
1 All correspondence should be addressed to Krishna Kavi, Dept. of CSE,  University of North Texas, 1155 Union Circle, 
# 311366, Denton, 7620-5017 or by email: kavi@cse.unt.edu 
 
 

Improving Uniformity of Cache Access Pattern using Split Data Caches  
 

                        Afrin Naz                                                              Oluwayomi Adamo, Krishna Kavi1 and Tomislav Janjusic  
       University of North Texas Dallas                                                                    University of North Texas 

 
 

Abstract 
 

In this paper we show that partitioning data cache 
into array and scalar caches can improve cache access 
pattern without having to remap data, while maintaining 
the constant access time of a direct-mapped cache and 
improving the performance of L-1 cache memories. By 
using 4 central moments (mean, standard-deviation, 
skewness and kurtosis) we report on the frequency of 
accesses to cache sets and show that split data caches 
significantly mitigate the problem of non-uniform 
accesses to cache sets for several embedded benchmarks 
(from MiBench) and some SPEC benchmarks.  
 
Keywords: Cache memories, Split data cache, uniform 
cache access patterns.  
 
 
1. Introduction 

 
In this paper, we investigate methods for improving 

hit rates in the first level of memory hierarchy and show 
that the inclusion of partitioned data cache architectures 
provides an effective solution for alleviating existing 
problems in cache designs by creating better footprint 
through more uniform cache access behavior. 

The design of a first level cache always involves 
fundamental tradeoffs between miss rates and access 
times. If the cache sets are accessed in a balanced manner, 
meaning all sets are accessed with equal frequency, then 
the cache misses can be reduced significantly without 
increasing cache access time. However as memory 
accesses in a program are not uniformly distributed, some 
cache sets will be accessed heavily, while others remain 
underutilized. Direct-mapped caches exhibit faster access 
time, but poor hit rates, compared with same sized set-
associative caches because of non-uniform accesses to the 
cache sets. Although caches with higher associativity 
exhibit improvement in cache access behavior, most of 
the sets still remain underutilized. In order to access all 
sets more evenly, in the recent past researchers have 
proposed variations that includes multiple mapping 
functions; whereby data mapped to heavily utilized sets 
are remapped to underutilized sets. However these 
approaches result in hardware overhead, and extra cycles 
to locate these relocated cache sets. In this paper we show 
that our split array and scalar caches can improve cache 
access pattern without having to remap data, while 

maintaining the constant access time of a direct-mapped 
cache.  

In our previous work we have shown that split data 
cache architectures [1,2] provide an effective solution for 
enhancing the use of cache memory space for a given 
cache size and cost. A split cache provides architectural 
support for distinguishing between memory references 
that exhibit spatial (viz., array data) and temporal locality 
(viz., scalar data) and mapping them to separate caches. In 
the previous research we used such performance metrics 
as cache miss rates, power consumption, silicon area 
needed and execution cycles. However we did not analyze 
the frequency of access to different cache sets. In this 
work we report on the frequency of accesses to cache sets 
when split data caches are used. Our split data cache 
architecture does not include any additional hardware. 
However in future we will explore the benefits of 
involving compiler time relocation of data to minimize 
conflicts and spread accesses more uniformly across 
cache sets. 

Compared with others methods, in addition to 
showing performance gains, we also utilize well known 
statistical analyses to provide insights into uniformity of 
accesses. The most significant aspect of our work is its 
simplicity. We obtain more balanced cache accesses and 
reduce the accesses to heavily used sets without 
dynamically detecting the cache set usage information 
and using hardware to remap data to underutilized sets. 
We increase the access to the underutilized cache sets by 
incorporating more uniform locality pattern into the cache 
access behavior by using separate data caches.  

However, we do not claim that split data caches 
completely solve the non-uniformity of cache accesses, In 
addition, the split caches are useful for L-1 data caches 
and not for L-1 instruction caches. We contend that 
different applications need different approaches to solve 
the non-uniform accesses. In some cases our split-caches 
are adequate. In some cases profiling and compile time 
analyses may be adequate to relocate data that maps to 
highly utilized sets. And in some cases dynamic 
remapping using (hardware) programmable decoders [7] 
are needed. In this paper we will show that split data 
caches significantly mitigate the problem for several 
embedded benchmarks (from MiBench) and some SPEC 
benchmarks.  

