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Abstract—Neural Network compression techniques, such as
parameter quantization and weight pruning have made deep
neural network (DNN) inference more efficient for low-power
devices such as MCUs and edge devices by reducing the memory
and computation overhead required with minimal impact on
model accuracy. To avoid storing and computing zeros, these
techniques necessitate the use of sparse data representations,
which introduces execution overhead to locate values required by
a computation. Sparse matrix formats like Compressed Sparse
Row (CSR) and other more recent designs are computationally
inefficient when applied to the convolution algorithm as well as
inefficient for storing quantized values. In this paper, we outline
an intuitive extension of CSR called Partitioned Sparse Rep-
resentation (PSR) in conjunction with a convolution algorithm
that hides the cost of indexing overhead via a simple memory-
side RISC-like core. PSR divides the entire weight array for
a convolution layer into partitions that allow for smaller (e.g.,
8-bit) indexes to reduce storage overhead. We also rely on a
memory-side accelerator called HHT, a programmable, near-
memory RISC-like co-processor that enables efficient processing
of sparse data (including PSR). We show that HHT together
with PSR allows the CPU to maximize the advantage of RISC-V
packed instructions on sparse quantized data. We show as much
as 10x speedup for sparse CONV with HHT over a baseline of the
CPU performing all computations on dense data. HHT performs
2.7x faster on end-to-end image classification inference over the
baseline and achieves 70% energy savings over sparse CONV
with CPU performing all computations.

Index Terms—CNN, sparsity, compression, RISC-V, pro-
grammable, quantization

I. INTRODUCTION

With neural network (NN) inference moving increasingly to

edge devices, much work has been done on model compression

techniques to improve performance and efficiency. Because

edge devices are constrained by limited on-chip memory and

slower processor speeds, optimizations that reduce the size of

the parameter space for a given network without significantly

reducing the network’s accuracy are particularly useful. Pa-

rameter quantization and pruning are standard ways to reduce

the bit width and increase the sparsity of weights and features

for NN layers. As pruning techniques increase sparsity without

sacrificing accuracy [1, 2], quantization reduces model size by

reducing the bit width of network parameters. This reduction

has the double benefit of shrinking the storage requirements of

a model as well as reducing the computation cost, substituting

integer arithmetic for floating-point arithmetic. The combina-

tion of these two techniques presents a unique problem when

compressing sparse parameters, which we discuss in detail in

Section II. Because the values themselves are compact (usually

8 bits), any metadata used to locate the nonzero values in the

sparse format must be similarly compact to avoid overcoming

the storage gains of the sparse representation.

Common formats for irregular sparse data like Compressed

Sparse Row (CSR [3]) or Compressed Sparse Column (CSC

[4]) as well as variants like Block Compressed Sparse Row

(BCSR [5]) are not well suited for quantized data because the

storage cost of the indexing overhead quickly overcomes the

benefits of storing only the nonzero values even at low sparsity.

We propose instead an intuitive extension of CSR along with

an efficient sparse convolution algorithm specifically tailored

to quantized data computation and a simple memory-side

accelerator1 to hide the cost of sparse metadata overhead.

In this work we make the following contributions.

• Memory-Side Accelerator Many recent works propose

new data compression formats and algorithms for DNN’s

along with specialized hardware to accelerate the entire

computation. We propose to aid the primary processing

cores only with indexing and other memory-side opera-

tions for common DNNs using sparse data. Our memory-

side accelerator (HHT) supplies the primary cores only
the required data, and does not fetch out-of-bounds data.

• New Sparse Representation. There are many ways to

represent sparse data but they require additional meta-

data to specify the location of a nonzero value in a

structure (for example, the column location in a row of

a sparse matrix). However, when the data is quantized,

as is common in TinyML environments, the meta-data

may be several times larger than the size of nonzero

values. For example, when using 8-bit quantized values,

the indexes needed to specify the location of a nonzero

may be 32-bits. We propose to partition the data such that

the location of a nonzero value within a partition can be

represented with 8-bits. Our partitioning is specifically

designed to aid convolution algorithms and SIMD like

packed arithmetic that operate on four 8-bit values.

• Specialized RISC-V Instructions. Since our memory-side

accelerator (HHT) is used only to aid in fetching the data

needed by the primary core, the accelerator core can be

1The accelerator is implemented as a RISC-like core with a reduced
instruction set.
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very simple RISC-V-like core with minimal instruction

set including integer only arithmetic, fewer registers and

new address formats.

The rest of the paper is organized as follows. Section II

provides the background to motivate our work. Section III

describes of our new sparse data representation and Section IV

describes our convolution algorithm that takes advantage of

the compressed quantized data. Section V includes details of

the memory-side accelerator HHT. Section VI describes our

approach to evaluating our HHT. This section also includes re-

sults from our experiments and provides an analysis of factors

contributing the performance of HHT for sparse convolutions

as well as a complete network from TinyML benchmarks. A

review of related works is presented in Section VII. Section

VIII summarizes the contribution.

