Parallel Processing Letters, Vol. 12, Nos. 3 & 4 (2002) 341-358
© World Scientific Publishing Company

MUTUAL EXCLUSION ON OPTICAL BUSES*

KRISHNA M. KAVI

Computer Science Department, University of North Tezas, Denton, TX 76208, USA
kavi@cs.unt.edu

DINESH P. MEHTA

Mathematical and Computer Sciences Department, Colorado School of Mines,
Golden, CO 80401, USA
dmehta@mines.edu

Received February 2002
Revised April 2002
Accepted by S. Sahni

Abstract

This paper presents two algorithms for mutual exclusion on optical bus architectures including
the folded one-dimensional bus, the one-dimensional array with pipeleined buses (1D APPB), and
the two-dimensional array with pipelined buses (2D APPB). The first algorithm guarantees mutual
exclusion, while the second guarantees both mutual exclusion and fairness. Both algorithms exploit

the predictability of propagation delays in optical buses.

1 Introduction

Fiber optics based communication technologies have been utilized in Wide Area Networks because
they offer higher bandwidths and lower error probability than other communication technologies.
More recently, optical properties such as unidirectional propagation and predictable propagation
delays have been touted as beneficial in building massively parallel processing systems using optical
buses for interconnection among processing nodes. Time Division Multiplexing (TDM) enables the
implementation of pipelined optical buses [1, 2]. Alternatively, Wavelength Division Multiplexing
(WDM) can be used to create multiple channels on which multiple messages can simultaneously be
transmitted. The multiple channels can be either statically or dynamically allocated to processors
[3, 4]. Utilizing the ability to transmit multiple messages simultaneously on optical buses (in
pipelined fashion or using multiple channels), researchers have described efficient algorithms for
parallel computing based on the message-passing paradigm [5, 6]. The shared-memory paradigm

for parallel computing has not been investigated for its suitability on optically interconnected

*This material is based upon work supported by the National Science Foundation under Grant
No. CCR-9988338.

341

342 K. M. Kavi & D. P. Mehta

parallel processing systems. In this paper we describe how mutual exclusion can be implemented
on pipelined optical buses. The problem of mutual exclusion is critical to the shared-memory
paradigm of parallel computation since it arises whenever concurrent access to shared resources
by several sites is involved {7, 8, 9]. For correctness it is necessary to guarantee that the shared
resource is accessed by only one site at a time (i.e., mutual exclusion). In addition to assuring
mutual exclusion, techniques for mutual exclusion in distributed systems must exhibit the following
characteristics: (1) Freedom from deadlocks: Two or more sites should not endlessly wait for events
that will never occur. An event can be the arrival of a message. (2) Freedom from starvation:
A site should not be forced to wait indefinitely to acquire a shared resource, while other sites are
repeatedly acquiring the resource. In other words, any site should be allowed to request and acquire
a shared resource in a finite amount of time. (3) Fairness: Fairness dictates that requests must be

executed in the order they are made, or in the order they arrive in the system.

Standard bus arbitration techniques guarantee mutual exclusion, but do not address the issues
of fairness and starvation. Mutual exclusion in distributed systems is different in that systems are
characterized by unpredictable delays and the absence of shared memory and a common physical
clock. Optical bus-based systems do not suffer from these complications. Our mutual exclusion
algorithms are therefore more efficient than those used in distributed systems as they are targeted

to the optical bus architecture.

In this paper we will assume Time Division Multiplexing based optical waveguides that facilitate
unidirectional pipelined buses. Our work is based on two related models for systems that utilize
pipelined buses: Linear array with a reconfigurable pipelined bus system (LARPBS) [1, 10] and
array with reconfigurable buses (AROB) [11] (although our algorithms do not use the reconfigu-
ration capability of these models). Many parallel algorithms were proposed using these models.
AROB permits counting during a cycle. However, counting is not allowed during a bus cycle in
LARPBS. In fact, the LARPBS does not allow any processing during a bus cycle, except for setting
switches at the beginning of a bus cycle. A more detailed description of the functional behavior of
such pipelined buses, and how “coincident pulse” methods can be used to achieve point-to-point,

multicast and broadcast data communications can be found in {10].

