Nemesis: Automated Architecture for Threat Modeling and Risk Assessment

for Cloud Computing

Patrick Kamongi!, Mahadevan Gomathisankaran?, Krishna Kavi?
Computer Science and Engineering
University of North Texas
Denton, TX 76203, USA
patrickkamongi@my.unt.edu', mgomathi@unt.edu?, kavi@cse.unt.edu®

Abstract

It is critical to ask and address the following type of ques-
tions, both as a cloud computing architect who has designed
and deployed a public, or private, or hybrid cloud; or a
user who benefits from available cloud services: What are
the types of threats facing the cloud’s assets? Is there any
scale to indicate the cloud’s assets threat level? Is there
any metric to characterize critical vulnerabilities facing the
cloud’s assets? In this paper, we present a novel automated
architecture for threat modeling and risk assessment for
cloud system called Nemesis, which address all the above
and other related questions. With Nemesis, we use on-
tologies knowledge bases to model the threats and assess
the risks of the given cloud system. To realize this feat,
we built ontologies for vulnerabilities, defenses and attacks
and automatically instantiate them to generate the Ontolo-
gies Knowledge Bases (OKBs). These OKBs capture the
relationship between vulnerabilities, defenses mechanisms
and attacks. We use the generated OKBs and Microsoft
STRIDE model [I] to classify the threats and map them to
relevant vulnerabilities. This is used together with the cloud
configurations and the Bayesian threat probability model in
assessing the risk. Apart from classifying the given cloud
system’s threats and assessing its risk, we deliver two useful
metrics to rank the severity of classified threat types and
to evaluate exploitable vulnerabilities. In addition, we rec-
ommend an alternative cloud system’s configuration with a
lower perceived risk, and mitigations techniques to counter
classified threat types. For the proof of concept of our pro-
posed architecture, we have designed an OpenStack’s [2]
based cloud and deployed various services. Then, we evalu-
ated our Nemesis, and presented our findings. Our proposed
architecture can help evaluate the security threat level of
any cloud computing configurations, and any configurations
of shared technologies found in computing systems.

1 Introduction

Cloud computing is defined as the delivery of on-demand
computing resources; everything from applications to data
centers over the Internet on a pay-for-use basis [3]. Its de-
sign principle revolve around a custom or an open source
cloud operating system that is in charge to control and
provision allocated resources throughout the datacenter(s).
Cloud computing services are deployed mainly in models

such as: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). For ex-
ample, OpenStack [2] cloud operating system enables de-
velopers to design any cloud computing deployment model
such as: Public, Private or Hybrid cloud to support any of
the cloud computing services. It is critical to ensure that
the cloud computing services can stand against any security
threat.

AlertLogic presented a recent cloud security report on
their honeypot research findings [4]. These honeypots were
deployed in public cloud infrastructures around the world
with the intent to observe the types and frequencies of at-
tacks, and how the attacks vary geographically. This report
shows the origin of the attacks to a specific region along
with their frequencies; For example the US had the highest
proportion of attacks on HTTP (attack vector) compared
to other regions, which could be due to its higher web adop-
tion. These results show how real cloud’s assets are being
targeted and that there are imminent threats.

One view to go about discovering any likely security
threat type towards cloud’s assets, is to perform a secu-
rity assessment task by identifying known vulnerabilities
and their exploits. This task becomes complex due to a
variety of shared technologies that are part of the cloud de-
sign and deployment. According to Cloud Security Alliance
(CSA) latest Cloud Computing Top Threats in 2013 report
[B], “Shared Technology Vulnerabilities” is ranked among
the top threats facing cloud computing ecosystem. It has
been shown that cloud computing threats are influenced by
different agents, where some are a result of inherent vul-
nerabilities found in shared technologies used, and others
come to life due to the composition of services of shared
technologies.

Main pillars of cloud’s assets that needs to be protected
from threat agents are: confidentiality, integrity, availabil-
ity, consistency, control, and audit [6]. When assessing se-
curity threats, it is useful to ask questions like:

e How can an attacker change the authentication data?

e What is the impact if an attacker can read the user

profile data?

e What happens if access is denied to the user profile

database?
Using this analogy of thinking about threats, there exist
threat models like STRIDE [I] that help to anticipate a
class of threat types that any given cloud’s assets could be
facing and techniques to mitigate them.

To unravel the complexity of performing vulnerability
assessment for cloud computing services, there have been
some existing works that had laid out the ground in terms
of collecting and publishing known Information Technol-
ogy Product’s vulnerabilities, exploits and mitigations such
as: National Vulnerability Database (NVD) [7], and Ex-
ploit Database [§]. And vulnerability assessment frame-
works geared for cloud computing like VULCAN [9].

There is a need for an optimal solution for cloud secu-
rity threat modeling which incorporates the vulnerability
assessment process, and then offers an actionable risk anal-
ysis indicator. To rise up to this challenge, we propose
a novel Automated Architecture for Threat Modeling and
Risk Assessment for Cloud Computing called NEMESIS.
Our architecture offers a state of the art automated portal
from start to finish of Cloud’s assets threat modeling and
risk assessment.

The rest of this paper is organized as follows: In Section[2]
we present some background key features of our work, while
in Section |3| we present our novel Nemesis architecture’s
design and implementation details; the NEMESIS exper-
iments and evaluations are detailed in Section in sec-
tion [5| we discuss the related works and finally, conclusions
and further research directions are given in Section [6]

2 Background

2.1 Cloud Computing

At the highest level, the cloud Operating System (OS) does
what a traditional operating system does like managing
applications and hardware but at the scope and scale of
cloud computing. Nowadays, there exist different type of
Cloud OSes; for example OpenStack [2] which is an open
source project and currently available in many flavors where
its most popular flavor is tailored in Ubuntu [I0]. For
an organization to relies on using any Cloud OS solution,
it means that they can shift to more efficiently manag-
ing datacenter resources as a whole, including networking,
storage and compute, in addition to new possible add-on
customization tailored to their services and computing re-
sources needs. In general, Cloud OSes are designed around
a wide range of technologies, and it has been shown that
any software/hardware technology at some point after be-
ing produced shows one or more weaknesses/vulnerabilities
that could later be exploited. This trend of inherent flaws
could lead to various threats to the make of cloud’s assets
that utilizes these shared technologies. This alarming fact
calls for a continuing vulnerability assessment culture of
Cloud’s components and configurations.