II. BACKGROUND AND MOTIVATION

A. Convolution Layer

The convolution (CONV) layer is the basis for the Con-

volutional Neural Network (CNN). A typical CNN model

contains a mix of CONV and pooling (POOL) layers with a

fully connected (FC) layer before the final classification step,

although the number of these layers differ from network to

network. We focus our work on improving the performance

of the CONV layer in particular because it represents the bulk

of computations in most CNNs.

The CONV layer is composed of 4 tensors: inputs, outputs,

weights, and biases. The inputs and outputs are structured as a

set of 2d feature maps, each of which is called a channel. The

weights are similarly structured as a stack of 2d filters. Each

2d input channel corresponds to a distinct 2d weight filter,

and the filters are typically grouped into a single 3d filter or

kernel, matching the total number of input channels. During

the convolution, the weight kernel slides across successive

windows of the input features at a set stride, and for each

window, all values are element-wise multiplied and summed

across all channels producing a single output result. This entire

computation produces one 2d output feature map, or output

channel. Each output value can be adjusted by adding a bias,

which is the same for every element of the resulting output

channel. Additional 3d kernels can be applied to the same

input features to produce additional output channels. [6]

B. Quantization

Quantization is a common compression technique that re-

duces the precision of model parameters from floating-point to

smaller integers, often 8 bits or less. The model accuracy is not

significantly reduced by this process, but quantization allows

for a more compact network with reduced storage and com-

putational complexities. Typically quantization is performed

after training a network with full precision, usually converting

parameters from 32-bit floating point to 8-bit integer.

C. RISC-V P Extension

The P extension of the RISC-V ISA defines a set of packed

single instruction multiple data (SIMD) digital signal process-

ing (DSP) instructions that operate on XLEN-bit integer regis-

ters for embedded RISC-V processors [7]. These instructions

are designed to increase the processing capabilities of RISC-

V CPUs on DSP algorithms but they can also be utilized

by quantized CONV layers because they operate on multiple

8-bit integers that are ”packed” into XLEN-bit registers. In

particular, the Signed Multiply Four Bytes with 32-bit Adds

(SMAQA) instruction operates on two 32-bit source registers,

multiplying the four 8-bit signed integers packed into each

of the registers. The results of the 4 multiplications are then

added together to a signed 32-bit integer destination register

(accomplishing Multiply-Accumulate of four pairs of 8-bit

integers). However, packing CONV input features requires

additional computational overhead because they are not always

accessed in the same order they are stored in memory. Indeed

when we compared the performance of dense CONV with and

without packed instructions, the scalar version outperformed

the SIMD version. This is further complicated when the

network uses sparse data (either sparse weights, inputs or

both).

D. Weight Pruning

Increasing the sparsity of weights in a CNN is achieved

mainly through pruning, where redundant weight values are

set to 0. As more values become 0, the sparsity of the weights

increases. Numerous pruning methods have been developed,

employing different strategies to determine which parameters

are defined as redundant and can be pruned. In [1] and [2],

for example, pruning is done through an iterative process of

setting a subset of weights below a set threshold to zero and

retraining the network to regain accuracy. Increasing sparsity

through pruning allows for the weights to be compressed into

a sparse matrix representation that reduces storage by storing

only non-zero values as well as metadata required to locate

those values within the original dense matrix.

E. Indexing Overhead

Although prior works explore both sparse data represen-

tations and accelerating sparse convolutions with specialized

hardware, the use of 8-bit quantized parameters and spe-

cialized 8-bit SIMD (or packed) instructions presents unique

challenges. The reduction in bit-width that comes from quanti-

zation is itself a significant reduction in the memory footprint

of a network. If the sparse parameters are compressed naively

after quantization, the indexing data needed to identify the

position of a non-zero weight value can quickly overcome any

storage savings from storing just the 8-bit non-zero values.

Any compression scheme involves at the very least storing

the non-zero values along with at least one index to compute

it’s original position within the dense matrix. CSR, for exam-

ple, stores the column index of a value in a row as well as

the cumulative number of non-zero values in each row. As

others [8] have noted, minimizing the size of the index array
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(or column numbers in the case of CSR) is the primary way to

minimize the total overhead of the compressed data. Extra care

must be taken when dealing with quantized non-zero values

that are limited to a specific bit-width. Even if index values are

the same width (e.g., 8 bits for 8-bit quantized data values)

the sparse representation will only save storage space (and

consequently data access latency) if the sparsity of the original

matrix is at least 50%.