In this paper, we will make the following extensions to the pipelined bus models: {1} Bus cycle:
Most researchers define a bus cycle as the time needed for a message to travel the entire length of

the bus. For our purposes, we define a cycle as the amount time needed for a message to travel one

Mutual Exclusion on Optical Buses 343

segment of the pipelined bus (that is, the time to travel between two adjacent sites). (2) Computa-
tion during a bus cycle: Atomicity which is fundamental to the implementation of mutual exclusion
requires that computation be performed as events occur. This implies that delay loops may be re-
quired in pipelined optical bus segments to accommodate computations required by the techniques
described in this paper. In other words, we will assume that during a cycle, an optical message
travels one segment of the bus, and a processing node performs some computations when a message
is received. Alternately, we can require two phases: Communication and Computation. During the
communication phase, processors transmit (and receive) messages on the optical pipelined bus. At
most one message can be placed on the bus by a processor. All messages move along the bus syn-
chronously. The communication phase is complete only when (all) messages travel the entire length
of the bus assuring receipt by all processors. During the computation phase, processors examine
the messages received during the communication phase, and perform computations as needed to
achieve mutual exclusion. The system operates with alternating communication and computation
phases. To simplify the presentation, we will assume that bus cycle includes computation. However,
our techniques will also work if this is not the case by alternating communication and computation
cycles as described above. (3) Bus contention: Since we include computation in a bus cycle, we
permit asynchronous and simultaneous requests from sites. In other words, processors are NOT
required to transmit messages synchronously, and they can place a request at any time. This can
lead to bus contention as the messages move down the pipelined buses, if new message requests are
inserted by other sites. In this paper we will assume that the buses are designed to eliminate such
collisions on the bus and a processor excludes itself from placing a new message if that message
collides with a message that is already on the pipelined bus. This is possible by equipping a pro-
cessor with a receiver and a transmitter that can access the bus. The transmitter transmits only if

the receiver does not detect traffic. This technique has been previously used in {12].

Section 2 describes three optical bus architectures, while Section 3 proposes and analyzes two

algorithms for mutual exclusion. Section 4 reviews related work and Section 5 concludes the paper.

344 K. M. Kavi & D. P. Mehta

PIIED

Figure 1: Folded Unidirectional Bus Architecture

2 Optical Bus Architectures

2.1 The Folded One-Dimensional Bus

The folded one-dimensional bus model[13, 14] is shown in Figure 1. If consists of a sequence of
n equidistant processors connected by a folded bus. A processor is connected to both the upper
and lower segments of the bus. A processor transmits messages on the upper segment of a bus
and receives messages from the lower segment. In Figure 1, a message originates on the upper
segment and travels in the direction of the arrow. Assume that it takes 1 unit of time for a message
to travel from one processor to its neighbor. This architecture permits a pipeline of messages to
simultaneously coexist on an optical bus. Therefore, processors Py and P; can place messages
on the bus at the same instant of time. An arbitrary processor P; receives Py’s message exactly
1 time unit after it receives Py’s message. In general, a message from processor P; to P; takes
dij = 2n — 1 — i — j time units. As stated earlier, it is assumed that the optical transmission
hardware on the upper segment is capable of conditionally transmitting a message so that this will
not cause a collision. This will prevent P; from transmitting at time ¢ if processor P;_; transmitted

at time ¢ — 1.

2.2 The One-Dimensional Array with Pipelined Buses (1D APPB)

The 1D APPB is shown in Figure 2. This is similar to the folded bus above. Here processors can
transmit and receive on either segment. For example, a message from P to P, would be sent on
the upper segment, while a message from P to Py would be sent on the lower segment. Once again,
we assume that processors have the capability to conditionally transmit a message so that there

are no bus collisions. In this model, a message from PF; to P; takes dj; = [i — 5| time units.

Mutual Exclusion on Optical Buses 345

-
OJOICHEN
-

Figure 2: Unfolded Unidirectional Bus Architecture

2.3 Two Dimensional Array with Pipelined Buses (2D APPB)

A 2D APPB (Figure 3) can be designed by extending either the folded or unfolded 1D APPB to two
dimensions. Communication between a pair of arbitrary processors consists of a communication

along a column followed by a communication along a row.