2.2 Ontology Knowledge Bases (OKBs)

There exist some open source communities that are try-
ing to publish reported known vulnerabilities along with
their exploits, and their fixes if they exist. However, these
communities publish reported vulnerabilities/exploits/fixes
per one individual technology, this information does not
help identify issues with complex system that utilizes shared
technologies, therefore a need to model this information and

allow its interoperability into complex system comes in the
picture. Some existing works have attempted to model vul-
nerabilities, exploits/attacks, and fixes/defenses into secu-
rity ontology knowledge bases due to their formalism and
semantic inference high capabilities to unravel the complex-
ity found in vulnerability assessment for cloud computing
systems.

In our previous work [9] on VULCAN framework, we de-
signed and implemented security ontology knowledge bases
(Vulnerabilities, Attacks and Defenses) to facilitate in the
automatic vulnerability assessment task for the cloud. As
illustrated in Figure |1} it enables us:

e To generate an ever growing domain of knowledge that
encompasses all areas of vulnerability assessments from
both the offensive to defensive side

e To be able to link and search recursively the associa-
tion of any given attack to which vulnerabilities can be
exploited during the attack and vice versa

e To provide effective Defense mechanisms that factor in
the source of vulnerability and attacks and how they
could be mitigated

e To study vulnerabilities lifecycle

Attacks Instances
- Attacks
2 — OKB
@ Vulnerability
[3)) :
| CVSS Metrics ' Vulnerabilities >
9 . OKB ,
g IT Products . -1 Defenses
S Instances 1 OKB
Y ,'
CounterMeasures| AR -~
Instances T
Mitigations

Aienp oueusn

Figure 1: VULCAN - Security Ontology Knowledge Bases

Using this rich information about what are the vulnera-
bilities and exploits of a given technology or its association
in the making of cloud’s assets; we have enough support-
ing facts to go about performing threat modeling and risk
assessment of any cloud’s setting.

2.3 Threat Modeling

Given an adversary threat model which assumes that any
attacker is highly capable, and well motivated; calls for a
thorough investigation to identify the areas where any given
cloud system is most vulnerable during its design or deploy-
ment phase. This way, one can choose the appropriate tools
and implement the best design to protect the cloud’s assets.
To address this challenge, we adopted Microsoft STRIDE
threat model [I] that enables us to classify and rank found
threat types for each of the cloud’s building block which
is made of various shared technologies. STRIDE is an
acronym for six threat categories described as:
e Spoofing Identity. An example of identity spoofing is il-
legally accessing and then using another user’s authen-

synsay yoseas

tication information, such as username and password.

o Tampering with data. Data tampering involves the ma-
licious modification of data. Examples include unau-
thorized changes made to persistent data, such as that
held in a database, and the alteration of data as it flows
between two computers over an open network, such as
the Internet.

e Repudiation. Repudiation threats are associated with
users who deny performing an action without other
parties having any way to prove otherwise for exam-
ple, a user performs an illegal operation in a system
that lacks the ability to trace the prohibited opera-
tions. Nonrepudiation refers to the ability of a system
to counter repudiation threats. For example, a user
who purchases an item might have to sign for the item
upon receipt. The vendor can then use the signed re-
ceipt as evidence that the user did receive the package.

e Information Disclosure. Information disclosure threats
involve the exposure of information to individuals who
are not supposed to have access to it for example, the
ability of users to read a file that they were not granted
access to, or the ability of an intruder to read data in
transit between two computers.

e Denial of Service. Denial of service (DoS) attacks deny
service to valid users for example, by making a Web
server temporarily unavailable or unusable. It is critical
to protect against certain types of DoS threats simply
to improve system availability and reliability.

e FElevation of Privilege. In this type of threat, an un-
privileged user gains privileged access and thereby has
sufficient access to compromise or destroy the entire
system. Elevation of privilege threats include those sit-
uations in which an attacker has effectively penetrated
all system defenses and become part of the trusted sys-
tem itself, a dangerous situation indeed.

In section [3] we describe one of our automated proce-
dure to classify any discovered vulnerability into STRIDE
model. And if there’s not any known countermeasure, we
use STRIDE mitigation techniques [I1] as shown in Table[]]
to offer relevant mitigation recommendations towards evad-
ing enumerated threat types to the given cloud’s assets.

2.4 Risk Assessment

Risk assessment is a critical task that involves weighting
accumulated measurements into a refined indicator, in our
case that indicator reflect the risk level of found vulnera-
bilities, exploits, defenses per threat type generated from
STRIDE model as described in section Bl Various risk as-
sessment models such as DREAD [12] and Fenz’s [13] work
on ”An ontology-and Bayesian-based approach for deter-
mining threat probabilities” have been proposed but they
all offer either offline manual or not fully automated evalu-
ations.

