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Abstract—Compute demand continues to grow in the post-
Moore era leading to a resurgence of specialized architectures that
achieve energy-efficient computing. Across the compute spectrum
from embedded low-power sensing devices to high-performance
virtualization datacenters, hardware specialization has emerged
as an important knob in meeting the need for scalable, energy-
efficient architectures. While prior research has addressed the
performance and energy benefits of fixed-function hardware
accelerators, the opportunities with specializing a general-purpose
Instruction Set Architecture (ISA) have not been as widely
investigated. The popular open customizable RISC-V architecture
presents a unique opportunity to explore specialization of general-
purpose ISAs.

In this work, we present Empower - a framework for automated
specialization of instruction-set architectures. Starting with a
baseline RISC-V RV32IMC configuration, Empower automati-
cally identifies new instructions given a set of input bench-
marks/applications to be accelerated. Breaking program execution
into sub-blocks, Empower conducts compiler-like dataflow analysis
to identify candidate new instructions. The framework auto-
matically names, and encodes new instructions into the custom
opcode space provisioned by the RISC-V ISA specification. On
applications from the Embench benchmark suite and CoreMark,
Empower improves performance by as much as 40%.

Index Terms—Instruction Set Architecture, Design Automation,
Specialization, Customization

I. INTRODUCTION

Continued demand for high performance compute capability
coupled with the end of Moore’s Law has led to a surge
of interest in domain-specific acceleration techniques [2].
From tiny ultra low-power sensors to high-performance data
center servers, leveraging application characteristics to build
specialized hardware enables both energy and performance
benefits [3], [4]. While specialized hardware brings energy-
efficiency, it comes at a cost: it is hard-wired to accomplish
a very specific function and could be completely unusable
when newer computational paradigms have to be realized.
Thus, general-purpose programmable architectures such as Intel
x86, ARM Cortex-A, ARM Cortex-M and RISC-V continue to
remain dominant with offloading some functions to dedicated
hardware. In particular, specialization is an attractive design
alternative in low-power embedded systems where instruction
fetch-decode energy is often a significant portion of overall
energy consumption.

In order to address inefficiencies with traditional general pur-
pose Instruction Set Architectures (ISAs), these architectures
have incorporated specialization in different ways. For instance,
the ARM Cortex-M33 supports custom instructions [5]: a
semiconductor chip maker could add their own specialized
instructions and execution units (combinatorial logic) to the
baseline ISA supplied by ARM. Similarly, RISC-V offers a

variety of standard extensions and custom extensions to allow
tailoring the ISA to different application segments.

Specializing the ISA takes work. Typically, experts in the
application domain work with computer architects, design-
ers and compiler developers to identify new instructions. A
prototype model of the proposed new instructions must be
developed to explore the changes. This requires a careful
analysis of how to transform code written for the baseline ISA
to leverage new instructions. Finally, the specification, design,
and compilation tools must all be updated to incorporate new
instructions. Specialized tools and flows have been developed
in academia as well as industry to improve the efficiency of
this task of ISA specialization. However, while current open-
source and/or industry tools reduce the burden of implementing
new instructions, they do not address the problem of finding the
right instructions.

Given a mix of applications drawn from an application
space, our tool – Empower – automatically recommends new
instructions that help accelerate these applications. Empower
incorporates compiler-like data-flow analysis to identify pat-
terns of computations (or sequences of instructions) that could
be transformed into new instructions. These transformations are
performed keeping RISC principles and design feasibility in
mind. A goal of Empower is to allow architects to control
the nature and types of instructions emitted, such as, for
example, specifying whether 3- source operand instructions are
allowed or not. Empower provides a fast ISA design-space
exploration capability that aids expert-driven definition. It also
estimates potential savings in execution cycles if identified new
instructions were implemented, thereby allowing quantitative
architectural decision-making.

In this work, we make the following original contributions:

1) We present Empower: a tool that fully automates the
process of identifying new specialized instructions over
the RISC RV32IMC [9] baseline.