3 Mutual Exclusion Algorithms

Consider a multiprocessing environment where processors are in contention for a particular resource
(e.g., a particular word in memory). When this happens, we would like to ensure that at most
one processor has access to the resource at any given instant. We achieve this below by assigning
a unique integer to each contending processor that indicates the order in which it must access
that resource. This integer will be referred to as the processor’s “turn”. This contention phase is
followed by an access phase where each processor actually accesses the resource in the prescribed
order. When a processor has completed its access, it broadcasts a message to this effect to the
other processors and the next processor proceeds to access the resource. The key to implementing
this philosophy is to correctly design the algorithm that is to be employed during the contention

phase so that different contending processors are guaranteed to be assigned different turns.

A processor P; first communicates its request for a given resource to all of the other processors.
When processor P; receives Pj’s request, it immediately places a hold on any future requests that
it might have for that resource until P;’s turn is confirmed. The difficulty arises when P; places
its request for the same resource before it receives P;’s request. The purpose of a mutual exclusion
algorithm is to ensure that this situation is resolved in a consistent fashion. We next present two
mutual exclusion algorithms for optical bus architectures. These algorithms are presented in an

interconnection architecture-independent fashion.

346 K. M. Kavi & D. P. Mehta

(n)
o

- ()
- Y Y

Figure 3: Two-Dimensional Bus Architecture

Mutual Exclusion on Optical Buses 347

3.1 A Window-Based Algorithm

Define the diameter D of a network to be the longest delay (or time taken for a message to travel)
between any pair of processors in the network; ie., D = max;j;;d;;, where dj; is the delay (as
defined in Sections 2.1 and 2.2) between P; and P;. Note that the diameter depends on the specific
optical bus architecture that is being considered. Next, we define the window of vulnerability for

each processor to be twice the diameter of the network; i.e., 2D.

We begin by outlining some assumptions and principles on which our algorithms are based.

1. Rule 1: A resource request is a message that contains the id of the processor making the

request and the resource being requested.

2. Rule 2: When a processor makes a request for a resource, it may not make additional requests

for the same or different resource until the window of vulnerability for its request has elapsed.

3. Rule 3: A processor P; that receives a request for a resource from P; delays making a future

request for that resource until P;’s window of vulnerability has expired.

4. Rule 4: When requests from several processors overlap in time, processor priorities are used
to resolve the requests. Without loss of generality, we assme that a lower numbered processor

has higher priority (i.e., Py has the highesi priority).

Our mutual exclusion algorithm requires certain actions to be taken by a processor when it
receives a resource-request message and when it wishes to send a resource-request. Algorithm
Receive_Request (Figure 4) below describes the actions to be taken by a processor ¢ when it receives
a request for a resource at time ¢. For convenience, we consider the current time step () and the
processor’s ID (3} to be arguments to the function. The Resource ID parameter (r) and the Time
parameter (#;) are assumed to be NULL if P; has no outstanding requests at time ¢. If P; does have
outstanding requests at time t, then these quantities denote the resource that was requested and

the time at which the request was sent.

Note that ¢t < t; +2D must be true if £, has an outstanding request (Rule 2). The resource table
{(array) my_turn is contained in each processor. It is assumed that these arrays imitially contain
the same values in each processor. The variable my_furn[r] for a resource r in processor P; denotes

the order in which processor P, will get access to resource r. Thus, the objective is that when

348 K. M. Kavi & D. P. Mehta

Recetve_Request(TIME &, Proc ID ¢, Resource ID 7, Time #;)
begin
if (a resource request msg is received by P; at time £}
// assume that requests originating at P; are ignored.
begin
RECV (message);
Processor_ID j = message.getProcID();
Resource ID s = message.getResourcelD();

if (r = s and j < i) my_turnfr}++; // Rule 4
nezt turnfr++;

//Ensure that P; sends any future requests for s

//after §’s window of vulnerability has expired;

// i.e., guarantees Rule 3

if(r#s)

begin
earliest{s] = max(t — d;; + 2D + 1,earliest]s));
nezt turnfs}++;

end

end
end

Figure 4: Algorithm Receive_Request.

several processors request the same resource r, our mutual exclusion algorithm must ensure that
each of these processors has a different local value of my_turn[r] that indicates the order in which
that processor will access the resource. The variable nezt_turn|r] is used to count the number of
processors that are assigned turns for accessing resource r in this contention phase. They will be

used to correctly assign turns in future contention phases.