The rest of the paper is organized as follows. Section 
2 provides a survey and analysis of related research while, 
section 3 discusses related issues and performance metrics 



 
 

in more detail. Section 4 presents the results. Section 5 
provides a brief synopsis of our work, drawing 
conclusions from our experimental results.  

 
2. Previous Work 

 
In the recent past researchers have proposed 

variations that result in miss rates like a 2-way set 
associative cache, but hit-times like a direct mapped 
cache [3, 4]. These “sequential search” of set associative 
caches or probe caches are based on the key observation 
that associativity is needed only for conflicting blocks and 
should not be provided at the expense of higher hit 
latencies for all accesses. At the same time, 
implementation of different mapping options also reduce 
the accesses to heavily used sets without dynamically 
detecting the cache set usage information. In most of 
these schemes, a traditional direct-mapped cache is 
conceptually partitioned into sets with 2 (or more) blocks 
per set. Cache access is sequential; first one block is 
probed, and if the tag doesn’t match the second block in 
the set is probed. In order to achieve more balanced cache 
access behavior different probe caches use different data 
structures, ranging from very simple hash bit to 
complicated way prediction mechanisms. Hash-Rehash 
cache (HR cache) uses fixed probe order with different 
hash functions to search the cache [3]. The column 
associative cache [4] improves on HR cache by 
associating rehash information with each block for 
dynamically selecting alternate hashing functions.  
Column-associative cache can be extended to include 
multiple alternative locations, which are described in [4]. 
In adaptive group-associative cache (AGAC) Peir et al. 
[12] attempts to use cache space intelligently by taking 
advantage of the cache holes during the execution of a 
program. AGAC needs three cycles to access these 
relocated cache lines. The skewed-associative cache [5] is 
a 2-way cache that exploits two or more indexing 
functions derived by XORing two m-bit fields from an 
address to generate an m-bit cache index to achieve more 
uniform cache access pattern to lower the miss rate. In B-
cache design, by using programmable decoders, Zhang 
[7] proposes to increase the decoder length and reduce the 
accesses to heavily used sets.  

In our previous work [1, 2] we have shown the 
performance improvements that can be achieved by using 
separate L-1 data caches for array (or streams) and scalar 
data objects of a program. In many cases, the combined 
size of array and scalar caches are much smaller than a 
unified L-1 data cache to achieve the same level of 
performance (miss rates, execution times, energy 
consumption).   For example, figure 1 shows the 
percentage of reductions in execution times, power 
consumption and silicon area needed for split data caches 
when compared with a 8Kbyte unified cache.  The sizes 

of array and scalar cache for each benchmark (from 
Mibench suite) are optimized in this experimentation[2]. 

In this paper we expand on our previous research, but 
our work differs from other research efforts  in two ways. 
First, our cache design does not include any additional 
hardware or complicated mapping techniques, hence does 
not result in increasing access times or other performance 
overheads. Second, unlike the other reported studies 
(except B-cache), we perform analyses not only with miss 
rates but also cache access patterns to different cache sets. 
Even for B-cache, the analysis of cache access patterns is 
very simplistic while we use sound statistical analyses to 
determine the shape (kurtosis) and skewness of access 
patterns.  

 

Figure 1: Reductions in execution times, power 
consumption and silicon area using split data caches 

 
3. Background 

 
In this section, we first demonstrate how to examine 

the cache sets usage during a program’s execution. Since 
we will implement statistical analysis, we will briefly 
describe related statistical concepts. Finally we will 
briefly describe our split data cache architecture. 

 
3.1 Non-Uniform Accesses to Cache Sets 

 
Zhang [7] reported that with direct mapped L-1 caches 
not all cache sets are equally accessed and the heavily 
accessed sets lead to most of the conflict misses and thus 
to poor performance. Zhang [7] classified cache sets as 
frequent hit sets (FHS) and frequently missed sets (FMS) 
if the number of hits and misses are more than twice the 
average and least accessed sets (LAS) if the accesses are 
one half of the average accesses. We repeated Zang’s 
experiments with a subset of SPEC benchmarks, some 
bio-informatics and embedded benchmarks (from 
MiBench suite). Consider for example figure 2, which 
shows the accesses and misses to the L-1 data cache 
caused by SPEC 2000 benchmark parser. The cache is a 
direct-mapped, 8kb cache with a line size of 32 bytes (or 
256 sets). Here 11 sets (or 7.4%) are in FHS category 
while 7 sets (or 2.7%) are in FMS and 88% of the sets are 
in LAS categories. Although not shown in this document, 
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L-1 instruction cache exhibits similar (non-uniform) 
access behavior. 