TABLE I: Size of indexes and non-zero values over size of

dense matrix for range of sparsities and index widths

Index Sparsity
bit-width 30% 40% 50% 60% 70% 80% 90%

32-bit 3.5 3 2.5 2 1.5 1 0.5
16-bit 2.1 1.8 1.5 1.2 0.9 0.6 0.3
8-bit 1.4 1.2 1 0.8 0.6 0.4 0.2
4-bit 1.05 0.9 0.75 0.6 0.45 0.3 0.15

Table I shows the total storage size of all 8-bit non-zero

values and their index over the total size of the corresponding

uncompressed matrix for various index bit-widths and a range

of sparsities (number of zeros). This overhead applies to

any matrix size. These numbers give a rough picture of

the complication posed by quantized data. Even discounting

any additional overhead needed to index higher-dimensional

matrices (using just one index array implies the initial matrix

was a 1d vector), it is more efficient to store weights in their

uncompressed form if the sparsity is low. Using 32-bit indexes

requires at least 80% sparsity to see any storage savings from

compressed representation. Similarly, 16-bit indexes require

70% sparsity to achieve storage efficiency. On the other hand,

using 8-bit indexes sparse representation is efficient at 50%

sparsity and above and 4-bit indexes are efficient at even lower

sparsities. Naturally, the range of sparsity in neural network

layers varies from model to model, but limiting indexes to 8

bits allows for quantized sparse data to have greater storage

efficiency than the uncompressed form at sufficiently low

sparsities for most real-world examples.

Although prior works have approached the problem of

reducing the size of sparse indexes, few have addressed the

problem specifically in terms of quantized data. Our goal is

to design efficient inference capabilities with micro-controllers

that have very limited storage and computing capabilities, as

well as stringent power limitations. To achieve this goal we

decided to use quantized data and defined a new compression

format where indexes are limited to 8 bits. We also designed a

memory-side accelerator that provides only the needed data to

the primary core, eliminating the indexing computations from

the primary core. The next few sections provide details of our

contributions.

III. PSR COMPRESSION OVERVIEW

The Partitioned Sparse Representation is similar to widely

used Compressed Sparse Row (CSR) format, with modifica-

tions that make it better-suited to convolution with quantized

weights. First, PSR is designed so that all indexing overhead

values are restricted to a specific bit-width. This width is

adjustable depending on the needs of the application, but for

our experiments we set the bit-width at 8, because this is

the minimum width with which the RISC-V instruction set

currently can operate. In the next two sections, we describe

the layout of the sparse representation for convolution weights

as well as its use within the convolution kernel.

With PSR, the entire (typically 3d) kernel for each weight

channel of a convolution layer is flattened and then partitioned

into equal sub-matrices. The size of the partition is chosen

based on the desired indexing bit width. For 8-bit indexes,

the partitions can be no larger than 256 values. The partition

size is further limited by the total size of a single 3d weight

kernel for a given CONV layer. To minimize computational

overhead, partitions should be aligned to the beginning of each

kernel and must divide the kernel into equal sub-arrays. The

compression scheme consists of 3 arrays: a vals array, offset
array, and nnz array. The vals array stores only the nonzero

values of the matrix. The offset array store the relative offset

into a partition of each corresponding non-zero value. And

finally, the nnz array stores the number of values in each

partition. Therefore, while the lengths of both the vals and

offset arrays correspond to the total number of non-zero values

in the dense matrix, the length of the nnz array is equal to the

number of partitions.

The steps to compress a dense matrix of weights into PSR
format are as follows:

• Starting with the uncompressed 3d weight kernels (one

per output channel as shown in Figure 1), each kernel is

flattened into a 1d vector.

• Next, each flattened kernel is divided into one or more

partitions, depending on the size of the kernel and the

desired bit-width of the indexes. For example, if 8-bit

indexes are required, the partition size is limited to 256

so that the position of any given element can be identified

with an 8-bit index.

• For each partition, the number of non-zero values are

stored along with their relative offset from the start of

the partition in the vals and offset arrays respectively.

• Finally, as values are stored in the vals array, the total

count is accumulated for each partition and stored in the

nnz array in the position corresponding to the partition

number.

Figure 2 shows steps 2-4 above for a small example matrix.

The diagram on the left shows the flattened dense vector for

each weight kernel while the diagram on the right shows the

resulting compressed sparse storage representation.

Fig. 1: Dense weight kernels (one for each output channel) to

be flattened and separately partitioned
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Fig. 2: PSR compression of dense weights with 3 channels

and partition size of 8 elements

IV. SPARSE CONVOLUTION ALGORITHM WITH PSR

In our design, input data is not compressed as we feel that

the overhead of dynamically compressing input data and then

use indexing metadata to match inputs to weight values may

negate any storage savings. It is now necessary to match an

input value (from dense input matrices) with a non-zero weight

value in our PSR format.

The steps required to compute a single CONV output value

are shown in Algorithm 1. The outer loop structure is identical

to the dense algorithm and each output is computed one at

a time to maximize weight reuse. For each partition in an

output channel, the non-zero weights are processed in storage

order. Algorithm 2 shows how to compute the position of the

input element corresponding to each non-zero weight in the

convolution algorithm with PSR and pack 4 matching values

into either a buffer in the case of HHT or into a 32-bit value

that can then be loaded into a CPU register. For each non-

zero weight, the position of the value within the dense matrix

is identified on lines 3-5. That position is then converted in

lines 6-7 into the actual input position by adding the start

index of the current convolution window as well as adjusting

for factors such as convolution stride and dilation. Finally once

the corresponding input element is identified, the 8-bit value

can be loaded from memory and packed into 32-bit SIMD

value that is fed to the packed instruction.

