig.w8ap is a quasi invariant variable bjuts a

quasi index variable, and their unfolding factors & and 2, respectively. Now, we

face two issues: (i) identifying quasi invariantaguasi index variables; (ii) calculat-
ing the unfolding factors of these variables.

4 Variable Dependences

Compiler usually relies on both control and datpetelence analyses for performing
optimizations [5], [27]. These dependencies relatthose among statements. In our
case, we only rely on dependencies among varia¥llescecognize two forms of data
dependences: true data dependence, anti-data aegpendind two forms of control
dependences: true control dependence, anti-calgpendence.
[l Truedata dependence. Thefirst statement storesinto variable x that is later read
by the second statement:
S X=...; S y=..X;
We say y has a true data dependence to X, and denote the dependence asy &g X.
[Anti-data dependence. The first statement reads x into which the second state-
ment later stores:
SEy=..X; SXx=..;
We say y has an anti-data dependence to x, and denote the dependence asy &4 X.
[True control dependence. The first statement stores into variable x that is later
read by the test of second statement (conditional):
S x=...; S if(...X)y=..;elsey=...;
1 Anti-control dependence. The test of first statement (conditional) reads x into
which the second statement later stores:
S if(...x)y=..elsey=...; S x=...;
We say y has an anti-control dependence to x and denoteit asy o. x.
According to the definitions above, the variablpe®dences in Fig. 5(a) and Fig. 6(a)
should bexdq'y, X0 i, i0qi, jOq Wrap, jOqgi, i0qi
Note that we only discuss the dependences betveadar variables here.

5 An Extension of Control Dependences

In Sect. 4 we presented two general notions fotrobdependences. In this section,
we present special cases of conditionals to eléamcontrol dependences. Variable
assignments inside conditionals can be distingdisht® two cases:

[Avariableis assigned inside both then-part and else-part of a conditional:

for (= 1;i <=n;i++) {if (test) { xa=ey; } else {x= & } X3 = @(xq, X2); }
The assignment to a quasi invariant variable carebwved after the variable be-
comes invariant, and the symbolic value (an affinection) of a quasi index vari-
able might be substituted for references to théabse after it is equal to an affine
function. Whethex; = e, orx; = & can be removed or not, is dependent on not only
€, or e, but alsotest. If test is variant then neithes; = e; norx, = e, can be removed
even ife; or e, may be invariant. Otherwisg; might be assigned to an incorrect
value. By contrast, ifest is invariant then eitheg = e, or x, = e,can be removed as
long ase; or & is invariant. This is because the selection ofvilee ofx; is invari-
ant inside the remaining loop.
[1 A variable is assigned both inside one branch of a conditional and outside the
conditional:
for(=1;i<=n;it+) {x=ey;if (test) { o= &; } %= @Xg, X2); }
Similar to case 1, botk, andx, are control dependent a@est. In addition, we dis-
tinguish between two cases as below:
[] There exist referencesto x;.
Because the value tdst is unknown x; = ; can not be removed even if ttest
is invariant. Note that;, x, andxs will be renamed to be a same name in result-
ing program, which will be described in Sect. 8céingly, X, = e, can not be
removed either. Ik; andx, are @-variables, their operands can not be removed
either, and thus a recursive processing is neexdddtermine which assignments
can not be removed from the resulting loop. Assgntirat we use to denote
the closure of this kind of variables, aodo denote the variables already han-
dled,y will be defined as follows:

o if xJo
y(x)a={ ol0{x} if xOo[x[Oe-variables
YX%)ony OYX)ong if XOOTX = @(X1, Xo)
[] There exists no reference to x;.
Becauseq = g is outside the conditionak, = e, can be removed only when as-
signmentx; = e; is removed (otherwise will be always equal t&;). The special
dependence betweeq andx, is actually anad hoc true control dependence,
which is still denoted by, & ;.
After the analysis of control dependences, we reetbllect all the related depend-
ences introduced bgrfunctions. Ag-function is temporarily introduced only for static
analysis and it will be removed in resulting progsa so any control dependence
introduced by ap-variable is actually a dependence introduced lydperand vari-
ables of thep-variable. This is a recursive process and a céshould be computed.
Assuming that there exists a control dependencetddras &; x,, functiond is used
to denote the closure, adis used to denote the dependences already harfialhed,
tion ¢ can be defined as follows:
o] if X y(x 6. y)Uo
0(X)o ={cr|:|{(x6C v} if x & y(x 0. y)JolyOg-variables
O (X, YDorgx ey DO Yodonyxacyy 1T X0 YO(X S Y)Ooly = @ys, ¥2)