The advantage of the proposed Bayesian threat probabil-
ity determination [13] is that it gives the risk manager a
methodology to determine the threat probability in a struc-
tured and comprehensible way. The methodology is illus-
trated in Figure |3 and each building block has its calcula-
tion schema fully documented. In addition to the Bayesian

Threat Type Mitigation Technique
Authentication

Protect secrets

Do not store secrets
Authorization

Hashes

Message Authentication Codes
Digital signatures
Tamper-resistant protocol
Digital signatures
Timestamps

Audit trails
Authorization
Privacy-enhanced protocols
Information disclosure | Encryption

Protect secrets

Do not store secrets
Authentication
Authorization

Filtering

Throttling

Quality of service

Run with least privilege

Spoofing Identity

Tampering with Data

Repudiation

Denial of service

Elevation of privilege

Table 1: STRIDE Mitigation Techniques

calculation schema, this work uses the security ontology
to populate the proposed methodology. Using the same
methodology, we populate it using our vulnerabilities, at-
tacks and defenses ontology knowledge bases relevant data
toward inferring the risk indicator for the given cloud’s as-
sets. Within our experiments studies in Section [4] we were
able to improve this Fenz’s methodology in terms of sound
methods and techniques to gather, store, and provide cru-
cial threat probability calculation components as shown in
Figure [3| adopted from Fenz’s [13] work and updated to use
OKBs as the source of ontological knowledge.

In our proposed architecture, we bring these useful pre-
dictive models and metrics into an automated process,
therefore to generate a risk indicator for the given cloud
system configuration.

3 Architecture

3.1 Design

Our proposed Nemesis architecture design principle is il-
lustrated in Figure 2] Threat models and vulnerability as-
sessment framework are the main pillars used to build our
architecture. We have devised two implementations of our
pillars toward assessing cloud computing assets. To filter a
rich amount of security analytics auto generated by our two
implementations (Threat Probability Estimator and Threat
Classification), we built four lightweight middleware ap-
plications (Risk Estimator, Severity Ranking Engine, Ex-
ploitable Vulnerabilities Generator and Suggested Configu-
rations Generator). These applications per any given cloud
configuration produce an aggregated risk indicator, threat
types severity ranks, exploitable vulnerabilities evaluations,

and suggested new configurations to reduce perceived risk.

In this section, we describe the incorporation of the mod-
els and framework, and their implementation into Nemesis.
And present a high level view of our middleware applica-
tions algorithm designs.

3.1.1 Cloud Configurations

As we have discussed thus far, cloud computing design prin-
ciple revolve around a set of shared building technologies
and customization packages needed to instantiate and main-
tain various services. To unravel this complex design of
any given cloud’s assets, we need to extrapolate its con-
figurations into a machine readable format for all foresee-
able tasks. In our case study, the proposed architecture
- Nemesis, will require the cloud’s assets make configura-
tions details for performing threat modeling and risk anal-
ysis tasks. The supported formats of cloud configurations
details with our architecture are either contained within an
ontology knowledge base file (generated from a customized
defined ontology) or passed through a defined web facing
aggregator portal or as on-fly inputs.

3.1.2 VULCAN Framework

VULCAN Framework [9] plays a big role within our archi-
tecture, as a source of security information used to gener-
ated various analytics. From VULCAN, we have utilized
one of its architectural component called Ontology Knowl-
edge Bases (OKBs). These OKBs contain rich information
about various known Information Technology (IT) prod-
uct’s vulnerabilities, attacks and defenses modeled and rep-
resented using ontology design, with a powerful supporting
semantic relationships.

Within Nemesis architecture, we devised an automatic
approach to invoke VULCAN’s OKBs for relevant vulner-
abilities, attacks and defenses details on demand per each
received cloud configuration entity . For each entity, we
want to see if there exists:

e Any vulnerability. If so, we return that found vulnera-
bility identifier, description, and severity ranking

e Any attack. If so, we return that found exploit identi-
fier and description

e Any defense. If so, we return that found mitigation
identifier and recommendation statement

3.1.3 STRIDE Threat Model

To address some type of questions regarding what are the
vectors that can be used to threaten the given cloud’s pil-
lars, we used STRIDE threat model [to classify them into
relevant threat types. More precisely, we devised an au-
tomated STRIDE’s threat type classification approach to
model after each discovered cloud configuration entity and
its discovered vulnerabilities. The classification scheme, au-
tomate one of Microsoft threat modeling STRIDE’s Eleva-
tion of Privilege (EoP) card game [14]; Where the EoP card
game helps clarify the details of threat modeling and exam-
ines possible threats to software and computer systems.

Since this approach is usually done manually by challeng-
ing other developers to assign STRIDE threat types rel-
evant to design architecture of the target system (In this
case, Cloud System). Within our proposed architecture, we
realize this via an implementation named ”Threat Classi-
fication” used to automate this process as detailed via the
unsupervised classification Algorithm

Algorithm 1 Threat Classification
Data: Cloud Configuration’s Entities
Result: Threat Types per each Entity - Vulnerability Pair

for Entity in Cloud Configuration do
Invoke Nemesis’s Vulcan Framework instance and pass

the Entity name
return Relevant found Vulnerabilities details

for Fach Found Vulnerability do
Perform A Similarity Test to all EoP Threat

Types descriptions call, with Entity’s Vulnerability
Description as a parameter

return Threat Types’s Similarity Scores

Perform A Classification Task, with Threat Types’s
Similarity Scores as a parameter

return Threat type that best suit the given Cloud’s
Entity - Vulnerability Pair

end

end

3.1.4 Threat Probability Model

For the given cloud configurations, one approach to man-
age all threat types that could be found and generated via
the ”Threat Classification” approach is to rank them and
provide an overall risk assessment indicator. We realize this
by leveraging a threat probability model to estimate each
”cloud’s entity - threat type” threat probability value and
amass them as weighted values toward generating an aggre-
gated risk indicator via our developed risk estimator appli-
cation.