Algorithm 1 PSR CONV

1: for out index ← 0 to total outputs−1 do
2: acc ← 0
3: for p ← 0 to parts per channel−1 do
4: v end ← nnz[u×parts per channel+p]
5: for v ← 0 to v end do
6: PACK INPUT( )
7: SMAQA
8: packed weight addr ← packed weight addr + 4
9: v ← v + 4

10: end for
11: end for
12: output tensor[out index] ← acc
13: end for

In our architecture, this algorithm is offloaded to a memory-

side accelerator called HHT. The accelerator supplies a packed

set of input values as described in the algorithm to the CPU

via a shared buffer. The main processor retrieves these values

along with non-zero weights (which are in consecutive bytes

Algorithm 2 PACK INPUT( )

1: for v ← start index to start index+3 do
2: index ← offset[v]

3: filter i ← index / stride i % filter height

4: filter j ← index / stride j % filter width

5: filter k ← index / stride k % input depth

6: in i ← out i + filter i

7: in j ← out j + filter j

8: packed val[v] ← input tensor[i][j][filter k]

9: end for

Fig. 3: HHT in an embedded micro-controller

of the vals array of our PSR format) and performs multiply-

accumulate to calculate output values.

V. DESIGN OF HHT

The HHT accelerator is modeled as simple near-memory

RISC-V core. This core is designed to be smaller than the

main CPU. When in use for the algorithm outlined in this

paper, the HHT accesses the cache or SRAM available on

chip to load inputs, while the weights are stored in a separate,

faster scratchpad memory for sequential use by the main CPU.

Additionally, because the CPU is not using any of the indexing

overhead for the weights, that metadata is stored in the main

memory for use by the HHT. This design helps to limit the

needed size for the reserved scratchpad memory.

Because the HHT core is used only for memory indexing

computations, it can be much simpler than the main core.

All it needs is the baseline RISC-V integer instruction set

without any additional extensions. The core can be paired with

another simple main core (as we focus on MCU environments)

or one that is more complex as the system requires. In our

tests, neither core needs floating-point instructions because the

quantization scheme allows integer-only inference.

Figure 3 shows the position of the HHT core within an

embedded micro-controller situated between the main core

and memory. HHT can be embedded in memory or placed

very closed to memory (either SRAM or cache memory if

available). The HHT core and the main CPU core communi-

cate via a set of control flags and memory-mapped registers

that contain the metadata needed by HHT. These registers will

contain values, such as matrix dimensions and base addresses

for arrays depending on the specifics of the algorithm and

HHT kernel. For the sparse CONV, this metadata includes the

weight matrix dimensions, addresses for the dense input array

and sparse index and nnz arrays, as well as array stride values
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needed to compute filter offsets. The CPU is responsible for

loading the necessary data into the registers before initiating

HHT with the start flag.

The programming model for the HHT accelerator requires a

separate kernel that is compiled and loaded into the instruction

cache of the HHT. This kernel defines the metadata compu-

tations assigned to HHT as required by a given algorithm. In

our sparse CONV algorithm using PSR compression outlined

in Section IV, for example, the HHT kernel consists of all the

instructions in the inner-most loop body of the convolution

required to compute address of each input feature and load it

into the shared buffer for processing by the main core.

Additionally, we envision ISA optimizations for the HHT
core to further reduce its complexity. Since HHT core deals

with memory accesses, it only needs integer arithmetic and

may be restricted to fewer registers (say 16). Because the

RISC-V 32-bit ISA allows for up to three register operands,

there are many examples of certain blocks of instructions that

can be combined. For example, if a new load instruction of

the type lw R-destination,R-index, R-offset were implemented

in RISC-V, we can replace add a5,a3, a5 and lw a5, 0(a5)
with a single instruction lw a5, a3, a5. Or a shift operation on

an index (to obtain byte offset of a value) can be included in

a memory access, for example, load-with-shift-left a5, a3, a5,
shift-amount where the address is obtained by adding contents

of a3 with left shifted value of a5. If we permit very small

shift amounts like 1, 2, 3 to obtain byte offsets for 2, 4 or 8

byte data sizes, such instructions can be easily implemented

in conventional RISC-V pipelines. More complex instructions

may also be worth considering for memory-side accelerators

such as our HHT, including combining multiple instructions

that use the same functional unit (e.g., division and remainder

operations like those seen in the index computation kernel for

our sparse CONV algorithm), or indirect memory addressing.

Customizing the instruction set in such a way has the potential

for significant energy savings if they are repeated throughout

the course of a program’s execution. Though these latter

types of instructions are not as trivial to implement, they are

not infeasible, especially with the aid of tools like Google’s

Custom Functional Unit [9].