For instance, suppose we have the following proggagment inside a loop:
X =1 (i >]) {if (k>5) {x=2;} else {x3= 3; } X4= @0%: Xa); } X5= PXq, Xa);

We can compute the following dependences. i, X; O j, X2 Oc i, X2 8¢, X2 Oc K, X2 &¢
X1, X3 Oc i, X3 Oc j, X3 Oc K, X3 8¢ X1, X4 Oc i, X4 8¢ J, Xa O X1

6 Dependence Relation Graph

Based on the two types of data dependences antypes of control dependences, we
can construct a directed graph called dependetetioregraph.
Definition 1 (Dependencerelation graph). The dependence relation graph (DR&)
aloopisadirected graph (V, E), where

V ={x|xisavariable modified inside the loop};

E ={adirected real thinlinefromxtoy |y &y x } I{ a directed real bold line from
xtoy |yd. x } O adirected dotted thin linefromxtoy |y &4 x }[0{ a directed dotted
bold linefromxtoy |y & x}

for (i=1;i <=n;i++){
ali] = p[x] + aly+K];
if (odd(t)) { w=i - 1;b[i] = b[w] + c[Z]; } else {w=1i; k=d; b[i] =b[w] + c[Z]; }
t=j+z z=2;x=y, y=i+1

}

(a) A source loop

for [X1 = @Xo, X2); t1=@to, t2); 2= Y20, 22); Y1 = @Yo, Y2); k1= @Ko, ks); w1= @(wo, Wa); |
(=1i<=ni++){
afi] = pDxa] + qlyrtkal;
if (odd(ty)) { wo=1i — 1; b[i] = b[wy] + c[z]; } else { ws=i; ko=d; b[i] = b[ws] + c[z]; }
Wa = @(Wz, Wa); ka= @k, ko); t2=] + 215 2= 2, X2 =y, Yo =i + 1

(b) The corresponding S&Af

Fig. 9. An example for SSA form conversion

For instance, assuming that we have a program sgghewn in Fig. 9, the DRG for
this program is shown in Fig. 10. Here, the sensantif loop for [Sts] (Var = Exp;
Exp; Var = Var + Exp) { Ss} means that statements i8] will be executed before
the evaluation of loop test. Note that this intediage form is only used for static
analysis and it will be converted back to origifeam after optimization.

Fig. 10. The DRG of the loop in Fig. 9

7 ldentifying Quasi Invariant/Index Variables and Computing
Their Unfolding Factors

In Sect. 3 we defined quasi invariant variablegsijindex variables and their unfold-
ing factors. Using dependence relation graphs, aveidentify quasi invariant vari-
ables and quasi index variables, and efficientipgote their unfolding factors.

7.1 Quasi Invariant Variables and Unfolding Factors

71 Quasi invariant variable. For any vertex on the DRG of a loop, if among all the
paths ending in this vertex, there is no path that contains a vertex that is a vertex
on a strongly connected path, then the variable corresponding to the vertex is a
guasi invariant variable.
71 Unfolding factor of quasi invariant variable. For any quas invariant variable x
on a DRG, the unfolding factor of x is equal to max{ n | n = the number of de-
pendence &4 edges (represented by directed thin dotted line) and dependence &,
edges (represented by directed bold dotted line) on a path ending in x }.
For instance, in Fig. 1@, t5, z, 2, ky, k» andks are all quasi invariant variables, but
the other variables are not because each of themaspath which contains a strongly
connected graph. Because there is a path endiqgaisi invariant variablg and this
path contains two (maximum) directed thin dotteedi, the unfolding factor of is 2.
In the same way, the unfolding factors of quasaitent variables,, z;, z, ki, k, and
kzare 1, 1, 0, 3, 2 and 2, respectively.

7.2 Quasi Index Variables and Unfolding Factors

For any variable assigned inside a loop, it mustitieer a quasi invariant variable or a
variant variable. We can further distinguish thtyges of variant variables: (i) index
variables; (i) quasi index variables; (iii) othetdentification of index variables has
been studied by many others, thus we assume haranttex variables have been iden-
tified. Our goal is to identify quasi index variabl Within a loop, if the test of a condi-
tional is variant, then all variables assigneddasihe branches of the conditional are
not quasi index variables, since any referencedoasi index variable can be replaced
by an affine function of index variable after a dmamber of loop iterations.

