
1 All correspondence should be addressed to Krishna Kavi, Dept. of CSE, University of North Texas, 1155 Union Circle,
311366, Denton, 7620-5017 or by email: kavi@cse.unt.edu

Improving Uniformity of Cache Access Pattern using Split Data Caches

 Afrin Naz Oluwayomi Adamo, Krishna Kavi1 and Tomislav Janjusic
 University of North Texas Dallas University of North Texas

Abstract

In this paper we show that partitioning data cache
into array and scalar caches can improve cache access
pattern without having to remap data, while maintaining
the constant access time of a direct-mapped cache and
improving the performance of L-1 cache memories. By
using 4 central moments (mean, standard-deviation,
skewness and kurtosis) we report on the frequency of
accesses to cache sets and show that split data caches
significantly mitigate the problem of non-uniform
accesses to cache sets for several embedded benchmarks
(from MiBench) and some SPEC benchmarks.

Keywords: Cache memories, Split data cache, uniform
cache access patterns.

1. Introduction

In this paper, we investigate methods for improving

hit rates in the first level of memory hierarchy and show
that the inclusion of partitioned data cache architectures
provides an effective solution for alleviating existing
problems in cache designs by creating better footprint
through more uniform cache access behavior.

The design of a first level cache always involves
fundamental tradeoffs between miss rates and access
times. If the cache sets are accessed in a balanced manner,
meaning all sets are accessed with equal frequency, then
the cache misses can be reduced significantly without
increasing cache access time. However as memory
accesses in a program are not uniformly distributed, some
cache sets will be accessed heavily, while others remain
underutilized. Direct-mapped caches exhibit faster access
time, but poor hit rates, compared with same sized set-
associative caches because of non-uniform accesses to the
cache sets. Although caches with higher associativity
exhibit improvement in cache access behavior, most of
the sets still remain underutilized. In order to access all
sets more evenly, in the recent past researchers have
proposed variations that includes multiple mapping
functions; whereby data mapped to heavily utilized sets
are remapped to underutilized sets. However these
approaches result in hardware overhead, and extra cycles
to locate these relocated cache sets. In this paper we show
that our split array and scalar caches can improve cache
access pattern without having to remap data, while

maintaining the constant access time of a direct-mapped
cache.

In our previous work we have shown that split data
cache architectures [1,2] provide an effective solution for
enhancing the use of cache memory space for a given
cache size and cost. A split cache provides architectural
support for distinguishing between memory references
that exhibit spatial (viz., array data) and temporal locality
(viz., scalar data) and mapping them to separate caches. In
the previous research we used such performance metrics
as cache miss rates, power consumption, silicon area
needed and execution cycles. However we did not analyze
the frequency of access to different cache sets. In this
work we report on the frequency of accesses to cache sets
when split data caches are used. Our split data cache
architecture does not include any additional hardware.
However in future we will explore the benefits of
involving compiler time relocation of data to minimize
conflicts and spread accesses more uniformly across
cache sets.

Compared with others methods, in addition to
showing performance gains, we also utilize well known
statistical analyses to provide insights into uniformity of
accesses. The most significant aspect of our work is its
simplicity. We obtain more balanced cache accesses and
reduce the accesses to heavily used sets without
dynamically detecting the cache set usage information
and using hardware to remap data to underutilized sets.
We increase the access to the underutilized cache sets by
incorporating more uniform locality pattern into the cache
access behavior by using separate data caches.

However, we do not claim that split data caches
completely solve the non-uniformity of cache accesses, In
addition, the split caches are useful for L-1 data caches
and not for L-1 instruction caches. We contend that
different applications need different approaches to solve
the non-uniform accesses. In some cases our split-caches
are adequate. In some cases profiling and compile time
analyses may be adequate to relocate data that maps to
highly utilized sets. And in some cases dynamic
remapping using (hardware) programmable decoders [7]
are needed. In this paper we will show that split data
caches significantly mitigate the problem for several
embedded benchmarks (from MiBench) and some SPEC
benchmarks.

The rest of the paper is organized as follows. Section
2 provides a survey and analysis of related research while,
section 3 discusses related issues and performance metrics

in more detail. Section 4 presents the results. Section 5
provides a brief synopsis of our work, drawing
conclusions from our experimental results.