Within our architecture, we evaluated Fenz’s proposed
model [I3] on utilizing the security ontology for the
Bayesian threat probability determination as shown in Fig-
ure [3] and found it to be a best match model to be included
into our Nemesis. We then implemented this Threat Prob-
ability Determination model as ”Threat Probability Esti-
mator” as illustrate via Algorithm [2| using the Bayesian
Network Structure and Variable’s calculation equations as
illustrated in Figure [with few extensions to accommo-
date our cloud’s threat ranking needs. For instances, the
variables equations are grouped into: Threat Variable, In-
termediate Vulnerability Variable, Vulnerability Variable,
Attacker Variable, Control Combination Variable and Con-
trol Variable and each one has some dependency to each
other.

Inputs : Pillars : Transformers : Applications :
Microsoft STRIDE : Threat :
rea :
EoP T Threat : Classification : Threat Types
Details Model Severity
H H Ranks
Bayesian Threat Threat I N Agg: gkated
e » Probabilty - Probability ——+> Risk Estimator | d_'s N
Vulnerabilities Model ! Esitmator . : ! ndicator
Attacks, and 5 P
Defenses H : H
OKBs ; b
VULCAN [— G :
Framework : I i Exploitable Exploitable
———> Vulnerabilities -----> Vulnerabilities
; P i Generator Evaluations
: N -
1 ' 1 ’ Sa=o
' ' ' - ~
. H . ~ " Suggested \
Aggregator Cloud : . e . . 1
Portal T Configurations v g ' ' Configurations to ,
- ; i Suggested Reduce Perceived ~
. Configurations ----f-» " Risk 1
: : ! Generator ! ~_- =7
! ! b S 7
Figure 2: NEMESIS - Architecture
WeE1 Ween
Threat ST Threat STori Impl(;%rgrrglation Implgr?nr:etr:?;tion
Probability PPst1Ti Probability PPstari Effectiveness CE; Effectiveness CEn
x e : :
. >l . .
. % g vy Wecevi Wapri
i % & Control Threat Ti
Threat T; » E ch?ergﬁ\'/’;“eosns A Priori Probability
Probability PPri) - CCE.
° E
= >
17}
o m
%]
)
okbs:leverages :?-,
——
©
WepvsTi Wepv1 g Vulnerability Vi
(—\ = Exploitation Qoo
.) 2 Probability PPy
Threat T; s+ + o+ « b VUlnerabilities VSri PR Vulnerability V4 g Y
L Exploi Probabili . Exploitation Probabili
Probability PPr; S : Y 8 :
\—) i P .
Ao A . : 8 .
. § . WeppTnTi : . ° Wacvi .
. | M N . N
s @ eeeeeeeeees| ThreatPTim . : Attacker Capability .
. o Probability PPerer: . . ACvi .
N o] . + Wepvn C Waew
ts \), . « Wagvi
. » . : N .
b] : &+ |+ Vulnerability Va .
: % : WPPPTWTi Explomatig;‘zrcbabmty : ee e e s e s s A_ttacker
: g . . Effectiveness AEvi
.18 . Wawmvi
. rQ Threat PT1ri

Probability PPerir:

Attacker Motivation

AMyi

Figure 3: Utilizing OKBs for the Bayesian threat probability determination

Algorithm 2 Threat Probability Estimator

Algorithm 3 Risk Estimator

Data: Cloud Configuration’s Entities and OKBs graphs
Result: A list of Threat Probabilities Values for all given
Cloud’s entities

for Entity in Cloud Configuration do
Invoke Nemesis’s Vulcan Framework instance and pass

the Entity name and relevant OKB graph
return Relevant found Vulnerabilities identifiers

for Each Vulnerability identifier do
Invoke controlVariable subroutine, with This Vul-

nerability identifier and relevant OKB graph as a
parameter

return A qualitative scale of this control for the
given vulnerability, its description and a binary
value of wether this control is active

Invoke ControlCombVariable subroutine, with con-
trolVariable outputs and other variant’s similar data
of This Vulnerability Identifier as parameters
return A qualitative scale and its quantitative value
Invoke AttackerVariable subroutine, with This Vul-
nerability identifier and relevant OKB graph as pa-
rameters

return A qualitative scale and found Exploit De-
scription

Invoke vulnerability Variable subroutine, with Con-
trolComb Variable and AttackerVariable outputs as
parameters

return A quantitative scale

Append each Vulnerability identifier’s vulnerability-
Variable output into a list

end

Invoke intermediate Vulnerability Variable subroutine,
with A list of vulnerability Variable outputs as parame-
ters

return A quantitative scale

Invoke ThreatVariable subroutine, with intermediat-
e Vulnerability Variable outputs and a list of aPriori
Threat Probabilities Values as parameters

return A quantitative scale

Append each Vulnerability identifier’s ThreatVariable
output into a list

end

3.1.5 Nemesis’s Lightweight Applications

e Risk Estimator application high level design is detailed
via Algorithm

e Severity Ranking Engine application high level design
is detailed via Algorithm

e Exploitable Vulnerabilities Generator application high
level design is detailed via Algorithm [5| and

e Suggested Configurations Generator application high
level design is detailed via Algorithm [6]

Data: A list of Threat Probabilities Values for all given
Cloud’s entities and their weights
Result: Aggregated Risk Indicator

for Input Data do
Invoke an Aggregator subroutine and pass the Input

Data as parameters
return Aggregated Quantitative Scale

end

Algorithm 4 Severity Ranking Engine
Data: Cloud Configuration’s Entities and OKBs graphs
Result: Threat Types Severity Ranks

for Entity in Cloud Configuration do
Invoke Nemesis’s Vulcan Framework instance and pass

the Entity name and relevant OKB graph
return Relevant found Vulnerabilities identifiers

for Each Vulnerability identifier do
Invoke Threat Classification module, with This