71 Quas Index variable. For any variant variable (non-invariant variable and non-
quasi-invariant variable) x on the DRG of a loop, if any path ending in the vertex
of x contains, only vertexes of index, quasi index or quasi invariant variables, and
contains neither &, dependence edges nor &, dependence edges that starts from a
vertex of variant variable, then x isa quas index variable.

[l Unfolding factor of quasi-index variable. For any quasi index variable x on a
DRG, the unfolding factor of x is equal to max{ n | n = the number of &4 edges
(represented by directed thin dotted line) and &, edges (represented by directed
bold dotted line) on a path that ends in x and contains no strongly connected

graph. }.

For instance, in Fig. 1G4, V2, X1, X2, W1, W>, W3 andw, are quasi index variables, and
their unfolding factors are 1, 0, 2, 1, 3, 2, 2 @ndespectively.

8 Algorithms of Evaluating Quasi Invariant/Index Variables and
Unfolding Factors

In this section, we present efficient algorithms fdentifying quasi invariant/index
variables and computing their unfolding factorseThain work of this paper is di-
vided into two phases: 1. Quasi invariance/indexlyasis that includes (i) detecting
dependences among variables and (ii) identifyingsginvariant/index variables and
computing their unfolding factors; 2. Loop unfolginWe already discussed how to
detect dependences among variables. Based on pleadknces, we present two effi-
cient algorithms to identify quasi invariant/indeariables and to compute their un-
folding factors.Alg. 1 is based on the well-known algorithm presentedMarshall
[24]. The time complexities of Warshall algorithm®®) in the worst case, where

is the number of the variables modified inside & giloop. Assume that there are
variablesx; ... X, modified inside a given loop, and five Boolean matrices®s,,

Psq, Ps., Poe indicatingdg, &4, &, O dependence relations among these variables,
respectively ®=d5,0P50Ps 1P5.. Here, for any two variables andx;, we have:
Degli, J) ={ 1, ifx8y% Dp(i, J) =1, ifx 8%

0, otherwise Optherwise
(N ()] ={ 1, ifx 04 X @i,)) = 1, ifx 8 %
Optherwise Optherwise

Moreover, supposéx denotes the set of index variabl€ly denotes the set of
quasi invariant variables ar@x denotes the set of quasi index variables.
Alg. 1 (identifying quasi invariant vsindex variables)

Input: @, IX
Output: Qiv, Qix
Begin
for (i=1;i <=n;i++)
for (= 1;j <=n;j++)
if (@(, D) for (k= 1;k <=n; k++) { B(, K) = D(j, OPG, K); }

Qiv = {X | OiasisnTj agj<ny® (P[0,)) - @G,)}

c inX = {% | Diasieny* 6UQiIV agjeny® (D0, J) - = P(J, (PG,)T %L
n

The worst case time complexity Alg. 1 is On®. Note thatix is a subset of set
Qix. While computing the unfolding factors of quasianant/index variables, we can
exploit the well-known algorithm of Floyd[13] foromputing the shortest distance
between a pair of vertexes. Because the main fotusmputing unfolding factors is
anti-dependences, we suppose the length of eacdegendence edge to be 1 and
that of each true dependence edge to be 0. Fladtzithm was originally used to
compute the shortest path between a pair of vesterea directed graph, but we need
to compute the longest path here. If a directeghlydoes not contain any strongly

1C

connected subgraphs, then essentially there willddifference between computing
shortest and longest paths between a pair of \esteken using Floyd's algorithm. If
we delete all the edges starting from or endingndex variable, then all the paths
ending in a quasi index variable should not congaig strongly connected graph. In
addition to the variables usedAdg. 1, we utilize two additional integer<n matrices
Ow andd x defined asO =0 =05y 0Ps;. 6XX) indicates the unfolding factor of
vari?blex. Alg. 2 is a variation of Floyd's algorithm, itsonst-case time complexity is
on’).
Alg. 2 (computing the unfolding factors of quasi invariant vsindex variables)
Input: @, Ix, Qiv, Qix, O, O
Output: w
Begin
/[Computing the unfolding factors of quasi invariant variables.
for any x0Qiv
for any x0Qiv
for any x,Qiv
if (@G, i)OP(i, k)OP(, K))
if (Ow(, K <0G D +00GK) Oy K =00, 1) + 0w K;
for any x0Qiv o(x) = max{ 0 (, i) [x0Qiv};
//Computing the unfolding factors of quasi index variables.
for any x;0Ix
for any x0Ix
O (i, J) = ®(i,) = 0;
for any x,(0Qix
for any x,0Qix for any xJQix
if (@@, i)OP(i, K)Od(, K)
if (0 w0, K <OnG, D) +0 w0 K) O wG K =00, 1) + 0w, K;
for any x,(0Qix
w(x) =max{ 0 (. i) |x0Qix}:;
End