VI. EXPERIMENTAL EVALUATION

We evaluated the performance of our sparse CONV algo-

rithm using the RISC-V spike simulator [10] to model an

embedded micro-controller environment. Spike is configured

to incorporate the programmable HHT accelerator. Because

HHT is modeled as a low-power core that is similar in function

and design to the main CPU core, the cycle delays for the

HHT core to load a single value into the shared buffer match

those of the main core. Both cores require the same number

of instructions to compute the index and a single input to

its corresponding weight value. We further extended Spike

to provide a cycle-accurate timing simulation that enabled us

to collect total execution cycles, total HHT cycles, and total

cycles (if any) the CPU spends waiting for the accelerator to

supply data.

The system configuration we used in our evaluation consists

of a 1MB SRAM along with a 1.1 GHz main core. The main

core uses 32-bit RISC-V base integer architecture as well as

compressed, atomic, multiply, and packed-SIMD extensions.

Floating-point instructions are not required for the quantized

CONV as all scaling multiplication can be accomplished with

fixed-point integer arithmetic as outlined in [11]. The primary

core uses an in-order 3-stage pipeline implementation. The

HHT core utilizes only the base integer architecture and runs

at a similar frequency to the main core.

A. Workloads

We evaluated our sparse CONV algorithm both with and

without the aid of HHT using synthetic CONV weights of

varying sizes and sparsities. We also ran a full end-to-end

network from the MLPerf Tiny Deep Learning Benchmarks

for Embedded Devices [12]. Specifically, we performed image

classification with resnet on the CIFAR-10 dataset [13]. We

evaluated both pruned and unpruned versions of the network.

B. Convolution with Synthetic Weights

To understand the relative effect of PSR compression, the

optimized CONV algorithm described in Algorithm 1, as well

as the benefits of off-loading indexing to our memory-side

accelerator HHT, we measured the performance of both CPU-

only and HHT (i.e, CPU + HHT) versions of our packed

SIMD sparse CONV algorithm with PSR compression of

quantized values relative to a dense baseline implementation

(not using PSR compression). We used synthetic CONV inputs

for a range of weight dimensions and sparsity levels for this

assessment. Additionally, we measured the benefit of adding

custom RISC-V instructions to the ISA of the accelerator by

modifying the cycle delay for HHT to supply a buffer value.

The reduced delay corresponds to a reduction in instruction

count after using the instructions outlined in Section V. We

tested both the optimized and non-optimized versions of HHT
on the same synthetic benchmarks, and present here the results

of the optimized experiments. Figure 4 shows the performance

gains for 9 different weight matrix sizes as overall weight

matrix sparsity (or percent of zero values) is increased from

40% to 90%. The four values associated with each sub-graph

designate the shape of each weight matrix and correspond to

the number of output channels (same as the number of 3d

weights kernels), the 2d weight filter height and width, and the

number of input channels respectively. For example, 64x3x3x3

indicates 64 output channels, a 3x3 filter and 3 input channels,

as shown in Figure 4(e).

We evaluated three different weight filter sizes along with

three distinct total output channels for each filter size. In

each sub-graph of Figure 4, we compare (1) the performance

of CPU-only execution using our quantized compressed PSR

Algorithm 1 against a baseline of CPU performing all compu-

tations on dense weights (the first set of bars of each sub-

figure); (2) the performance of HHT version (CPU+HHT)

using PSR sparse Algorithm 1 against the dense baseline (the

second set of bars in each sub-figure); and (3) the performance
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(a) 16x1x1x3 (b) 64x1x1x3 (c) 256x1x1x3

(d) 16x3x3x3 (e) 64x3x3x3 (f) 256x3x3x3

(g) 16x5x5x3 (h) 64x5x5x3 (i) 256x5x5x3

Fig. 4: Speedup of sparse PSR CONV with (SpHHT) and without (SpCPU) HHT over dense packed baseline (DnCPU) for

selected weight kernel sizes and sparsities (40%-90%).

of optimized HHT version against CPU-only using PSR sparse

Algorithm 1 (the last set of bars). Intuitively, as the sparsity

increases, so does the performance of both sparse versions

over the dense baseline in all cases (the first two sets of bars

in each sub-figure of Figure 4). This data shows the benefits

of our sparse format as it reduces computations performed

to only when non-zero weights are processed by the CPU.

Without any indexing overhead from sparse compression, the

ideal speedup of the sparse algorithm over dense would be

directly proportional to the sparsity. As an example, at 50%

sparsity this would be 2x because the CPU is performing

half the amount of multiply operations. With the aid of the

HHT accelerator hiding the cost of indexing overhead arising

from PSR representation of weights, and by optimizing the

instructions used in the accelerator, the performance gains

shown in the third set of bars match the ideal case for larger

kernel sizes. The number of output channels had minimal

impact on the relative performance of each version of the

algorithm. As the filter size increases, however, sparse CONV

with PSR performs increasingly better than the dense version,

and the relative speedup for the HHT version over CPU-only

(the last set of bars in each sub-figure) increases as well.