Vulnerability identifier and relevant OKB graph as
a parameter
return Perceived Entity - Vulnerability’s Threat
Type
Invoke SeverityScore subroutine, with his Vulnera-
bility Identifier as parameters
return A quantitative severity score
Append the found severity scores per each vulnera-
bility into a list of threat type classes lists

end
nd

or All lists of threat type classes’s severity scores lists do
Compute a new list of threat type classes’s average
severity scores and return it

=0

end

Algorithm 5 Exploitable Vulnerabilities Generator
Data: Cloud Configuration’s Entities and OKBs graphs
Result: Exploitable Vulnerabilities Evaluations

for Input Data do
Invoke Nemesis’s Vulcan Framework instance and pass

the Entity name and Vulnerability OKB graph
return Counts of relevant found vulnerabilities, their
identifiers and Active/Passive state binary value

for Each vulnerability identifiers do
Invoke Nemesis’s Vulcan Framework instance and

pass the Entity name and Attack OKB graph
return Count of found Exploits
Append this Exploits Count into a list

end

end

for All counted list’s values do

Compute their sum with respect to their targeted vul-
nerabilities and return the Exploitable Vulnerabilities
Evaluations

end

Algorithm 6 Suggested Configurations Generator
Data: Cloud Configuration’s Entities and OKBs graphs
Result: Suggested Configurations to Reduce Perceived
Risk

for Input Data do
Invoke Nemesis’s Threat Probability and Risk Estima-
tor module and pass the Input Data
return Aggregated Risk Indicator for this Cloud Con-
figuration Profile and store this result for future com-
parison
Invoke An Fwvaluator module and pass the Current
Cloud Configuration Profile
return All other alternative Cloud Configuration Pro-
files made of pre and post releases of the first Profile’s
entities
for Fach generated Cloud’s Profile do

Compute its Aggregated Risk Indicator and store it

end

Perform A systematic ranking of each Cloud Configu-
ration Profile and its Risk Indicator

return The best optimal profiles with a lower risk
indicator and suggest them back

end

3.2 Implementation

We have implemented our proposed Nemesis design archi-
tecture on:

e On a MacBook Pro laptop with a 2.3 GHz - Intel Core
i7 Processor and 16 GB of RAM

e With Vulnerabilities, Attacks, and Defenses Ontol-
ogy Knowledge Bases populated with approximately
100,000 instances

e Nemesis - prototype is automated using Java programs
(with 700 LOC for the automation of ontology knowl-
edge bases generation and indexing for fast processing)
and Python scripts (with 1700 LOC) with supporting
libraries such as: NLTK [I5], RDFLib [I6], Protege
Editor’s OWL libraries [17]

4 Experiments and Evaluations

4.1 Experiments

To validate and evaluate our proposed architecture - Neme-
sis, we have designed a cloud environment and deployed its
services using OpenStack [2] cloud operating system. For
our OpenStack deployment, we used DevStack [I8] and de-
ployed one of OpenStack version [19].

Our simple OpenStack deployment system is live with
nova-compute, cinderv2-volumev2, novav3-computev3, s3-
83, glance-image, heat-cloudformation, cinder-volume, ec2-
ec2, heat-orchestration and keystone-identity services to
power Compute and Orchestration OpenStack’s projects.
For example, we can leverage Glance and Nova services, If
we want to deploy any flavored instance running on Ubuntu,

or Fedora, or Centos, or RedHat, or Windows operating sys-
tem. And for various cloud applications automatic design
and production, we can leverage Heat service which in turns
relies on other services.

On a Dell PowerEdge T620 server with 24 cores and 64
GB of RAM and 2T of storage - running on Ubuntu:* and
using VirtualBox:* [20], we created an Ubuntu:* virtual
machine for OpenStack-DevStack single node deployment
powered with 10 CPUs, 40 GB of RAM and 400 GB of
storage. Upon OpenStack successful deployment, QEMU:*
hypervisor is used to support the Compute Service.

Via OpenStack dashboard, we are able to instantiate a
number of instances such as: Ubuntu:*, Fedora:*, and Cen-
tos:* ones via Compute project and some stacks via Or-
chestration project using open-source based heat-templates
[21] such as: Word Press Native, Chef Server and Nova
Instance With Cinder Volume Native.

A sample look of some IT products (* taken randomly
from a pool of various releases of products that meet our
experiment criteria) that are used to support our cloud in-
frastructure and services are shown in Table [2 which are in
turn used to evaluate our proposed Nemesis architecture.

IT Products
Ubuntu:12.04 - Host and Guest VM OS
VirtualBox:3.2 - Virtualization Product
Grizzly 2013.1.1 | - Cloud OS

Ubuntu:12.10 - Cloud image OS

Description

Fedora:17 - Cloud image OS
Centos:6 - Cloud image OS
WordPress:3.0.3 | - Web Software
MySql:5.5.29 - RDBMS
RabbitMQ:3.3.5 | - AMQP
Qemu:1.3.0 - Hypervisor

Table 2: Our Sample Cloud Configuration

4.2 Evaluations

In this section, we present our findings given the sam-
ple of cloud configuration shown in Table [2| that is feed
into our Nemesis Architecture and analyzed via Nemesis’s
lightweight applications as presented in Section

4.2.1 Risk Estimator application

The given cloud configuration shown in Table [2| is evalu-
ated via this application, where it produces an aggregated
risk estimated to 31.93% of severity. This estimated risk
can be left to various interpretations, but first it is a result
of our Nemesis’s design principle as described in Section
and the relevant data about found vulnerabilities, exploits
and defenses are logged into an output file to support the
estimated risk. Then, in the next subsections, we provide
supporting additional useful metrics to illustrate the vul-
nerability analysis and threat level status of the given cloud
configuration.