2) We evaluate the tool using Embench and Coremark
benchmark suites and find that the tool improves per-
formance by as much as 40%.

3) We analyze the feasibility of implementing the tool-
discovered instructions.

4) We present an illustration of the capability of our tool
by exploring new instruction opportunities when the
traditional RISC 2-operand rule is relaxed.

5) Our tool is an open-source Python tool, promoting further
development and innovation within the RISC-V ecosys-
tem.



Fig. 1. Empower Workflow

II. Empower OVERVIEW AND USAGE

Empower is a trace-driven tool implemented in Python. Ap-
plication execution traces (sequence of PCs and corresponding
instructions) are supplied as input to the tool along with a
set of options to control the specialization tasks. The tool
parses input traces and constructs an internal representation of
program control and data flow. In order to do this, Empower
is equipped with an ISA decoder: instruction encodings and
semantics of instructions from the RISC-V RV32IMC archi-
tecture configuration1 are decoded to extract various pieces
of information. This includes register sources and destinations
of ALU instructions, control transfers and branch destination
PCs, range of immediate constants encountered, and so on. For
example, if the trace contains the instruction word “0x97ba”,
the tool decodes this as the compressed add instruction c.add
a5, a5, a4 that adds contents of registers a4 and a5 and
saves the result in a5. Empower is thus able to use traces
of execution that list the instructions executed along with
their execution frequencies. Each entry in the trace is a tuple
consisting of PC, instruction word, execution frequency. For
example, the tuple (0x1014e, 0x97ba, 1024) denotes that the
instruction word 0x97ba at PC 0x1014e executes 1024 times.
From this entry, Empower uses its ISA decoder to extract the
information that the instruction at this PC reads registers a4
and a5 and outputs register a5. The execution frequencies are
recorded against basic blocks that the tool extracts (described
in Section III).

Empower performs compiler-like program control flow anal-
ysis and data-flow analysis on the input traces to obtain data-
flow graphs that are inter-linked through program control. Fi-
nally, Empower identifies computational sub-graphs that could
be transformed into specialized instructions adhering to the
following requirements:

1) 2R1W: The specialized instruction shall adhere to the
RISC rule of two source operands and one destination
operand, where all operands come from registers (the
2R1W rule). Under control of a user-specified option,

1In the future, we plan to incorporate additional RISC-V extensions that are
standardized.

the two-source rule could be relaxed. We explore this
in Section V.

2) Depth: Depending on microarchitecture and semiconduc-
tor technology used, how much “work” an individual
instruction is allowed to do varies. This is determined by
the clock timing critical path in the design. The addition
of a complex instruction that performs a lot of work in
a single cycle may violate clock timing for the intended
clock speed. Thus, Empower can be configured to limit
its specialization only to graphs with a limited depth (e.g.,
depth not exceeding 4 compute “steps”) or to graphs that
contain only certain sub-sets of instructions (e.g., do not
specialize graphs that contain floating-point instructions).

3) Liveness: Replacing a pattern of computation with a
single new RISC instruction in the context of overall
program execution requires preserving the outputs that
the original computation produces. If an intermediate
instruction in the graph produced a register output that
was expected to be “live” at the end of that graph,
then it would be functionally incorrect to reduce the
computation to a single instruction that eliminates the
intermediate register update. Thus Empower carries out
“liveness” analysis [7] to ensure that the new instruction
can correctly replace the computational graph in situ
without side-effects.

We describe the detailed design of Empower in the next
section.

III. Empower DESIGN

Figure 1 outlines the workflow of Empower. We describe
each step below:

Form Basic Blocks: The tool processes execution traces to
construct basic blocks. It uses the standard “leader” algorithm
[6] to track leader PCs where new basic blocks start and iterates
until no new leaders are found.

Split into Sub-Blocks: As the tool does not track memory
addresses, currently, it takes a conservative approach of splitting
basic blocks into sub-blocks that are delineated by memory
accesses 2. This allows the tool to analyze short sequences

2In the future, we plan to relax this restriction.