When a processor wishes to make a request for a resource r, it first checks that the current time
is greater than that in earliest{r] and if this is true, sets my_turnfr] to next_turn{r] and increments

next_turnlr]. Figure 5 contains the details.

Ezample: Consider a folded unidirectional bus architecture (Fig 1} with n = 10 processors. Suppose
that processors P; and P» send resource requests at time 0, P; at time 8, Py at time 11, P at
time 16, and Py at time 22. Assume that all requests are for the same resource. We describe the

step-by-step operation of our algorithms using Table 1.

At time 0, Py and P send request messages. As per function Send_Request, both processors set

their my_turn variables to 0, increment their nex{_turn variables, and initialize earliest to 2D+ 1 =

Mutual Exclusion on Optical Buses 349

Time Py P Py Py Py Py Py Py P Py
<O | Os7) | 05 | O) | O05) | 8) | Oos) | Br) | O) | (0) | (05y)
0-7 | (1,0,37) — (1,0,37) — — — — — — _
8 — — - — — - — (1,0,44) —_ (1,-37)
9 — — — — — — — — (1,-37) —
10 — - — — - — — (2,1,44) — (2,-,37)
11 — (1,0,48) — — — — (1,-37) — (2-,37) | (3,-144)
12 - — — — — (1,-,37) — (3,2,44) | (3,-,44) —
13 — — — — (1,-,37) — (2,-,37) — — —
14 — — — (1,-,37) — (2-,37) | (3,-44) — — -
15 — — — — (2-37) | (3-,44) — — - —
16 — (2,0,48) — (2-37) | (3,,44) — — — — —
17 | (20,37 — (2,1,37) | (3,,44) — — . — — —
18 — (3,1,48) | (3,1,44) — — — — — — _
19 — (4,1,48) — — — — — — _ —
20 | (3,0,37) — — — — — — — — (4,-,48)
21 — — — — — — — — (4,-,48) —
22 — — — — — — — (4,3,48) — —

25 — — - — 448 | — — — - —
2 — — — (4-48) | — — — — — —
27 — — (4,248) | — — — — — - —

28 — — — — — — - — — —

20 | (4,048) | (41,48) | (4.248) | (4-48) | (4-128) | (4-148) | (4-,48) | (43448) | (4-148) | (4-48)

Table 1: An illustration of the values of the variables in each processor as a function of time. Each
table entry is a triple consisting of the next_turn, my_turn, and earliest variables (in that order) contained

in the given processor at a given instant of time. A “—" indicates that there was no change in the

variables belonging to a processor relative to the previous time step.

350 K. M. Kavi & D. P. Mehta

Send_Request(TIME ¢, Processor_ID 4, Resource ID r)
begin
if (earliesifr] > t)
Wait until earliesi[r] to send request;
else
begin
SEND(request);
my_turn]r] = next_turn[r];
nezt_turn[rj++;
earliestfr] = t+2D+1; // Rule 2
end
end

Figure 5: Algorithm Send.Request.