This application and the next two ones (Exploitable Vul-
nerabilities Generator and Severity Ranking Engine) had

an execution time that is within 8 minutes window period;
note that this time is dependent on the computing environ-
ment and the complexity of the applications Algorithms
Bl and @

4.2.2 Severity Ranking Engine application

For a threat focused security approach, the given cloud con-
figuration shown in Table [2| is ranked based on this appli-
cation design principle illustrated in Algorithm For in-
stance, Spoofing is the most eminent threat facing this cloud
configuration, and Information Disclosure is the least.

Threat Types Severity Rank (0-10)
Spoofing 4.01
Tampering 1.97
Repudiation 1.23
Information Disclosure | 0.86
Denial of Service 3.28
Elevation of Privilege 1.13

Table 3: Threat Types - Severity Rank Evaluations

4.2.3 Exploitable Vulnerabilities Generator appli-
cation

For the given cloud configuration shown in Table[2]feed into
this application, it produces the exploitable vulnerabilities
metric for each cloud configuration entity as illustrated in
Table @l In this case, two cloud entities stand out where
Fedora:17 has a value of 1 and WordPress:3.0.3 has a value
of 4; this call for an immediate attention to fix them since
that for all found vulnerabilities, there exist some known
attacks ready to exploit them. And for other entities with
a metric value of 0, though there was not a known attack
found, still the count of vulnerabilities discovered require an
attention and proper mitigation plan (if it is available, our
Nemesis’s will log it into the output file of relevant data).

creps Exploitable
IT Product Vulnerabilities Vull)nerabilities
Count .
Metric
Ubuntu:12.04 97 0
Virtualbox:3.2 2 0
Grizzly:2013.1.1 | 1 0
Ubuntu:12.10 87 0
Fedora:17 10 1
Centos:6 7 0
Wordpress:3.0.3 | 32 4
MySql:5.5.29 48 0
Rabbitmq:3.3.5 | 0 0
Qemu:1.3.0 8 0

Table 4: Exploitable Vulnerabilities Metric Evaluations

4.2.4 Suggested Configurations Generator applica-
tion

The new generated alternative recommended cloud config-
uration shown in Table [is evaluated via the Risk Estima-

tor application, and an aggregated risk was estimated to
25.88% of severity. Compared to the original given cloud
configuration shown in Table [2| there is a 6.05% perceived
estimated risk reduction. Each recommended cloud configu-
ration entity was selected from a pool of its variant versions
by picking up the perceived higher version with a lower ag-
gregated risk compared to the original given cloud’s entity.

Pre- and Post-
Releases Count
Ubuntu:13.04 22
Virtualbox:4.0.20 | 75
Grizzly:2013.1.4 8

IT Products

Ubuntu:13.04 22
Fedora:18 15
Centos:6 1

Wordpress:3.7 121
MySql:6.0.10-bzr | 366
Rabbitmq:3.3.5 0
Qemu:2.0.0 78

Table 5: Alternative Recommended Cloud Configuration

4.2.5 Challenges

Our proposed Nemesis’s architecture design principle is
built on proven models and frameworks and its delivery
outputs are beneficial to security community who want to
assess their cloud’s or organization IT’s assets in terms of
threat modeling and risk assessment. And within our ex-
periments we were able to proof and reaffirm our claims and
discover some limitations. Some of the main limitations of
our proposed automated architecture are:

e The open-source vulnerabilities, attacks and defenses
data feeds are limited, where all discovered vulnerabil-
ities for instances are not all publicly known, and even
if some of it are known, they are not properly format-
ted and or organized together for various automated
tasks.

e For all data feeds that are available, for example in
our experiments we were able to gather and use over
100,000 data feed instances, and we have seen a high
disproportion of how many known vulnerabilities vice
their countermeasures.

e And for our recommendation of alternative cloud con-
figuration with a lower perceived risk approach, we
have seen that the convention of versioning various IT
product is not standardized throughout different prod-
uct’s vendors and this hinder our reach of accessing all
available pool of versions for a better recommendation.

5 Related Work
5.1 Security Assessment of Cloud Comput-
ing

Ristov et al. [22] work on security assessment of OpenStack
is reflected in our work. Here, they assessment the Open-

Stack Node and its instances, using a third party tool and
its configuration to discover what are the known present
vulnerabilities and reported their results. In our approach,
we consider additional cloud services’s configurations for as-
sessment as well via Nemesis architecture; as we have pre-
sented thus far in Section |3 via Nemesis we achieve com-
plete vulnerability assessment, threat modeling and risk as-
sessment of the given cloud’s assets automatically.

Donevski et al. [23] work on analyzing virtual machine se-
curity threats that might occur by other tenants or outside
the cloud; revolved around discovering new vulnerabilities
for different networking configurations with the cloud net-
work controller using a third party security assessing tool.
Though this work does not perform any detailed threat
modeling per se, but they point out a critical threat vari-
ant of new vulnerabilities that comes from the composition
of shared technologies within a cloud setting. In our pro-
posed architecture, we emphasis how this new vulnerabil-
ities come in the picture and how we perform a detailed
threat modeling for each found vulnerabilities and how all
found vulnerabilities impact the threat level of any given
cloud setting.

Amartya et al. [24] work on ”Off-line Risk Assessment
of Cloud Service Provider” have in common with our pro-
posed architecture by their methodology of assessing threats
present in a client’s application/cloud service using Stride
model [I]. Our approach automate the threat modeling
methodology of using EoP card game [14] based STRIDE
model, instead of manually generating threat types as tra-
ditionally been done like in Amartya et al. [24] approach,
in addition our risk assessment approach within Nemesis
architecture is automatic.