9 Loop Unfolding

After identifying the set of quasi invariant/indeariables and figuring out their unfold-
ing factors by using Alg. 1 and Alg. 2, all thatm&ins now is to select the maximum
unfolding factors as the number of iterations statuld be unfolded. Because source
programs have been converted into SSA form forpilng@ose of static analysis, it is
necessary to convert the SSA form back into origisarce forms. The main issue to
deal with is the removal of adj-functions. For anyp-variablex (say defined ag; =
@(x1, X2)), each reference tg is actually a reference tq or x,. To preserve the cor-
rectness of semantics, we must use a same namg ferandxs such that each refer-
ence toxz will actually be a reference tg or x,. The following two cases must be
considered.
[Either x; or x, is a @-variable. We recursively rename until no nepwariable is
encountered.

11

[xz is an operand of another @-variable. Supposex; is an operand of another
variable (e.g.y = @z X3)), ¥, Z and xz should also be renamed using the same
name. The process continues recursively until moqeariable is encountered.

Assuming that functiom is used to compute the set of variables that shbal re-

named by a same name, andlenotes the set of variables already handied, de-

fined as below:

a(X)e=(C 0O if xJo
{O‘D{X} if xisnot a g-variable
aV)ongy 00@DonixnOBMony 1IFX=ay, 2
BX)s=s 0O if xOo or x is not an argument of a ¢-function

a(Z)OD(y} DB(y)OD(y} if y= ([(Xx Z)

For instance, in Fig. 9 there are tgdunction assignmentsv; = @(Wo, W,) andw,
= @(ws, Wg). All the variables in the set(w;) = a(wg) = {wi, Wo, W>, Wz} should be
renamed by the same name (exg.,Similarly, the variables in each of the setg ¥,
Xob, { Y1 Yor Vobs {21, 20, 22}, {11, to, ta}, { k1, Ko, ko, ks} should be renamed with same
names, respectively. After renaming variables, we gnfold loops. The unfolded
code of Fig. 9 is shown in Fig. 11. After unfoldiagloop, the assignment to each
guasi invariant variable can be eliminated sineewériable becomes invariant inside
the remaining loop. In the remaining loop, eachsgjiedex variable is substituted for
a linear expression of index variable. Thus angnefce to a quasi index variable can
be replaced by the corresponding linear expressiondex variable. For instance,
andy are equal td — 1 andi, andw in then-part and else-part are equal tol andi,
respectively. In the remaining loop of Fig. Bli] = p[i-1] + q[i+K], b[i] = b[i] + c[2]
can be vectorized a&f3: n] = p[2: n—1] + q[3+k: n+kK], b[3: n] = b[3: n] + c[2], re-
spectively.

if (1<=n){
a[1] = p[x] + qly+K];
if (odd(t)) { w=0; b[1] = b[O] + c[Z]; } else {w=1;k=d; b[1] = b[1] + c[Z]; }
t=j+zz=2;x=y;y=2;

}

if (2<=n){
a[2] = p[x] + q[2+K];
if (odd(t)) { w= 1;b[2] = b[1] + c[2]; } else {w = 2;k=d; b[2] = b[2] + [2]; }
t=j+2;x=y,y=3;

}

if (3<=n){
a[3] = p[2] + q[3+K];
if (odd(t)) { w=2;b[3] = b[2] + [2]; } else {w= 3;k=d; b[3] = b[3] + ¢[2]; }
t=j+2;x=y;y=4;

for (i =4;i <=n; i++){
a[i] = p[i-1] +qi+K];
if (odd(t)) { w=i - 1;b[i] = b[i-1] + c[2]; } else { w=; b[i] = b[i] + c[2]; }
X=Yy; y:i +1;

Fig. 11. The unfolded code of Fig. 9

12

10 Related Work

As three code optimization techniques, loop inva@r@de motion, loop unrolling and
loop peeling have widely been studied and useddoypders. A comprehensive sur-
vey of these and other source level optimizatiom loa found in [4]. A more recent
survey of many state of the art optimization tegbes for high performance architec-
tures can be found in [2], [19].