37. In the next 7 time steps, their messages travel towards the right on the upper segment of the
folded bus. At time step 8, P»’s message becomes available at Py’s receiver. This causes Py to
update its next_turn and earliest variables as outlined in function Receive Reguest. Simultaneously,
in step 8, Py sends a request. In steps 9 through 17, P»’s message travels towards the left in the
lower segment causing variables in all the processors to be updated. Each processor increments
next_turn and, if necessary, updates earliest. Also, observe, that Pr increments its my_turn variable
in step 10 since it has a lower priority than P,. However, P does not change its turn in step 17
since it has higher priority than P,. In the mean time, P sends a resource request in step 11 and
its next_turn variable is subsequently updated when P’s message passes through in step 16. The
messages from Py,P;, and P; make their appearances at Ps at steps 10, 11, and 20, respectively.
In subsequent steps, these messages travel towards the left in the lower segment updating variables
as specified in Receive_Request. Notice that when a message passes the processor from which it
originated, no change is made to the processor’s variables (e.g., P2 in step 15, P in step 19, Py in
step 13, and P; in step 28). Finally, we observe that the messages from Py and P, which were to
be sent at steps 16 and 22, respectively, never get sent in our snapshot! This is because the value of
the earliest variable in those processors at the specified times are greater than the time step (e.g.,
the earliest variable at step 16 in Py is 44 and 44 > 16). Observe, that on completion, all processors
have a local next turn value of 4 and an earliest value of 48. The four processors that got their
requests out before receiving any requests (i.e., Py, P, P, and P;) have been given unique turns

according to their priorities.

Mutual Exclusion on Optical Buses 351

Lemma 1 If the windows of vulnerability for two processors overlap, then both processors are

scheduled consistently with respect to each other.

Proof Let P; and P; be two processors whose windows overlap. Without loss of generality, assume
that P; makes its request first at time ¢;. Since P; made an overlapping request, the request must
have been made at time ¢; such that ¢; < t; < ¢; + d;; (Rule 3). Pj’s request reaches processor P;
at time £; +dj; < t;+di; +dj; < ¢+ 2D. Therefore, P; receives P;’s request in its (P;’s) window of
vulnerability and vice versa. Since processors are prioritized consistently throughout the network,
the turns allocated to each processor are consistent with respect to each other; e.g., if j < ¢, then

P’s turn will be incremented whereas P;’s turn will remain the same. [
Theorem 1 The algorithm presented above gquarantees mutual exclusion.

Proof We show that different processors requesting the same resource will be assigned a “turn”
for that resource such that each processor is assigned a different turn. First, we show that any set
8§; of requests for resource j over some period can be partitioned into subsets S}, SJZ, . S;?, such
that the windows of vulnerability corresponding to set S’f all overlap with each other and do not
overlap with windows of vulnerability from any S;-, 1 # k. If this is not true, there must exist a
triple of requests from P, P;, and Py, such that (i) P; and P;’s windows overlap. (ii) P; and P;’s
windows overlap. (iil) P; and Py’s windows do not overlap. Without loss of generality, assume that
t; < tj < tx. Note that t; <{; +dj; and & < t; 4 dj implying that ty <& +dj; +dj < t;+2D.
Thus, P; and P.’s windows do overlap, and the hypothesis is proved by contradiction. Since all the
requests in subset S’;“ have mutually overlapping windows, they are all scheduled consistently with

respect to each other (Lemma 1). O

3.2 A Timestamp-Based Algorithm

Since priorities are hard-wired into the algorithm of the previous section, the mutual exclusion
protocol described in the previous section is consistently biased against low priority (i.e., higher
numbered) processors. Thus, the algorithm is not fair since, even if the request from a lower priority
site originated earlier than that of a higher priority site, the higher priority site may be granted the
mutual exclusion request before the lower priority site. For example, every time P; and Pj, ¢ < j,

place requests so that their windows overlap, F; gets access to the resource before P; even if £; < 1;.

352 K. M. Kavi & D. P. Mehta

In this section, we present an algorithm that operates on a First Come First Served (FCFS) basis;
i.e., if P; places a request before B, it gets earlier access to the resource even if their windows
overlap. We revert to the priority scheme of the previous section in the relatively unlikely event
that several processors place a request at the same time. Algorithm Receive_Request (Figure 6)
utilizes the predictability of delays in an optical bus to determine the time of request of a message
based on the time that the message is received at a processor. For example, if P; receives a request
message from P; at time #, P;’s message must have originated at time ¢ — dj;. If this quantity is

less than t;, the time at which P; sent its message, P; gets access to the resource before F;.