This trend is clearly seen in Figure 4 as the bars are taller

in each successive row. For kernel sizes of 5x5x3, the largest

we tested, the sparse CONV algorithm achieves 5x speedup

over the dense version (baseline) for high sparsities. Overall,

CONV with optimized HHT acceleration saw 10x speedup

over the dense baseline and 1.8x speedup over the sparse CPU-

only version for the highest matrix sizes and sparsity levels.

These results are only slightly better than what we saw with

the un-optimized HHT, which achieved 9x and 1.7x speedups

for the same measures. It should be noted that even if we

used two cores for CPU-only implementation, the maximum

performance gain will be 2x, which is rarely the case for most

two-threaded implementation of applications.

As explained in Section I, the partition size of the PSR
matrix compression depends on the 3d filter size. For sub-

graphs (a) - (c) that number is 3, or 1x1x3. It increases

to 27 (3x3x3) for sub-graphs (d) - (f) and to 75 (5x5x3)

in sub-graphs (g) - (i). For both the CPU-only and HHT
versions, this size determines how many input values can be

processed in a single partition loop. If this size is too small,

as is the case with the 1x1x3 filter, the added computational

overhead of processing each compressed partition overwhelms

the benefits of sparsity arising from a reduction in the number

of multiplications. The use of SIMD instructions further limits

the performance of small partition sizes. Because the packed

instructions used in the sparse CONV algorithm operate on

four (8-bit) input and weight values at a time, any partition

size that is not a multiple of 4 requires zeros to be packed

into the packed registers. Partition sizes less than four are

the worst case from a performance perspective because the

cost of these extra zeros is amortized as the size increases.

Therefore performance gains will not be as high for network

layers with small weight kernels as shown in the first row

of Figure 4. Fortunately, though it is common for networks

to utilize CONV layers with a 2d weight filter size of 1x1,

the number of filters in a 3d kernel is often large enough
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to necessitate an efficient PSR partition size. As an example,

half of the layers in the MobileNet visual wake words [14]

benchmark from MLPerf Tiny, are CONV layers with 1x1

filter size. The channel dimension in all cases, however, is at

least 8 and as high as 256 in the last layers.

The partition size also determines the maximum number of

values that HHT can load into the shared buffer at one time

(supplying input values to the CPU). Therefore a smaller size

also limits any potential additional performance gains from

offloading index processing to the memory-side accelerator.

Likewise, as the sparsity increases, the average number of non-

zero values in each partition decreases, further reducing the

work available for HHT. This is why the relative performance

gains of the HHT over the CPU-only version shown in the

right-most set of bars of each sub-figure decreases for 1x1x3

kernels as the sparsity increases and also decreases for 3x3x3

kernels at 90% sparsity. The larger window sizes of (g) -

(i) ensure that the relative performance increases along with

sparsity even for the highest percentages.

C. CPU Wait Cycles

The benefits of a memory-side accelerator such as HHT
depends on the amount of work offloaded to the accelerator

and the amount of execution that can be overlapped with CPU

computations. As already discussed in the previous section,

if insufficient amount of work is offloaded to HHT, we see

minimal performance gains. On the other hand, if too much

work is assigned to HHT, CPU may be idling. The goal is to

overlap the execution of the two cores as much as possible.

Perfect overlap would result in the indexing computations

associated with sparse compression being completely hidden

from the total execution time. In reality, such a perfect balance

is difficult to achieve. This is in part due to CPU waiting for

HHT to provide packed input values in shared buffer. Because

there is only a single buffer shared between the two cores, the

HHT must finish writing to the buffer before the CPU can read

any values. If the CPU is ready to process input values before

the buffer has been completely filled, the CPU must wait for

HHT. The amount of time CPU is idling can be measured

from the number of cycles CPU is waiting for HHT as shown

in Figure 5, which shows the fraction of total execution time

the main core idles. These wait cycles were measured with

the optimized HHT, as the primary benefit of the optimization

is a reduction in the number of cycles the accelerator needs

to locate and load each input values into the shared buffer.

Because HHT can fill the buffer more quickly, the CPU spends

fewer cycles waiting over the course of program execution.

For all weight kernel sizes tested, the CPU spends more

time waiting at lower sparsities because more work is being

offloaded to the accelerator2. As the sparsity increases to 80%

and 90%, the wait times drop almost to 0, which is reflected

in the improved performance data. If the CPU never waits

for buffer values, the speedup of the HHT version of CONV

2We did not show wait cycles for 1x1x3 weight kernels since as previously
discussed, the amount of work offloaded to HHT is very small and HHT can
supply the single value needed for each kernel without delays.

should approach 2x over the CPU-only version, which is what

we see. Similarly 50% wait cycles (i.e., the CPU spends half

of the total execution time waiting) should result in a speedup

of about 1.5x, which is what we see for sparsities at 40% and

50%.