Loop invariant code motion was originally mentioned1]. The notion of quasi
invariant grew out of our work on partial evaluatif21]. Loop quasi invariant code
motion is an extension of loop invariant code mmtisvhich hoists invariant code to
outside of loops by unfolding loops for a small tagnof iterations. A recently devel-
oped transformation is partial redundancy elimoatfPRE), which is a global opti-
mization technique, generalizing the removal of own sub-expressions and loop-
invariant computations. Initial implementation dRP failed to completely remove the
redundancies [20], [23]. More recent PRE algorithivésed on control flow
restructuring [6], [24] can achieve a complete P&t are capable of eliminating
loop quasi invariant code. However, these techmidue/e exponential (worst-case)
time complexity as well as code size explosion Itegufrom replication of the code.
Our techniques statically determine a finite fixgaint of computations induced by
assignments, loops and conditionals and tries tgpede the optimal unfolding factors
to get maximal code motion and parallelization; and algorithm has a polynomial
time complexity.

Loop peeling was originally mentioned in [15], aadtomatic loop peeling tech-
niques were discussed in [16]. August [3] showed lawp peeling can be applied in
practice, and elucidated how this optimization alonay not increase program per-
formance, but may expose opportunities for othdingpation leading to performance
improvements. August [3] used only heuristic log®elng techniques. We feel that
when applied to new and innovative architecturehsas the SDF [14] (Scheduled
Dataflow architecture, a decoupled memory/execuytiomltithreaded architecture
using non-blocking threads), our pre-optimizatigpr@ach may prove to be of sig-
nificant importance. The benefits of loop unrollihgve been studied for various ar-
chitectures [11]. It is a fundamental technique generating the long instruction se-
quences required by VLIW machines [12]. A key issuapplying loop peeling and
loop unrolling is the number of iterations that mbe peeled off or replicated from
the loop body. Current techniques use heuristi@dohoc techniques that are based on
loop-carried dependence analysis.

Many optimization technigues can be formalized emiently using static single
assignments, including the elimination of partedundancies [16], constant propaga-
tion [7], [17], and code motion [10]. We followelet same approach to express our
loop optimization technique.

11 Conclusion and FutureWork

In this paper, we presented a loop oriented opétiun technique based on depend-
ence analysis. In particular, our technique detentsdependencies among variables

13

involved in loop, and then tries to remove soméd@pendencies as much as possible
by unfolding loops for a small number of iteratioAdter the removal of quasi invari-
ant variables and the substitution of quasi indasables for linear functions of index
variables, there will be only inductive variablesitde loops, and thus loops will be
relatively clean and easy to analyze and expose wgportunities for other optimiza-
tion leading to performance improvements. Explgitthis technique, we can extend
conventional loop invariant code motion to loop sjuavariant code motion, which is
capable of moving not only invariant code but ajg@si invariant code. Loop quasi
invariant code motion is well-suited as a suppgrtimnsformation in compilers, par-
tial evaluators, and other program transformers. rddeer, removing loop-
independent dependences may make static analysesl loe loop-carried dependence
easier, which will be very beneficial to many otlegtimizations leading to perform-
ance improvements such as loop unrolling, loopipgelnd so on. Our technique has
the potential to increase the accuracy of prograalyaes and to expose newer pro-
gram optimizations (e.g., branch predication, fetracting instruction-level parallel-
ism from programs.), which are of central impor&game many compilers and program
transformations. The algorithms presented in thisep uses the infrastructure already
present in many compilers, such as dependence geaphstatic single assignments.
Thus they do not require fundamental changes ttiagisystems. The application of
this technique to our ongoing compiler for the ntlteaded architecture SDF, and
larger practical programs is hoped to reveal tigmiicance of the work presented
here. To the best of our knowledge, this is thst fattempt of systematically making
use of loop-independent dependences among varitblesfold loops for optimiza-
tion.

References

1. Aho A. V., Sethi R., Ullman J. D., “CompilefBrinciples, Techniques, and Tools", Addi-
son-Wesley, Reading, Mass, 1986.

2. Allen R., Kennedy K., “Optimization CompilersrfModern Architectures”, Morgan Kauf-
mann Publishers, 2002.

3. August D. I., “Hyperblock performance optimipais for ILP processors”, M.S. thesis,
Department of Electrical and Computer Engineeridgijversity of lllinois, Urbana, IL,
1996.