2. Previous Work

In the recent past researchers have proposed

variations that result in miss rates like a 2-way set
associative cache, but hit-times like a direct mapped
cache [3, 4]. These “sequential search” of set associative
caches or probe caches are based on the key observation
that associativity is needed only for conflicting blocks and
should not be provided at the expense of higher hit
latencies for all accesses. At the same time,
implementation of different mapping options also reduce
the accesses to heavily used sets without dynamically
detecting the cache set usage information. In most of
these schemes, a traditional direct-mapped cache is
conceptually partitioned into sets with 2 (or more) blocks
per set. Cache access is sequential; first one block is
probed, and if the tag doesn’t match the second block in
the set is probed. In order to achieve more balanced cache
access behavior different probe caches use different data
structures, ranging from very simple hash bit to
complicated way prediction mechanisms. Hash-Rehash
cache (HR cache) uses fixed probe order with different
hash functions to search the cache [3]. The column
associative cache [4] improves on HR cache by
associating rehash information with each block for
dynamically selecting alternate hashing functions.
Column-associative cache can be extended to include
multiple alternative locations, which are described in [4].
In adaptive group-associative cache (AGAC) Peir et al.
[12] attempts to use cache space intelligently by taking
advantage of the cache holes during the execution of a
program. AGAC needs three cycles to access these
relocated cache lines. The skewed-associative cache [5] is
a 2-way cache that exploits two or more indexing
functions derived by XORing two m-bit fields from an
address to generate an m-bit cache index to achieve more
uniform cache access pattern to lower the miss rate. In B-
cache design, by using programmable decoders, Zhang
[7] proposes to increase the decoder length and reduce the
accesses to heavily used sets.

In our previous work [1, 2] we have shown the
performance improvements that can be achieved by using
separate L-1 data caches for array (or streams) and scalar
data objects of a program. In many cases, the combined
size of array and scalar caches are much smaller than a
unified L-1 data cache to achieve the same level of
performance (miss rates, execution times, energy
consumption). For example, figure 1 shows the
percentage of reductions in execution times, power
consumption and silicon area needed for split data caches
when compared with a 8Kbyte unified cache. The sizes

of array and scalar cache for each benchmark (from
Mibench suite) are optimized in this experimentation[2].

In this paper we expand on our previous research, but
our work differs from other research efforts in two ways.
First, our cache design does not include any additional
hardware or complicated mapping techniques, hence does
not result in increasing access times or other performance
overheads. Second, unlike the other reported studies
(except B-cache), we perform analyses not only with miss
rates but also cache access patterns to different cache sets.
Even for B-cache, the analysis of cache access patterns is
very simplistic while we use sound statistical analyses to
determine the shape (kurtosis) and skewness of access
patterns.

Figure 1: Reductions in execution times, power
consumption and silicon area using split data caches

3. Background

In this section, we first demonstrate how to examine

the cache sets usage during a program’s execution. Since
we will implement statistical analysis, we will briefly
describe related statistical concepts. Finally we will
briefly describe our split data cache architecture.

3.1 Non-Uniform Accesses to Cache Sets

Zhang [7] reported that with direct mapped L-1 caches
not all cache sets are equally accessed and the heavily
accessed sets lead to most of the conflict misses and thus
to poor performance. Zhang [7] classified cache sets as
frequent hit sets (FHS) and frequently missed sets (FMS)
if the number of hits and misses are more than twice the
average and least accessed sets (LAS) if the accesses are
one half of the average accesses. We repeated Zang’s
experiments with a subset of SPEC benchmarks, some
bio-informatics and embedded benchmarks (from
MiBench suite). Consider for example figure 2, which
shows the accesses and misses to the L-1 data cache
caused by SPEC 2000 benchmark parser. The cache is a
direct-mapped, 8kb cache with a line size of 32 bytes (or
256 sets). Here 11 sets (or 7.4%) are in FHS category
while 7 sets (or 2.7%) are in FMS and 88% of the sets are
in LAS categories. Although not shown in this document,

0

20

40

60

80

100

pe
rc

en
ta

ge

bc qs dj bf sh ri ss ad cr ff avg

power
area
time

L-1 instruction cache exhibits similar (non-uniform)
access behavior.

In figure 3 we show the cache hit and miss numbers
on each set of data cache of the same benchmark with
increased associativity. From figure 3, we can see that set-
associativity does not fully address the non-uniformity of
accesses, although associativity will reduce conflict
misses, and increases access times. If we can find a way
to balance the mappings of a direct-mapped cache, such
that the accesses to direct-mapped cache sets are more
evenly distributed across the cache sets, we can reduce
miss rate of direct-mapped caches without increasing the
cache’s access time.

Figure 2: Data cache hits and misses on each cache
set for benchmark Parser

Figure 3: Cache hit and miss numbers on each set of

data cache with increased associativity

Table 2: frequent hit sets (FHS), frequently missed
sets (FMS) and least accessed sets (LAS) values.