Receive_Request{ TIME £, ProcID ¢, Resource ID r, Time ¢;)
begin
if (there is a resource req msg at F;’s receiver at time)
// assume that requests originating at P; are ignored.
begin
RECV (message);
Processor ID j = message.getProcID();
Resource ID s = message.getResourcelD();

if (r = s) then
begin
if (t — dj; < t;) then my_ turn[r]++;
elseif (t —dj; =¢; and 7 <4)
then my_turn[r]++;
nezt furnjr]++;
end
else [/r#s
//Ensure that P; sends any future requests for s
// After §’s window of vulnerability has expired.
begin
earliest]s] = max(t — d;; + 2D + 1, earliest[s]);
nezt_turn{s|++;
end
end
end

Figure 6: Algorithm Receive_Request.

Ezample: We consider the same scenario that we examined in the previous section; i.e., a folded
unidirectional bus architecture (Fig 1) with n = 10 processors. Suppose that processors Py and P
send resource requests at time 0, Py at time 8, P; at time 11, Py at time 16, and Ps at time 22.
Assume that all requests are for the same resource. We describe the step-by-step operation of our

algorithms using Table 2.

Mutual Exclusion on Optical Buses

Time

Py

Py

Py

Py

Py

Py

P

Py

Py

Py

055~

055}

(05~

(05-5-

0y

8y

(05

(055

(0,

055~

(1,0,37)

(1,0,37)

(1,0,44)

(1,-,37)

(1:"37)

(2,1,44)

(2,-,37)

(1,-,37)

(25-37)

(3-44)

(19':37)

(3,2,44)

(3,-444)

(1-,37)

(2-37)

(1,-537)

(2:-,37)

(35-444)

2,,37)

(35144

(2,1,48)

(25-,37)

(3-544)

(2,1,37)

(3544}

(3,2,48)

(3,1,44)

(4,3,48)

(4,2,48)

(4:-,48)

(4,1,48)

(4,0,48)

(4,3,48)

(4,1,48)

(45-,48)

(4,-,48)

(4"’48)

(4,-48)

(4,2,48)

(4,-,/48)

(4,-,48)

Table 2:

353

An illustration of the values of the variables in each processor as a function of time. Each

table entry is a triple consisting of the next_turn, my_turn, and earliest variables contained in the given

processor at a given instant of time. A “—" indicates that there was no change in the variables belonging

t0 a processor relative to the previous time step.

354 K. M. Kavi & D. P. Mehta

The key difference between Tables 1 and 2 is in the priority used to assign turns to the processors.
On completion of the algorithm, Py and P> get the highest priority since they made their requests
first, followed by Pr and P,. Since P and P, make their requests at the same time, P is given a.

higher priority than P.

Theorem 2 The algorithms presented above guaraniee mutual exclusion and fairness.

Proof Mutual exclusion is guaranteed by reasoning identical to that in Theorem 1. The timestamp

technique described above clearly causes requests to be handled in an FCFS fashion. U

We note that the algorithms can be easily extrapolated to other optical networks by choosing

appropriate values for d;;.

3.3 Performance Analysis

In this section, we analyze the performance of the Timestamp algorithm of the previous section
assuming the folded bus architecture. We begin by defining some performance measures for mutual

exclusion algorithms. Qur definitions are adapted from those in [9].

1. Synchronization delay SD is the time needed for a new processor to acquire a lock (or mutually

exclusive access to a resource or enter a critical section) after another processor releases the

lock.

2. Throughput TH is the number of processors that can acquire (and subsequently release) a

lock per unit time.

3. Response Time RT is the time interval between a processor’s request for a lock and its
release of the lock. This includes the time for the request to be granted, the execution of the

computation that requires the lock, and releasing the lock.

In order to determine the synchronization delay SD, we assume that when a processor releases
a lock, it broadcasts a release message to all the other processors. On a folded bus, this takes
a minimum of n units (for P, 1)} and a maximum of 2n — 2 units (for Py or P;). To determine
the throughput TH, we assume that a processor spends E time units in a critical section. Then,

TH =1/(SD+E). Appropriate values for SD can be substituted to obtain minimum and maximum