In figure 3 we show the cache hit and miss numbers 
on each set of data cache of the same benchmark with 
increased associativity. From figure 3, we can see that set-
associativity does not fully address the non-uniformity of 
accesses, although associativity will reduce conflict 
misses, and increases access times. If we can find a way 
to balance the mappings of a direct-mapped cache, such 
that the accesses to direct-mapped cache sets are more 
evenly distributed across the cache sets, we can reduce 
miss rate of direct-mapped caches without increasing the 
cache’s access time. 

 
 

Figure 2: Data cache hits and misses on each cache 
set for benchmark Parser 

 
 

 
 
Figure 3: Cache hit and miss numbers on each set of 

data cache with increased associativity 
 

Table 2: frequent hit sets (FHS), frequently missed 
sets (FMS) and least accessed sets (LAS) values. 

 

Zhang [7] proposed the use of a programmable 
decoder to remap data to different cache sets (on conflict 
misses) as a technique to achieve more uniform accesses 
to L-1 cache sets. This hardware solution may not be cost-
effective for some applications since the access path is 
lengthened by the programmable decoders. We repeated 
the analysis for benchmark programs from the SPEC 2000 
[14], Bioinformatics [13] and MiBench suite [15]. The 
FHS, FMS and LAS were calculated based on (1), (2), 
and (3). These measures are the same as those described 
in Zhang [7]. 
                       (1)               

        (2) 

         (3)  

     
Our experimental environment builds on the SimpleScalar 
(version 3.0d) simulation tool set [10] modeling an out-
of-order speculative processor with a two-level cache 
hierarchy. We rely on default parameters defined by 
SimpleScalar. In order to obtain the statistical values we 
used Mathlab [11].   

Table 2 shows our results for the L-1 data cache with 
a subset of SPEC benchmarks, some bio-informatics and 
embedded benchmarks. The last three columns indicate 
the fraction of the sets in the FMS, FHS and LAS 
categories, while the first 3 columns indicate the number 
of sets in these categories. Consider for example, VPR, 
Parser (from SPEC) and CLUSTALW (a bio-informatics 
benchmark), string search and dijkstra (from MiBench). 
These benchmarks show that a very high number of cache 
sets fall in the LAS category. Moreover very few sets 
(FMS value) cause most misses. On the other hand, GZIP 
shows a more uniform access pattern since only 1.2% of 
the sets fall in the LAS category (a significant number of 
the sets receive between 0.5 to 2 times the average 
number of accesses) but very few sets cause very high 
miss rates. MCF (from Spec) shows a different access 
pattern: not only do sets exhibit more uniform access 
patterns, they also exhibit more uniform miss behaviors.  

Thus different solutions are needed for different 
applications.  For example instead of a programmable 
hardware address decoder, it may be possible for a 
software solution where program variables are remapped 
to different addresses to minimize cache conflicts. In 
some cases, increasing set associativity alleviates the 
problem. We feel that our split L-1 data caches may also 
mitigate the non-uniform access patterns and conflict 
misses. In this paper we will explore the effect of split 
caches. 

However, to understand the nature of the non-
uniform accesses, we need sound statistical analyses. We 
propose to use several central-moments for this purpose. 
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176.GCC 4 18 219 1.5 7 48.8 
164.GZIP 7 11 3 2.7 4.3 1.2 
181.MCF 0 22 0 0 8.6 0 
CLUSTALW 11 16 170 4.2 6.2 66 
175.VPR 45 15 129 18 5.8 65 
197.PARSER 7 20 166 2.7 7.8 65 
String search 154 17 254 60.2 6.6 99.2 
Qsort  3 22 4 1.2 8.5 1.6 
dijkstra 9 6 185 3.5 2.3 72.3 
AES 5 14 113 1.9 5.5 44.1 



 
 

3.2 Statistical Analysis 
 
As stated above, in order to more formally describe 

the behavior of cache access patterns, we will convert the 
accesses and misses into probability distributions. We can 
then measure various statistical values knows as central-
moments. Most commonly used moments are: mean (first 
moment) and standard-deviation (second moment). 
Higher moments describe the shape of the distribution. 