4. Bacon D. F., and Graham S. L., “Compiler transftions for high-performance comput-
ing”, ACM Computing Surveys, December 1994, Vol, R®. 4, pp.345-420.

5. Banerjee, U., “An introduction to a formal ting@f dependence analysis”, Journal of Su-
percomput. Vol. 2, No.2, 1988, pp.133-149.

6. Bodik R., Gupta R., Soffa M. L., “Complete rerabof redundant expressions”, Prod. ACM
Conf. On Programming Language Design and Implentientgpp.1-14, ACM Press, 1998.

7. Bulyonkov M. A., Kochetov D. V., “Practical asgis of specialization of Algol-like pro-
grams”, eds. Dancy O., Glueck R., Thiemann P.,ti®aEvaluation”, Proceedings. LNCS,
Vol. 1110, pp.17-32, Springer-Verlag, 1996.

8. Cocke J., Schwartz J. T., “Programming langsagad their compilers (preliminary
notes)”, 29 ed. Courant Institute of Mathematical Science, Néwork University, New
York.

14

9. Cytron R., Ferrante J., “Efficiently computisgtic single assignment form and the control
dependence graph”, ACM TOPLAS, October, 1991, \¥8l.No. 4, pp.451-490.

10. Cytron R., Lowry A., Zadeck F. K., “Code motioh control structures in high-level lan-
guages”, Conference Record of thé"18CM Symposium on Principle of Programming
Languages, pp.70-85, ACM Press, 1986

11. Dongarra J., Hind A. R., “Unrolling loops inf@n”, Softw. Pract. Exper., Vol. 9, No. 3,
pp.219-226, 1979.

12. Ellis J. R., “Building: A Compiler for VLIW Araitecture”, ACM Doctoral Dissertation
Award. MIT Press, Cambridge, Mass, 1986.

13. Floyd R. W., “Algorithm 97: shortest path”, Comnications of the ACM, 1962, Vol. 5,
No. 6, pp.345.

14. Kavi K. M., Giorgi R. and Arul J., “Scheduledfaflow: Execution paradigm, architecture
and performance evaluation”, IEEE Transactions omg@uter, Vol. 50, No. 8, pp.834-846,
Aug. 2001.

15. Lin D. C., “Compiler support for predicated edgon in superscalar processors”, M.S.
thesis, Department of Electrical and Computer Eegimg, University of lllinois, Urbana,
IL, 1992.

16. Mahlke S. A., “Exploiting instruction level pdielism in the presence of conditional
branches”, Ph.D. thesis, Department of Electrical @omputer Engineering, University of
lllinois, Urbana, IL, 1995.

17. Metzger R., Stroud S., “Interprocedual consfamopagation: An empirical study”, ACM
Letters on Programming Languages and Systems,2yblo.1, pp.213-232, 1993.

18. Padua D. A., and Wolfe M. J., “Advanced compdgtimizations for supercomputers”,
Communications of the ACM, December 1986, Vol. 126, 12, pp.1184-1201.

19. Pande S., Agrawal D. P., (Eds.) “Compiler Optations for Scalable Parallel Systems”,
LNCS 1808, Springer, 1998.

20. Rosen B. K., Wegman M. N., and Zadeck F. K.lotal value numbers and redundant
computations”, Conference Record of thé"1CM Symposium on Principles of Pro-
gramming Languages, ACM Press, 1988, pp.12-27.

21. Song L., “Studies on Termination Methods oftlakEvaluation”, Ph.D. thesis, Department
of Computer Science, Waseda University, Tokyo, dap@01.

22. Steffen B., “Property oriented expansion”, Sgsipm on Static Analysis, LNCS 1145,
pp.22-41, Springer-Verlag, 1996.

23. Steffen B., Knoop J., Rithing O., “The valuewflgraph: A program representation for
optimal program transformations”, ed. Jones N. ESOP’90, LNCS 432, pp.389-405,
Springer-Verlag, 1990.

24. Warshall S., “A theorem on Boolean matricestrdal of the ACM, January 1962, Vol. 9,
No. 1, pp.11-12.

25. Wolfe, M. J., “Optimizing supercompilers forpgicomputers”, Research Monographs in
Parallel and Distributed Computing, MIT Press, Gadge, Mass.

26. Wolfe, M. J., “High performance compilers farallel computing”, Addison-Wesley Pub-
lishing Company, Inc., 1996.

27. Zima H., and Chapman B., “Supercompiler foraial and vector computers”, Frontier,
Series, ACM Press, 1990.

15