Fig. 5: Portion of total execution cycles the CPU is waiting

for HHT to supply needed input values

Fig. 6: Performance Comparison of CPU-only and HHT Ver-

sions of Resnet

D. End-to-End Image Classification Inference

The performance benefits of PSR CONV with HHT accel-

eration are best understood in real-world context. We therefore

compared execution time of a pruned Resnet image clas-

sification benchmark both with and without HHT. Table II

shows the size of weight kernels for each CONV layer in

the network. Using the Tensorflow pruning API [15], we fine-

tuned the pre-trained Resnet model with polynomial decay

pruning schedule to a final sparsity of 80% for all layers. This

sparsity target, while high, only results in a slight reduction

of model accuracy on the test set from 87% to 85%. Likewise

the AUC-ROC Curve (an important metric that measures the

quality of a classification model’s predictions) dropped less

than 0.5%. Detailed pruning strategy is beyond the scope of

this work. We report the accuracy merely to show that it is

possible to aggressively prune weights to high sparsity without

a significant drop in model performance.

Figure 6 compares the average total execution cycles for

both CPU-only and HHT to complete an end-to-end inference

pass for the pruned Resnet model. Both versions utilize the

sparse PSR algorithm for all CONV layers in the network.

The CPU-only version achieves close to 1.8x speedup over

the dense baseline, while the HHT versions achieves over 2.7x

speedup. As the right-most column of the graph shows, the

relative speedup for HHT over CPU-only is about 1.5x. These

results match our performance measurements with synthetic
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CONV weights for similar matrix sizes and sparsities (shown

in Figure 4).

TABLE II: Resnet CONV Weight Dimensions

CONV Layer Weight Dimensions
Layer 1 16x3x3x3
Layer 2 16x3x3x16
Layer 3 16x3x3x16
Layer 4 32x3x3x16
Layer 5 32x3x3x32
Layer 6 32x1x1x16
Layer 7 64x3x3x32
Layer 8 64x3x3x64
Layer 9 64x1x1x32

E. Energy Estimation

We estimated the relative energy of a CPU-only system

with our programmable HHT design using energy estimates

for Riscy and Micro-Riscy cores [16]. If we assume that the

main core is a Riscy core and HHT is similar in footprint to

the Micro-Riscy core, we can compute an estimate of total

energy for a single end-to-end Resnet inference pass with the

total cycles executed by each core. Assuming HHT is 2x more

energy efficient than the main core [16], we can estimate the

energy for the HHT system as:

HHT Cycles× 0.5 + Total Execution Cycles− CPU Wait Cycles (1)

The relative energy efficiency of HHT over its counterpart is

then computed as:

Total CPU-only Cycles / Normalized CPU+HHT Cycles (2)

Using these calculations, we estimate that using HHT to

offload indexing computations increases the energy efficiency

by 70%.

F. Summary and Discussion

When evaluated against a dense baseline, our sparse CONV

algorithm with PSR compression achieves significant speedup

for higher sparsities and weight matrix sizes, even without

offloading the sparse representation indexing overhead. The

addition of the HHT accelerator further improves the per-

formance gains, approaching the maximum possible speedup

for a two core system of 2x. We highlighted the additional

advantage of HHT as a minimal-functionality core in terms of

overall energy efficiency. Most importantly, we have shown

that an end-to-end inference example using a representative

image classification model can be pruned to the high sparsities

where our design shows the most benefit and performance

gains seen in the full example matched what we saw with our

synthetic benchmarks.

VII. RELATED RESEARCH

In our previous work, we explored memory side acceleration

for non-quantized data sets using both ASIC HHT [17] and

programmable RISC core [18].

Sparse accelerators. Much work has been done on com-

pression for DNNs, but the unique challenges posed by

quantized data and SIMD processing have not been adequately

addressed. dCSR [8] proposes to address the issue of indexing

bit-width by altering CSR format to store an index delta rather

than the column index itself. This delta is calculated as the

difference between the actual column index of a non-zero

value and the average index for a matrix row. This format

tackles the same issue of compressing the bit width of sparse

column indices, but is much more complicated to implement

in a streaming run time. Our solution is simpler and more

flexible because 1) the compression algorithm does not require

advance knowledge of the matrix layout as in dCSR and 2)

our storage format is agnostic to the initial shape of the dense

matrix.

Kwon et al. [19] employ a software compression format that

is very similar to PSR. They compress input feature maps of

convolution layers using a two-step software compression that,

like PSR, first flattens the input matrix into a 1D vector and

then partitions the vector into 256-element chunks. Only the

non-zero elements are stored along with their relative index

into their respective chunk and a count table that keeps a

cumulative total of non-zero elements. One major limitation

of this compression technique as described is that to maximize

the benefits of index bit-width compression over other similar

formats when using 8-bit or lower quantized data, the size of

the entire dense feature map would be limited to 216 elements

which can be exceeded by some quantized models. In contrast,

storing the non-cumulative non-zero count for each partition

has the advantage that there is no maximum size and the totals

can be stored in 8-bits, thus further reducing the indexing over-

head. Additionally, the choice of compressing inputs rather

than weights limits the usefulness of the compression format,

especially when using SIMD support. The representation is

inherently streaming in that the computational overhead is

minimized when the non-zero values are accessed sequentially

every time. By compressing the weights rather than the inputs,

we can process one output element at a time and eliminate

the need for any buffering of partial outputs. [19] also doesn’t

address quantization. In our view, the use of quantized data

is what necessitates the PSR compression scheme to begin

with. Because the authors are still dealing with 32-bit data

values, they don’t take full advantage of the benefits of such

a compression format.