For this purpose we will convert accesses (and 
misses) to cache sets into a probability distribution and 
analyze the shape of the distribution. The shape of a 
uniform access distribution will have a flat shape 
compared to a normal distribution with a few values 
clustered around the mean and long tails. We will report 
mean, standard deviation, skewness and kurtosis values 
associated with (data) cache access patterns. In order to be 
self contained, we will describe these statistical 
parameters and their value to our analyses. 
 
3.2.1 Standard Deviation  
 
Standard Deviation is a measure of the dispersion of a set 
of data from its mean. A low standard deviation indicates 
that the data points tend to be very close to the same value 
(the mean), while high standard deviation indicates that 
the data are “spread out” over a large range of values. A 
zero standard deviation implies a uniform distribution. 
Figure 4 includes a plot of a standard normal distribution 
(or bell curve). Each band has a width of one standard 
deviation. 
 

 
Figure 4: A plot of a standard normal distribution 

 
3.2.2 Skewness  

Skewness (third central moment) is a measure of 
symmetry, or more precisely, the lack of symmetry. A  

 

 
Figure 5: Positive and negative skewness 

distribution, or data set, is symmetric if it looks the same 
to the left and right of the center point (mean). If the left 
tail is more pronounced than the right tail, the function is 
said to have negative skewness. If the reverse is true, it 

has positive skewness. If the two are equal, it has zero 
skewness. 

3.2.3 Kurtosis  
 
Kurtosis (fourth central moment) is a measure of 

whether the data are peaked or flat relative to a normal 
distribution. That is, data sets with high Kurtosis tend to 
have distinct peaks near the mean, decline rather rapidly, 
and have long tails. This also indicates very few values 
near the peak. Data sets with low Kurtosis tend to have a 
flat top near the mean rather than a sharp peak. A uniform 
distribution would be the extreme case (with zero 
Kurtosis). For our pupose, a highly non-uniform behavior 
results in a high Kurtosis, while a more uniform access 
behavior leads to lower Kurtosis. 

 

 
Figure 6: Kurtosis values 

 

 
Figure 7: Distribution of cache accesses  

 
Figures 7 shows distributions associated with cache 

hits and misses to different sets. We show the distribution 
with a single 64 sets of 32Byte unified data cache, and for 
32 sets of array and 32 sets of scalar data caches (using 
our split data caches), for benchmark dijkstra (from 
Mibench). The main goal of this figure is to illustrate the 
importance of the shape of the accesses, when the 
accesses are converted to a probability distribution. 

 
3.3 Split Cache Design 

 
Our split data cache architecture consists of an “array 
cache” and a “scalar cache”. Memory accesses are 
distinguished as scalar or array references and mapped to 
a either the scalar or array cache portions. In this system, 
since scalar references and stream references no longer 
negatively affected each other, cache interference, 
thrashing and pollution problems will be diminished, 
delivering better performance [ 1, 2].  
 



 
 

 
 
 

 Unified Scalar Array 

Benchmark 
 

Misses Hits 
 

Accesses Misses Hits 
 

Accesses Misses Hits 
 

Accesses 
Qsort 2105032 135191867 137296899 1822313 83668050 85490363 4094 48455521 48459615 

Dijkstra 1617205 80082245 81699450 805859 61729147 62535006 20 1508763 1508783 
AES 8508635 120939232 129447867 295558 5086418 5381976 21 7448490 7448511 

String Search 9704 2234608 2244312 4293 1398267 1402560 24 790896 790920 
GCC 11846853 337815632 349662485 12467659 220657330 233124989 506 106923052 106923558 

Table 3: Number accesses, hits and misses when using a unified data cache and when using split data caches 
  

 
 