5.2 Ontological Approach Toward Security
Analysis of Systems/Cloud Computing

In Fenz [13], [25] and Settas et al. [26] works have two
main components in common with our proposed Nemesis
architecture such as: The use of Ontological approach and
Bayesian Networks key building blocks towards various se-
curity assessment works. Additional ontological security re-
lated works by Fenz et al. that motivated us to build our
Nemesis’s Risk assessment model are:

e On Ontology-based Generation of IT-Security Metrics
[27], Here we use various measurements generated from
Nemesis’s Vulcan and Threat modeling subroutines to
compute and produce useful metrics regarding the sta-
tus of the given cloud’s assets such as: ”Threat type’s
severity average score” metric, and an additional met-
ric that we adapted from Walter [28] webinar presen-
tation’s geared for the cloud setting is the ” Unpatched
critical vulnerabilities” for the given Cloud metric.

e On Ontology- and Bayesian-based Threat Probability
Determination [29], which we modified for cloud set-
ting and automated into our Nemesis’s threat ranking
subroutine; and

e On Security Ontology: Simulating Threats to Corpo-
rate Assets [30], here we performed a thorough threat
modeling task and generated all possible threat types
for all discovered vulnerabilities of the given cloud’s

assets.

In Kamongi et al. works [9] and [31], leverage the use of
ontological approach towards the design of a vulnerability
assessment framework - VULCAN and its incorporations
into the ranking methodology of Cloud System’s Vulnera-
bilities and our proposed Nemesis’s architecture.

These excellent contribution works show how ontology
back-bone is critical when one is attempting to model any
security related study, and enables us to use any known
predictive model like Bayesian Networks in parallel or as an
add-on.

6 Conclusion and Future Work

6.1 Conclusion

In this paper, we have proposed and implemented a proto-
type of Nemesis, our novel automated risk assessment archi-
tecture for Cloud. Our proposed architecture design prin-
ciple revolve around collecting measurements about what
type of known vulnerabilities exist for the given Cloud’s
assets; how they can be exploited and how they can be mit-
igated; then use them toward the generation of a set of cus-
tomized outputs such as: Aggregated risk estimated value,
Exploitable vulnerabilities metric evaluations, Threat types
- severity rank evaluations, New recommended Cloud Con-
figurations with a lower perceived risk along with a detailed
summary of relevant nemesis evaluation data.

6.2 Future Work

In our studies with vulnerability assessment of various tech-
nologies, we have been focusing on what’s known to be the
weakness that leads to exploitation. Also what are the new
weaknesses that come from a composition of technologies
with inherent weaknesses. As we move ahead with the
security breaches trend, we see that this set is limited to
properly assess new weaknesses/vulnerabilities categorized
as “Zero-day” [32] ones. These Zero-day’s vulnerabilities
are hard to detect since, in most case there have never been
a predecessor or known variant of its form.

One approach to keep up with Zero-day vulnerabilities is
to keep updated the security repositories like vulnerability
ontology knowledge base with latest feed from initiatives
like the newly announced Google Project Zero [33] which is
trying to preempt and discover zero-day type of vulnerabil-
ities and publish them. Within our work, we are leveraging
security intelligences that come from collected analytics of
any system, for instance cloud computing resources man-
agement and provisioning intelligences. Within this scope,
we can dynamically assess any given cloud environment and
be able to detect and prevent new zero-day type of weak-
nesses.

References

[1] Microsoft Corporation. The stride threat model, 2014.
URL http://msdn.microsoft.com/en-US/library/
ee823878(v=cs.20) . aspxl

http://msdn.microsoft.com/en-US/library/ee823878(v=cs.20).aspx
http://msdn.microsoft.com/en-US/library/ee823878(v=cs.20).aspx

2]

Openstack: The open source
URL https://www.

OpenStack project.
cloud operating system, 2014.
openstack.org/software/|
IBM Cloud. What is cloud?, 2014.
http://www.ibm.com/cloud-computing/us/en/
what-is-cloud-computing.htmll

AlertLogic. Cloud security report honeypot
findings - 2014, September 2014. URL http:
//alertlogic.com/wp-content/uploads/2014/08/
alertlogic-HoneypotFindings2014-infographic.
pdf.

Cloud Security Alliance. The notorious nine -
cloud computing top threats in 2013, 2014. URL
https://downloads.cloudsecurityalliance.org/
initiatives/top_threats/The_Notorious_Nine_
Cloud_Computing_Top_Threats_in_2013.pdf.
Electronic Frontier Foundation. Threats, surveillance
self-defense, 2014. URL https://ssd.eff.org/risk/
threats.

NIST. National vulnerability database, 2014. URL
http://nvd.nist.gov/.

Offensive Security 2014. The exploit database, 2014.
URL http://www.exploit-db.com/.

Patrick Kamongi, Srujan Kotikela, Krishna Kavi, Ma-
hadevan Gomathisankaran, and Anoop Singhal. Vul-
can: Vulnerability assessment framework for cloud
computing. In Software Security and Reliability
(SERE), 2013 IEEE 7th International Conference on,
pages 218-226. IEEE, 2013.

Canonical Ltd. Ubuntu for cloud, 2014. URL http:
//www.ubuntu.com/cloud.

Microsoft ~ Corporation. Identifying
niques that mitigate threats, 2014.
http://msdn.microsoft.com/en-us/library/
ee798428(v=cs.20) . aspx.

Wikipedia. Dread: Risk assessment model,
2014. URL http://en.wikipedia.org/wiki/DREAD:
_Risk_assessment_model.

Stefan Fenz. An ontology-and bayesian-based approach
for determining threat probabilities. In Proceedings of
the 6th ACM Symposium on Information, Computer
and Communications Security, pages 344-354. ACM,
2011.

Microsoft Corporation. Microsoft eop game, 2014.
URL |http://www.microsoft.com/security/sdl/
adopt/eop.aspx.

NLTK Project. Natural language toolkit, 2014. URL
http://www.nltk.org/.