Zhang [7] proposed the use of a programmable
decoder to remap data to different cache sets (on conflict
misses) as a technique to achieve more uniform accesses
to L-1 cache sets. This hardware solution may not be cost-
effective for some applications since the access path is
lengthened by the programmable decoders. We repeated
the analysis for benchmark programs from the SPEC 2000
[14], Bioinformatics [13] and MiBench suite [15]. The
FHS, FMS and LAS were calculated based on (1), (2),
and (3). These measures are the same as those described
in Zhang [7].
 (1)

 (2)

 (3)

Our experimental environment builds on the SimpleScalar
(version 3.0d) simulation tool set [10] modeling an out-
of-order speculative processor with a two-level cache
hierarchy. We rely on default parameters defined by
SimpleScalar. In order to obtain the statistical values we
used Mathlab [11].

Table 2 shows our results for the L-1 data cache with
a subset of SPEC benchmarks, some bio-informatics and
embedded benchmarks. The last three columns indicate
the fraction of the sets in the FMS, FHS and LAS
categories, while the first 3 columns indicate the number
of sets in these categories. Consider for example, VPR,
Parser (from SPEC) and CLUSTALW (a bio-informatics
benchmark), string search and dijkstra (from MiBench).
These benchmarks show that a very high number of cache
sets fall in the LAS category. Moreover very few sets
(FMS value) cause most misses. On the other hand, GZIP
shows a more uniform access pattern since only 1.2% of
the sets fall in the LAS category (a significant number of
the sets receive between 0.5 to 2 times the average
number of accesses) but very few sets cause very high
miss rates. MCF (from Spec) shows a different access
pattern: not only do sets exhibit more uniform access
patterns, they also exhibit more uniform miss behaviors.

Thus different solutions are needed for different
applications. For example instead of a programmable
hardware address decoder, it may be possible for a
software solution where program variables are remapped
to different addresses to minimize cache conflicts. In
some cases, increasing set associativity alleviates the
problem. We feel that our split L-1 data caches may also
mitigate the non-uniform access patterns and conflict
misses. In this paper we will explore the effect of split
caches.

However, to understand the nature of the non-
uniform accesses, we need sound statistical analyses. We
propose to use several central-moments for this purpose.

 

10 

100000 

0  50  100 150 200 250 

Set number 

Data cache hits and misses on 
each cache set of benchmark 

parser 

misses 

hits 

1 

10 

100 

1000 

10000 

100000 

0  50 100 150 200 250 

misses 
(4way 
parser) 

hits (4 way 
parser) 

Benchmark FMS FHS LAS FMS
(%)

FHS
(%)

LAS
(%)

176.GCC 4 18 219 1.5 7 48.8
164.GZIP 7 11 3 2.7 4.3 1.2
181.MCF 0 22 0 0 8.6 0
CLUSTALW 11 16 170 4.2 6.2 66
175.VPR 45 15 129 18 5.8 65
197.PARSER 7 20 166 2.7 7.8 65
String search 154 17 254 60.2 6.6 99.2
Qsort 3 22 4 1.2 8.5 1.6
dijkstra 9 6 185 3.5 2.3 72.3
AES 5 14 113 1.9 5.5 44.1

3.2 Statistical Analysis

As stated above, in order to more formally describe

the behavior of cache access patterns, we will convert the
accesses and misses into probability distributions. We can
then measure various statistical values knows as central-
moments. Most commonly used moments are: mean (first
moment) and standard-deviation (second moment).
Higher moments describe the shape of the distribution.

For this purpose we will convert accesses (and
misses) to cache sets into a probability distribution and
analyze the shape of the distribution. The shape of a
uniform access distribution will have a flat shape
compared to a normal distribution with a few values
clustered around the mean and long tails. We will report
mean, standard deviation, skewness and kurtosis values
associated with (data) cache access patterns. In order to be
self contained, we will describe these statistical
parameters and their value to our analyses.

3.2.1 Standard Deviation

Standard Deviation is a measure of the dispersion of a set
of data from its mean. A low standard deviation indicates
that the data points tend to be very close to the same value
(the mean), while high standard deviation indicates that
the data are “spread out” over a large range of values. A
zero standard deviation implies a uniform distribution.
Figure 4 includes a plot of a standard normal distribution
(or bell curve). Each band has a width of one standard
deviation.

Figure 4: A plot of a standard normal distribution

3.2.2 Skewness

Skewness (third central moment) is a measure of
symmetry, or more precisely, the lack of symmetry. A

Figure 5: Positive and negative skewness

distribution, or data set, is symmetric if it looks the same
to the left and right of the center point (mean). If the left
tail is more pronounced than the right tail, the function is
said to have negative skewness. If the reverse is true, it

has positive skewness. If the two are equal, it has zero
skewness.