   Unified Scalar Array 

Measure 
Benchmark 

 
Mean 

Standard 
Deviation 

 
Skewness 

 
Kurtosis Mean 

Standard 
Deviation 

 
Skewness 

 
Kurtosis Mean 

Standard 
Deviation 

 
Skewness 

 
Kurtosis 

Qsort 528093.23 1647803.73 5.370 36.07 653656.64 1477732.06 4.13 22.73 378558.76 1066926.36 4.24 22.75 

Dijkstra 312821.27 2388115.68 15.80 251.83 482258.96 3373641.56 11.13 125.25 11787.21 30503.16 5.450 40.31 

AES 472418.87 1545251.35 7.69 68.67 39737.64 133728.19 8.61 85.48 58191.33 156514.26 6.19 43.555 
String 
Search 8728.94 41807.25 9.36 99.36 10923.96 48048.54 6.88 54.29 6178.87 13202.82 4.86 31.73 

GCC 1319592.3 7855808.33 11.81 159.73 1723885.39 5808867.2 7.25 65.06 835336.35 5177289.20 9.38 96.27 
 Table 4: Mean, Standard deviation, skewness and kurtosis values for hits 

Table 5: Mean, Standard deviation, skewness and kurtosis values for misses 
 

 Scalar Array 
Measure 

Benchmark Mean 
Standard 
Deviation 

 
Skewness 

 
Kurtosis Mean 

Standard 
Deviation 

 
Skewness 

 
Kurtosis 

Dijkstra (32-32) 1866309.56 6678402.38 5.378 29.96 38894.91 41944.15 2.71 11.44 
Dijkstra (64-64) 955699.13 4749340.75 7.79 61.80 23017.78 40869.39 3.47 15.85 
Dijkstra (a32-s64) 955698.72 4749340.83 7.79 61.797 46020.34 53023.72 2.29 7.86 
Dijkstra (a32-s128) 482258.99 3373641.56 11.13 125.25 47132.19 58919.24 2.56 9.3934 
AES (a32-s32) 1137002.13 2519099.83 4.43 23.06 2438624.5 3053485.24 2.77 9.97 
AES (a64-s64) 647832.72 1873827.11 6.23 44.76 1211850.16 2260792.6 4.22 21.007 
AES (a32-s64) 647530.5 1873635.69 6.231 44.776 2423287.16 3065156.78 2.781 9.99 
AES (a32-s128) 370643.17 1370940.37 8.82 88.54 2422399.41 3066587.1 2.793 10.04 

Table 6: Results with variable size Array and Scalar caches (hits) 

 Scalar Array 
Measure 

Benchmark Mean 
Standard 
Deviation 

 
Skewness 

 
Kurtosis Mean 

Standard 
Deviation 

 
Skewness 

 
Kurtosis 

Dijkstra (32-32) 137281.4062 61404.8151 1.9006 5.915 17.25 73.2525 5.1275 28.0888 
Dijkstra (64-64) 32165.5469 16284.4695 1.8282 8.5207 1.0781 6.6172 7.7257 61.1232 
Dijkstra (a32-s64) 32165.5156 16284.4528 1.8282 8.5208 17.4688 76.7211 5.2023 28.6579 
Dijkstra (a32-s128) 6295.7578 6605.3763 3.2048 18.197 32383.5078 53792.3955 5.2023 28.6579 
AES (a32-s32) 485188.625 150513.208 0.5424 2.4639 941.2812 4365.5708 5.1901 28.5629 
AES (a64-s64) 159564.9531 89381.895 1.6113 5.6647 0.6719 3.6255 7.6274 60.1015 
AES (a32-s64) 159556.8906 89390.1215 1.6112 5.6629 885.4375 4088.4034 5.1557 28.2783 
AES (a32-s128) 24076.2969 41659.1486 7.6905 69.4319 8442.0156 59650.6805 5.0916 27.7194 

Table 7: Results with variable size Array and Scalar caches (misses) 

 Unified Scalar Array 

Measure 

Benchmark 

 
 

Mean 
Standard 
Deviation 

 
 

Skewness 

 
 

Kurtosis Mean 
Standard 
Deviation 

 
 

Skewness 

 
 

Kurtosis Mean 
Standard 
Deviation 

 
 

Skewness 

 
 

Kurtosis 
Qsort 8222.78 20045.83 13.56 197.37 14236.82 12533.69 6.705 49.88 31.98 242.21 11.15 125.49 