Fig. 2. Example of Empower Discovering a New Instruction

of ALU instructions (possibly representing a sub-expression)
without any intervening memory instructions. This decision has
one major advantage: the search for new instructions becomes
very efficient as the scope is restricted to sub-blocks.

Link Per Control Flow: Since new instructions must
preserve “liveness” guarantees, Empower links all the basic
blocks corresponding to an execution trace into a single whole
program-wide graph. This is performed using control transfer
instructions encountered in the trace.

Find Candidates: This is the most computationally intensive
step where the tool first constructs several candidate graphs
for each sub-block and then verifies if the candidates meet
the requirements of 2R1W, Depth and Liveness described in
Section II.

A candidate graph is constructed starting with every PC in
each sub-block and recursively adding edges to preceding PCs
where the PCs exhibit a consumer-producer relationship based
on which registers are they reading/writing. If no prior PC in
that sub-block produces a register value, then the register value
is considered “live” upon entry into the sub-block.

The 2R1W rule is verified by tracking all the register
operands that are read by instructions in the graph. Graphs
that need more than two source operands are discarded.

The Depth rule is easily verified by computing the depth of
the acyclic graph and discarding graphs that are greater than the
specified depth. Similarly, if the graph comprises instructions
that are disallowed by the user, the graph is discarded.

Verifying the Liveness rule [7] requires tracking if any of the
intermediate instructions’ outputs are live beyond the scope of
the graph. That is, if an instruction in a successor sub-block
requires this intermediate computation value, then reducing the
graph into a single instruction will violate the liveness guarantee
and therefore this transformation can not be performed.

Formally, let live(Bx) denote the set of registers that are
needed to be live on entry into a block (or sub-block) Bx.
Let use(Bx) denote the set of registers that are used (read)
by Bx (before perhaps being written to); define(Bx) denotes
registers written to inside Bx. Now, if Bc denotes a successor
of Bx, then we define live(Bx) as:
live(Bx) = use(Bx) ∪ (

⋃
Bc live(Bc)− define(Bx))

Thus, Empower computes use(B), define(B), and live(B)
for all sub-blocks. Once these sets are computed, Empower
checks if any intermediate register write inside a candidate
graph G in a sub-block Bx is in the live-set of any succes-
sor sub-block Bc. Mathematically, if def(I(G)) denotes an
intermediate instruction’s output, then:

invalid(G) =| {r | ∃Bc∃I(G)r ∈ def(I(G)) ∩ live(Bc) |>
0

invalid(G) is true if the size of such a set is non-zero, i.e,
at least one intermediate register write exists that needs to be
live in some successor. Additionally, if an intermediate write
is used in any other graph within the same sub-block, again
the transformation is similarly invalid. For simplicity, we omit
mathematically describing this check but it is a straightforward
extension of the above.

It may be observed that our analysis is conservative. Whole
program-wide analysis would potentially reveal additional op-
portunities for specialization. We defer this for future work.

Graphs that pass all three checks go to the next step.
Perform Isomorphism Checks: In our experiments, we

observed that identical computational patterns often repeat
across different programs or even in different parts of the same
program. Thus, the tool gathers all such identical patterns into
a single new instruction by performing subgraph isomorphism
checks across the candidates. Note that we compare only the
opcodes of the instructions in the sub-graphs and ignore actual
registers used and any differences in values of immediate
constants.

We reduce the cost of this step by encoding each sub-graph
as a string such that if two strings hash to the same bucket only
then a more detailed isomorphism check is carried out.

Estimate Cycles Saved: For each new instruction, the tool
computes the total savings achieved by it. In our model, every
instruction (baseline or new) executes in one cycle. Thus, if the
new instruction subsumes N baseline instructions, then it saves
(N − 1) cycles each time it executes. Since the tool processes
execution traces, it is able to provide an exact measure of cycles
saved under this model. In Section V we explore this single-
cycle assumption in more detail.

Emit New Instructions: Finally, the tool emits new in-



structions. This includes the instruction name, the instruction
opcode fields, register operands, and immediate operands.
Instruction-naming is automatically performed by traversing
the corresponding computational graph and concatenating the
constituent instructions’ names.