RDFLib Project. Rdflib library, 2014. URL https:
//github.com/RDFLib/rdflib,

Stanford Center for Biomedical Informatics Re-
search. Protege editor, 2014. URL http://protege.
stanford.edu/|

Openstack Foundation. Devstack, August 2014. URL
http://devstack.org/.

Openstack Foundation. Openstack releases, August
2014. URL https://wiki.openstack.org/wiki/
Releases.

Oracle Inc. https://www.virtualbox.org/, August
2014. URL https://www.virtualbox.org/.

URL

tech-
URL

[31]

[21]

22]

[23]

[25]

[26]

OpenStack project’s heat Developers. Heat templates,
August 2014. URL https://github.com/openstack/
heat-templates.

Sasko Ristov, Marjan Gusev, and Aleksandar
Donevski. Openstack cloud security vulnerabilities
from inside and outside. In CLOUD COMPUTING
2013, The Fourth International Conference on Cloud
Computing, GRIDs, and Virtualization, pages 101—
107, 2013.

Aleksandar Donevski, Sasko Ristov, and Marjan Gu-
sev. Security assessment of virtual machines in open
source clouds. In Information € Communication Tech-
nology Electronics & Microelectronics (MIPRO), 2013
36th International Convention on, pages 1094-1099.
IEEE, 2013.

Amartya Sen and Sanjay Madria. Off-line risk assess-
ment of cloud service provider. In International Work-
shop on Cloud Security Auditing (CSA 2014). IEEE,
2014.

Stefan Fenz. An ontology-based approach for con-
structing bayesian networks. In Data & Knowledge
Engineering, volume 73, pages 73-88. Elsevier, 2012.
Dimitrios Settas, Antonio Cerone, and Stefan Fenz.
Enhancing ontology-based antipattern detection using
bayesian networks. In Ezxpert Systems with Applica-
tions, volume 39, pages 9041-9053, 8 2012.

Stefan Fenz. Ontology-based generation of IT-security
metrics. In Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 1833-1839. ACM, 1 2010.
Williams Walter. Information security metrics,
2014. URL https://www.brighttalk.com/webcast/
574/108369.

A Min Tjoa and Stefan Fenz. Ontology- and bayesian-
based threat probability determination. In Proceedings
of the Junior Scientist Conference 2008, pages 69-70.
Vienna University of Technology, 11 2008.

Stefan Fenz, Edgar R. Weippl, Markus Klemen, and
Andreas Ekelhart. Security ontology: Simulating
threats to corporate assets. In Information Systems Se-
curity, Second International Conference, ICISS 2006,
volume 43325006, pages249 — —259, 122006.

Patrick Kamongi, Srujan Kotikela, Mahadevan Gomath-
isankaran, and Krishna Kavi. A methodology for ranking
cloud system vulnerabilities. In Proceedings of The Fourth
International Conference on Computing, Communication
and Networking Technologies (ICCCNT’13), 2013.

Wikipedia.

Zero-day attack, 2014. URL http://en.

wikipedia.org/wiki/Zero-day_attack.

Google Inc.

Announcing project zero, 2014. URL

http://googleonlinesecurity.blogspot.com/2014/07/
announcing-project—-zero.html.

https://www.openstack.org/software/
https://www.openstack.org/software/
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://alertlogic.com/wp-content/uploads/2014/08/alertlogic-HoneypotFindings2014-infographic.pdf
http://alertlogic.com/wp-content/uploads/2014/08/alertlogic-HoneypotFindings2014-infographic.pdf
http://alertlogic.com/wp-content/uploads/2014/08/alertlogic-HoneypotFindings2014-infographic.pdf
http://alertlogic.com/wp-content/uploads/2014/08/alertlogic-HoneypotFindings2014-infographic.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://ssd.eff.org/risk/threats
https://ssd.eff.org/risk/threats
http://nvd.nist.gov/
http://www.exploit-db.com/
http://www.ubuntu.com/cloud
http://www.ubuntu.com/cloud
http://msdn.microsoft.com/en-us/library/ee798428(v=cs.20).aspx
http://msdn.microsoft.com/en-us/library/ee798428(v=cs.20).aspx
http://en.wikipedia.org/wiki/DREAD:_Risk_assessment_model
http://en.wikipedia.org/wiki/DREAD:_Risk_assessment_model
http://www.microsoft.com/security/sdl/adopt/eop.aspx
http://www.microsoft.com/security/sdl/adopt/eop.aspx
http://www.nltk.org/
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/rdflib
http://protege.stanford.edu/
http://protege.stanford.edu/
http://devstack.org/
https://wiki.openstack.org/wiki/Releases
https://wiki.openstack.org/wiki/Releases
https://www.virtualbox.org/
https://github.com/openstack/heat-templates
https://github.com/openstack/heat-templates
https://www.brighttalk.com/webcast/574/108369
https://www.brighttalk.com/webcast/574/108369
http://en.wikipedia.org/wiki/Zero-day_attack
http://en.wikipedia.org/wiki/Zero-day_attack
http://googleonlinesecurity.blogspot.com/2014/07/announcing-project-zero.html
http://googleonlinesecurity.blogspot.com/2014/07/announcing-project-zero.html

	Introduction
	Background
	Cloud Computing
	Ontology Knowledge Bases (OKBs)
	Threat Modeling
	Risk Assessment

	Architecture
	Design
	Cloud Configurations
	VULCAN Framework
	STRIDE Threat Model
	Threat Probability Model
	Nemesis's Lightweight Applications

	Implementation

	Experiments and Evaluations
	Experiments
	Evaluations
	Risk Estimator application
	Severity Ranking Engine application
	Exploitable Vulnerabilities Generator application
	Suggested Configurations Generator application
	Challenges

	Related Work
	Security Assessment of Cloud Computing
	Ontological Approach Toward Security Analysis of Systems/Cloud Computing

	Conclusion and Future Work
	Conclusion
	Future Work