Dijkstra 6317.21 9123.08 9.04 94.03 6295.77 6605.39 3.21 18.20 0.156 1.17 10.56 116.57 

AES 33236.85 54126.65 4.70 30.25 2309.05 4010.85 7.68 69.29 0.164 1.018 9.65 102.16 
String Search 37.91 187.97 12.62 178.22 33.54 51.13 2.45 9.34 37.91 187.97 10.44 114.76 

GCC 46276.77 446648.20 14.03 210.79 97403.59 391157.16 6.13 47.29 46276.77 446648.20 11.17 125.91 



 
 

 
 
 
4. Results   
 
In this section, we are going to use 4 central moments 
(mean, standard-deviation, skewness and kurtosis) to 
more carefully analyze the benchmarks. Before we 
describe the affect of our split caches on the non-
uniformity of accesses to L-1 data cache sets, we want to 
show that split data caches do reduce the total number of 
misses (as we have described in our previous or split 
caches research). Table 3 shows number access and 
misses when using a unified data cache and when using 
separate array and scalar caches. Here we are using 256 
sets (32Byte per line) unified cache and 128 sets each for 
array and scalar caches. In principle the total number data 
access should be the same whether we are using a unified 
or split caches. However, the out-of-order Simplescalar 
simulator generates slightly different number of access 
under different runs, where the differences are very small 
(less than 1%). 

We now show the 4 central moments (mean, 
standard-deviation, skewness and kurtosis) for cache 
accesses and misses. The data is shown in Tables 4 (hits) 
and 5 (misses). The tables include data for both unified 
data cache and split data caches. It should be noted that 
for our purpose (exploring uniformity of accesses), 
Kurtosis is more useful than other moments. Since our 
distribution only contains non-negative probabilities (in 
terms of hits and misses), skewness is not as useful. 
Looking at the data in Table 4, it appears that split data 
caches reduce Kurtosis, implying that the accesses to 
cache sets exhibit more uniform behavior when compared 
with unified cache. For some benchmarks, the reduction 
in Kurtosis is very significant. 

When it comes to misses (Table 5), the Kurtosis 
value alone does not show the affect of our split caches. 
For example, for GCC, the Kurtosis values for both scalar 
and array cache are higher than for the unified cache. 
However, it is necessary to consider the actual number of 
cache misses for the two cache designs. Our split caches 
results in a significant reduction in actual cache misses 
(see Table 3). But the higher Kurtosis means that our split 
caches are causing more conflict misses on some specific 
sets. This is in part because array and scalar caches are 
smaller than the unified cache. As we have shown in our 
previous work [2], different applications need different 
sizes for array and scalar caches. With this in mind, we 
repeated our simulations using different sized array and 
scalar caches for two benchmarks: dijkstra and AES, two 
benchmarks that have shown increased values for kurtosis 
with cache misses. From the following tables (Tables 6 
and 7) one can see the for both benchmarks, a smaller 

array and a larger scalar cache result in better 
performance (smaller Kurtosis values).  

It should be noted that for these benchmarks (AES 
and Dijkstra) large scalar and array caches cause higher 
Kurtosis values (both for hits and misses). This implies 
that, for these applications, larger caches are not very 
useful since the number of sets utilized (hits and misses) 
remain small. To fully use large L-1 caches, it will be 
necessary to use more complex techniques to spread data 
accesses across available sets. In our current research we 
are investigating profiling cache accesses to identifying 
program variables that are mapping to highly utilized sets 
and reassigning them to new memory addresses. 
 
5. Conclusions  

 
In this paper we show that split data caches 

significantly mitigate the problem for several embedded 
benchmarks (from MiBench) and some SPEC 
benchmarks, in terms of improving uniformity of accesses 
to cache sets. However, we do not claim that split data 
caches completely solve the non-uniformity of cache 
accesses for all applications. Thus different applications 
need different approaches to solve the non-uniform 
accesses. In some cases our split-caches are adequate. 
However in some cases profiling and compile time 
analyses or additional hardware may be needed to relocate 
data that maps to highly utilized sets. Currently we are 
also exploring how profiling and compile time analyses 
can be used to uniformly distribute data among all cache 
sets. 
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