Our work is the only one that combines the advantages of

quantization and pruning with both SIMD instructions and a

compression format that minimizes the bit-width of indexes

to match the bit-width of the quantized values. All of this

is accomplished with a programmable accelerator model that

does not need to be tailored to the specifics of the algorithm

or even the compression format.

Prefetchers. There are several studies on data prefetching

into on-chip cache to hide the memory latency problem.

Most of the early works [20]–[24] are sequential stride-

based prefetchers. Some more recent prefetchers can even

be programmed or learn to handle irregular accesses [22],

and those used by Apple M1 systems. However, in most

cases prefetchers are unaware of program specific structure
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bounds (or array bounds) and this can be exploited by security

attacks as reported in [25]. Our HHT is programmed not only

to understand access patterns but also with memory bounds

for different structures, limiting the ability of out of bounds

attacks.

Helper Threads. While there have been many prior studies

in terms of decoupling or off-loading memory access operation

(consider an early decoupling work reported in [26]), HHT
is a flexible hardware which can be programmed to process

application specific metadata processing. Helper threads (par-

ticularly software threads) have been used to aid primary

threads with some operations (for example see [27]). Such

software techniques may not lead to performance gains if

the threads are scheduled on different cores requiring cache

coherency related overheads.

New Sparse Representations. In a different vein, there have

been proposals on improving compression of sparse matrices

and proposed techniques including hierarchical bit vectors [28]

or compression on top of CSR [29]. There are proposals for

specialized hardware to compress and decompress data for

use by CPU (assuming that the CPU uses conventional SpMV
software) [29]. Others propose hardware for new compression

formats (such as hierarchical bit maps) for performing sparse

matrix computations [28]. We programmed HHT to handle

sparse data represented using SMASH [28] format. SMASH

format requires complicated indexing to locate the row and

column positions of non-zero values of a sparse matrix. This

implies that HHT for SMASH is performing more work than

the CPU, causing CPU to idle. Moreover, we feel that SMASH

format may not be suitable for embedded systems.

Accelerators for Machine Learning. Interest in DNN based

accelerators have seen a rise in recent years, leading to

many specialized hardware accelerators, too many for us to

include here. Many of these specialized accelerators based on

either dataflow or tensor/systolic arrays that lack flexibility

or reconfigurability [30]–[36]. These accelerator either rely

on very specialized sparse data representations or implement

specific DNN algorithms. Our HHT only aids in memory-

side operations and does not perform actual computations.

In this contribution we focused on quantized data used in

TinyML applications. Our HHT is programmable and can be

used with different compression formats and for different DNN

algorithms.

Several works focus on accelerating sparse matrix-dense

vector multiplication (SpMV) operations [37]–[41], We only

proposed to aid in index computations for any sparse data

based algorithm instead of accelerating the actual computation.

While [42] and [43] are somewhat similar to our work,

they expand sparse data into dense data so that the primary

cores can rely on simple algorithms; our HHT only provided

required or matching non-zero values needed for the compu-

tation, still keeping the primary core computations simple.

VIII. CONCLUSIONS

In this paper, we explored CNN inference in the context

of low-power, resource constrained devices. Low memory

footprint is vital on such devices, which motivates the use

of sparse data stored in a compressed representation. Storing

data in this way introduces computational overhead and so

we introduce a programmable memory-side accelerator called

HHT. HHT offloads the sparse data overhead, supplying the

main core with only the data it needs for computation. We also

presented PSR, a storage-efficient sparse compression format

specifically for low bit-width quantized data, as well as a

corresponding CONV algorithm that utilizes weights stored

in PSR format. Finally, because HHT core is selected with

the minimal instruction set required, we outlined new address

formats for certain RISC-V instructions to further reduce the

required instructions and increase system efficiency. We have

shown that our design along with the PSR CONV algorithm

outperforms the baseline in terms of execution time as well

as storage and energy efficiency. Our evaluations show as

much as 10x speedup for sparse CONV with HHT over a

baseline of the CPU performing all computations on dense

quantized data. HHT performs 2.7x faster on Resnet inference

over the dense baseline and gives 70% energy savings over

sparse CONV with CPU performing all computations. Because

the instruction set optimizations we modeled yielded limited

performance benefit, further exploration of that design space

is left for future work. We conclude that sparse PSR CONV

with HHT acceleration is an intuitive and efficient method

for improving the performance and storage efficiency of NN

inference on low-power devices.
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