A. Example of Empower at work

In this section, we illustrate the operation of Empower with
a simple example outlined in Figure 2. On the left, we show the
original C code that was used: a function named compute that
iterates through two input arrays, performing shifts and addition
of array elements to an output array. The middle column shows
the assembly view of the code produced by the compiler3. A
trace of execution of this code is analyzed by Empower to
recommend new instructions. Among all the sub-blocks that
the tool identifies, we have highlighted the sub-block of interest
that holds three instructions starting at PC 0x1014a. The first
two instructions perform shifts and the third adds the shifted
operands. Taken together, these three instructions satisfy the
requirements of 2R1W (only two registers a4 and a5 supply
source operands to this computation), Depth (the depth of this
graph is only two) and Liveness (no subsequent instruction
relies on the intermediate value produced in register a4).
Thus the computation graph (shown in the right-hand column)
qualifies as a candidate new instruction and is recommended by
the tool, along with an estimate of its potential savings. In this
example, since three instructions are subsumed by the proposed
instruction, it saves two cycles in each invocation.

IV. EXPERIMENTAL EVALUATION

We evaluate Empower using traces obtained from the Em-
bench [1] and CoreMark [10] benchmark suites. We chose
these benchmark suites as they are widely used for embedded
microcontroller performance evaluation and have a diversity
of codes. These benchmark codes were compiled for RV32
IMC (I=Integer baseline, M=Multiplication, C=Compressed).
Since Empower does not yet support other extensions, we
exclude benchmarks that make extensive use of floating-point
operations. Traces of execution are obtained by executing these
codes on the RISC-V SPIKE [11] simulator.

For design timing, we use the open-source ibex [8] 32-bit
RISC-V core implementation as our baseline. We incorporate
new instructions to this baseline and synthesize the core using
the Yosys [12] synthesis tool with the FreePDK 45nm design
library [13]. We verified that the baseline core synthesizes at
250MHz CPU clock speed.

V. RESULTS

Figure 3 presents total cycles saved as a percentage of
total (original) execution cycles across the Embench suite of
benchmarks as well as the Coremark benchmark. Gains vary
significantly depending on the benchmark with aha-mont64
showing negligible improvement while matmult-int showing
nearly 40% reduction in cycles. On average, Empower has

3For brevity, we have not shown all of the instructions emitted by the
compiler.

achieved over 7% reduction. We emphasize that this improve-
ment has been achieved entirely automatically using conserva-
tive analysis. In embedded systems where issues such as code
size and instruction fetch energy are important considerations,
this reduction enables valuable savings.

A. Top Five Instructions

While Empower performs a full search of the program and
identifies several new instructions, interestingly, the vast major-
ity of savings come from very few new instructions. Figure 5
depicts this for a few benchmarks. For each benchmark, it
plots cumulative cycles saved by new instructions, where the
instructions are organized in decreasing order of their savings.
In each plot, the top 5–10 instructions yield the biggest benefits
as can be seen by the steep slope at the beginning and a near-flat
slope subsequently. Thus, subsequent instructions contribute a
negligible amount to savings.

Figure 4 plots the savings achieved by only the top five new
instructions in each benchmark as a fraction of the total savings
achieved by all of the new instructions for the benchmark.
Closer the bar is to 1.0, the greater the savings achieved by
the top five. Barring picojpeg, in all benchmarks, the top five
achieve over 80% of savings. Benchmarks such as matmult-
int and nettle-aes are particularly interesting in that the top-
most instruction contributes to over 90% possible savings.
For example, Figure 6 visualizes the top-scoring instruction
identified by Empower. It is of depth 3 and meets timing.

This result is encouraging: it demonstrates that Empower
produces practical new instructions that can be incorporated
into design without adding a large instruction decode overhead.