Mutual Ezxclusion on Optical Buses 355

throughput. Next, we present best and worst case analyses for response time RT for some arbitrary
processor P;. The best case is when the lock is not held by any other processor and no other
processor requests the lock during F;’s window of vulnerability. In this case, BT = 2D + E.
Alternatively, if we make the common assumption that in the best case, P; has to wait for a single
processor P to release the lock, RT also includes the remaining execution time of P; (£/2 on
the average) and the synchronization delay after P; releases the lock (approximately 3n/2 on the
average). Then RT = 2D + 3/2F + 3n/2. In the worst case, all processors request the resource
at the same instant of time and P;’s request receives the lowest priority (i.e., i = n — 1). So, after
waiting for the window of vulnerability to expire, P,_1 must wait for the remaining n— 1 processors

to execute and to incur their synchronization delays before perfoming its own execution. Here,

RT

il

2D+ nE+2n -2+ 30 (20 —i— 1)

It

2D +nE +3/2n% —3/2n — 1

Note that Py has SD = 2n — 2, while an arbitrary P, has SD =2n —i — 1.

4 Related Work

First, we contrast our work to standard bus arbitration techniques that are used in practice. Our
approach is more powerful as it assigns a turn to several competing processors. Once this is done,
those processors will not have to resubmit requests, thus reducing bus contention. Although bus

arbitration guarantees mutual exclusion, it does not address the issue of fairness or starvation.

Next, we differentiate our work from similar work in distributed mutual exclusion algorithms.
Mutual exclusion is normally used to access shared data items — often known as the critical section.
Processors must obtain a lock (i.e., mutually exclusive access to the critical section) before entering

the critical section, and release the lock when exiting the critical section.

The problem of mutual exclusion becomes much more complex in distributed systems because of
the lack of shared memory, a common physical clock and unpredictable message delays. In optical
bus based systems, messages have predictable delays and our techniques relied on this property to
define message order. In traditional (non optical bus based) systems, the techniques for achieving
for mutual exclusion can be grouped into token-based and non token based approaches. In token

based algorithms, a site is allowed to enter a critical section only if it posseses a token, and the

356 K. M. Kavi & D. P. Mehta

algorithms differ in how a site can acquire the token (often based on priorities or consensus). Token-
based algorithms can be trivially implemented in optical buses by circulating the token around the
optical buses repeatedly (for example, in folded bus, when Py receives the token, it will recirculate
the token on the bus). Non token-based techniques require two or more successive rounds of message
exchanges among the processing nodes. In general, a processor must send its request for the lock
to all other processors and the request includes a time-stamp indicating the time of the request.
The requesting processor must wait for replies from all other processors indicating their willingness
to grant the request. In Ricart-Agrawala’s [15] algorithm (RAA), a receiving processor may not
immediately reply to a request. The algorithm works as follows: P; sends a time-stamped request
to all the remaining processors. When processor P; receives a request from B, it sends a reply to B;
unless ({) P; is currently in the critical section (#) P; currently has a request with an earlier time

stamp than that of P;. P; is granted the lock only when it receives replies from all other processors.

The following assumption facilitates a comparison between our timestamp-based algorithm and
RAA. When a lock is released, ZAA assumes that the release message is broadcast to all processors
and that this operation consumes 1 time unit. Thus, the synchronization delay (SD) = 1. If no
broadcast is available, then the release message must be sent individually to n — 1 processors and
SD = n — 1. The best case scenario for response time RT' is when the lock is available and the
requesting processor is immediately granted the lock. However, since a lock is granted only after a
processor sends a request to . — 1 processors and receives a reply from them, RT = 2(n — 1) + E,
where E is the time spent in the critical section and a message tranmission/receipt takes 1 time
unit. If the request message is broadcast, and all processors receive the request in unit time,
RT =1+ (n—1)+ E=n+ E. In the worst case, the requesting processor must wait for n — 1
processors to acquire the lock and release the lock. In RAA, a reply is not sent if a processor
either holds the lock or has a request for the lock with a prior time stamp. We have RT =
=D+ n-1E)+(n—2)xSD+(E+SD). For SD =1, thisis nx £ +2x (n — 1) and for
SD=n—1,RT=nx{(E+n—1).

It is difficult to relate these analyses with those obtained for optical buses. If we assume that
request and release messages can be broadcast, we need to account for the possibility of contention
on the broadcast bus. In the above calculations we ignored bus contention. Alternatively, a
completely connected system is needed so that every processor can send a message to every other

processor (which will be very complex to implement).