B. Instruction Complexity

We evaluate the instruction recommendations for their com-
plexity. By complexity, we refer to the depth of the instruction’s
computation graph. Larger the depth, the more complex the
instruction. Thus, from a design timing perspective, it is prefer-
able to incorporate instructions with a smaller depth. Figure 7
shows a breakdown of savings achieved by instruction depth.
Across all the benchmarks, on average more than 90% savings
come from instructions with depth ≤ 4. Thus, Empower is
combining short sequences of baseline computations into new
instructions.

C. Impact of Timing

Very complex instructions may not meet the single-cycle
execution criterion. In order to verify if Empower produced
such instructions, we implemented complex instructions into
the ibex core [8] and verified if clock timing was violated.
Using the open-source yosys design synthesis tool and the 45nm
freePDSK design library, the baseline synthesizes at 250MHz.
While the vast majority of new instructions met this tim-
ing, a few instructions that incorporate multiplication/division
functionality from the “M” extension of the baseline violated
timing by about 4%. In such cases, the micro-architecture may
choose to implement a multi-cycle instruction to avoid slowing
down the clock. A detailed analysis of such micro-architectural
changes is not in the current scope of this work.



Fig. 3. Performance Improvement with Empower

Fig. 4. Improvement with Top-5 Specialized Instructions

Fig. 5. Cumulative Cycles Saved by New Instructions

Fig. 6. Top-Scoring Instruction in matmult-int Benchmark

D. Relaxing the 2R1W Rule

A benefit of our tool-driven automated approach is the ability
to explore various changes to the ISA. In this section, we
evaluate the benefit of relaxing the RISC two-source operand
rule. In our experiment, we allow upto three source operands
per instruction (3R1W). Figure 8 plots the additional savings
achieved by 3R1W over the baseline 2R1W rule for a subset
of benchmarks.

The relatively moderate gains suggest that three-operand
instructions should be carefully considered for inclusion, given
the cost of the additional read port on the register file.

VI. RELATED WORKS

Specialization and instruction generation has received signif-
icant attention in both academia and industry. Here, we briefly
compare Empower with some relevant prior works.

Several EDA tools have been developed to automate the
generation of digital design and software tools using a machine-
readable ISA specification. LISATek [14] is a language and
tool that generates both design files as well as an instruction-
set simulator and compiler for the specified ISA. Tensil-
ica [15] provides technology to accelerate the design of signal-
processing oriented processor designs. In the context of RISC-
V, Codasip [16] and Imperas [18] provide software solutions to
profile application code and to design and verify new instruc-
tions. Unlike these commercial endeavors, Empower goes a step
further: it automatically identifies new candidate instructions.
Further, Empower is an open-source tool meant to promote
further development and innovation in the RISC-V ecosystem.



Fig. 7. Breakdown by Instruction Depth

Fig. 8. Relative Improvement with 3R1W over 2R1W

The work in [18] is conceptually similar to ours but they
target a specific Custom Computing Accelerator (CCA) [19]. In
contrast, our work does not assume a specific accelerator map-
ping or technology and enables architects to explore potential
savings using different microarchitectural back-ends. The CCA
work [19] proposes an architectural template for offloading
computations. Our work is orthogonal to this and Empower
can be used as a front-end atop CCA. The work in [20] deals
with the issue of the large search space for finding candidates
and proposes algorithms to speed-up the search. As our work
breaks the analysis down to sub-blocks, we avoid the problem
of a very large search space.

VII. CONCLUSION

In this paper, we presented Empower – an automated
framework for specializing the RISC-V instruction-set architec-
ture. Using a representative suite of benchmarks, we demon-
strated that Empower can discover useful new instructions
automatically, thereby reducing the cycle-time for exploring
application-specific customizations. On some benchmarks, Em-
power achieves as much as 40% savings. Further, being a free &
open-source Python-based tool, it is easily extensible to support
other architectures and more sophisticated analysis capabilities
by contributors in the RISC-V ecosystem. In the future, we
plan to extend Empower to identify new instructions that span
basic blocks, exploit sub-word packed arithmetic, or present
vectorizable opportunities. Finally, we plan to systematically
evaluate opportunities when the 2R1W principle is relaxed.
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