Mutual Ezxclusion on Optical Buses 357
5 Conclusions and Future Research

In this paper we described how mutual exclusion can be implemented on pipelined optical buses.
In order to achieve mutual exclusion, our model requires that a bus cycle include computation,

which somewhat negates the advantages of optical buses..

However, we feel that optical buses can lead to improved shared-memory algorithms provided
they are restructured. For example different processors can be acquiring different locks simultane-
ously and the delays involved in the acquisition of the locks can be overlapped. Tree structured algo-
rithms can fully benefit from such simultaneous lock acquisitions. In addition, multithreaded models
of computation can be utilized to tolerate the latencies involved in lock acquisitions. A processor
can initiate a request for a lock, context switch to a different thread {(or computation), return to the
original thread only when that lock is available. Fine-grained multithreading (e.g., non-blocking
models, dataflow multithreading) are appropriate in such systems because finer-granularity can

benefit from finer-grained sharing using multiple locks.

References

1] K. Li, Y. Pan, S5.Q. Zheng, “Pipelined TDM optical bus with conditional delays,” Optical
Engineering, vol. 36, pp. 2417-2424, Sept. 1997.

[2] J. L. Trahan, A. G. Bourgeois, Y. Pan and R. Vaidyanathan , “An Optimal and Scalable
Algorithm for Permutation Routing on Reconfigurable Linear Arrays with Optically Pipelined
Buses,” Journal of Parallel and Distributed Computing, vol. 60, pp. 1125-1136, Sept. 2000.

[3] P. Dowd, K. M. Sivalingam, “A Multi-Level WDM Access Protocol for an Optically Intercon-
nected Parallel Computer,” in Proc. of IEEE INFOCOM 94 (Toronto, Canada), pp. 400408,
June 1994.

[4] D.C. Hoffmeister et al, “Lightning network and system architecture,” in Parallel Computing
using Optical Interconnections (K. Li, Y. Pan, S.Q. Zheng, ed.), Kluwer Academic Press, 1998.

[5] K. Li, Y. Pan, S.Q. Zheng, ed., Parallel Computing using Optical Interconnections. Kluwer
Academic Press, 1998.

[6] S. Sabni, “Models and Algorithms for Optical and Optoelectronic Parallel Computers,” in Inil
Symposium on Pardllel Algorithms and Networks, pp. 2-7, 1999.

[7] R. Chow, T. Johnson, Distributed Operating Systems and Algorithms. New York: Addison-
Wesley, 1997.

[8] N. Lynch, Distributed Algorithms. San Francisco: Morgan Kaufmann, 1996.

[9] M. Singhal, N. Shivaratri, Advanced Concepts in Operating Systems. New York: McGraw-Hill,
1994.

358 K. M. Kavi & D. P. Mehta

{10] Y. Pan, “Basic Data Movement Operations on the LARPBS Model,” in Parallel Computing
using Optical Interconnections (K. Li, Y. Pan, S.Q. Zheng, ed.), Kluwer Academic Press, 1998.

[11] S. Pavel, S.G. Akl, “Computing the Hough Transform on Arrays with Reconfigurable Optical
Buses,” in Parallel Computing using Optical Interconnections (K. Li, Y. Pan, S.Q. Zheng, ed.),
Kluwer Academic Press, 1998.

[12] S. Q. Zheng, Y. Li, “Pipelined asynchronous time-division multiplexing optical bus,” Optical
Engineering, vol. 36, no. 12, pp. 3392-3400, 1997.

[13] Z. Guo et al, “Pipelined communication in optically connected arrays,” Journal of Parallel
and Distributed Computing, vol. 12, no. 3, pp. 269-282, 1991.

[14] C. Qiao, R. Melhem, “Time-Division Optical Communications in Multiprocessor Arrays,”
IEEE Transactions on Computers, vol. 42, pp. 577-590, May 1993.

[15] G. Ricart, A. K. Agrawal, “An optimal algorithm for mutual exclusion in computer networks,”
Communications of the ACM, pp. 9-17, Jan. 1981,