3.2.3 Kurtosis

Kurtosis (fourth central moment) is a measure of

whether the data are peaked or flat relative to a normal
distribution. That is, data sets with high Kurtosis tend to
have distinct peaks near the mean, decline rather rapidly,
and have long tails. This also indicates very few values
near the peak. Data sets with low Kurtosis tend to have a
flat top near the mean rather than a sharp peak. A uniform
distribution would be the extreme case (with zero
Kurtosis). For our pupose, a highly non-uniform behavior
results in a high Kurtosis, while a more uniform access
behavior leads to lower Kurtosis.

Figure 6: Kurtosis values

Figure 7: Distribution of cache accesses

Figures 7 shows distributions associated with cache

hits and misses to different sets. We show the distribution
with a single 64 sets of 32Byte unified data cache, and for
32 sets of array and 32 sets of scalar data caches (using
our split data caches), for benchmark dijkstra (from
Mibench). The main goal of this figure is to illustrate the
importance of the shape of the accesses, when the
accesses are converted to a probability distribution.

3.3 Split Cache Design

Our split data cache architecture consists of an “array
cache” and a “scalar cache”. Memory accesses are
distinguished as scalar or array references and mapped to
a either the scalar or array cache portions. In this system,
since scalar references and stream references no longer
negatively affected each other, cache interference,
thrashing and pollution problems will be diminished,
delivering better performance [1, 2].

 Unified Scalar Array

Benchmark

Misses Hits

Accesses Misses Hits

Accesses Misses Hits

Accesses
Qsort 2105032 135191867 137296899 1822313 83668050 85490363 4094 48455521 48459615

Dijkstra 1617205 80082245 81699450 805859 61729147 62535006 20 1508763 1508783
AES 8508635 120939232 129447867 295558 5086418 5381976 21 7448490 7448511

String Search 9704 2234608 2244312 4293 1398267 1402560 24 790896 790920
GCC 11846853 337815632 349662485 12467659 220657330 233124989 506 106923052 106923558

Table 3: Number accesses, hits and misses when using a unified data cache and when using split data caches

 Unified Scalar Array

Measure
Benchmark

Mean

Standard
Deviation

Skewness

Kurtosis Mean

Standard
Deviation

Skewness

Kurtosis Mean

Standard
Deviation

Skewness

Kurtosis

Qsort 528093.23 1647803.73 5.370 36.07 653656.64 1477732.06 4.13 22.73 378558.76 1066926.36 4.24 22.75

Dijkstra 312821.27 2388115.68 15.80 251.83 482258.96 3373641.56 11.13 125.25 11787.21 30503.16 5.450 40.31

AES 472418.87 1545251.35 7.69 68.67 39737.64 133728.19 8.61 85.48 58191.33 156514.26 6.19 43.555
String
Search 8728.94 41807.25 9.36 99.36 10923.96 48048.54 6.88 54.29 6178.87 13202.82 4.86 31.73

GCC 1319592.3 7855808.33 11.81 159.73 1723885.39 5808867.2 7.25 65.06 835336.35 5177289.20 9.38 96.27
 Table 4: Mean, Standard deviation, skewness and kurtosis values for hits

Table 5: Mean, Standard deviation, skewness and kurtosis values for misses

 Scalar Array
Measure

Benchmark Mean
Standard
Deviation

Skewness

Kurtosis Mean

Standard
Deviation

Skewness

Kurtosis

Dijkstra (32-32) 1866309.56 6678402.38 5.378 29.96 38894.91 41944.15 2.71 11.44
Dijkstra (64-64) 955699.13 4749340.75 7.79 61.80 23017.78 40869.39 3.47 15.85
Dijkstra (a32-s64) 955698.72 4749340.83 7.79 61.797 46020.34 53023.72 2.29 7.86
Dijkstra (a32-s128) 482258.99 3373641.56 11.13 125.25 47132.19 58919.24 2.56 9.3934
AES (a32-s32) 1137002.13 2519099.83 4.43 23.06 2438624.5 3053485.24 2.77 9.97
AES (a64-s64) 647832.72 1873827.11 6.23 44.76 1211850.16 2260792.6 4.22 21.007
AES (a32-s64) 647530.5 1873635.69 6.231 44.776 2423287.16 3065156.78 2.781 9.99
AES (a32-s128) 370643.17 1370940.37 8.82 88.54 2422399.41 3066587.1 2.793 10.04

Table 6: Results with variable size Array and Scalar caches (hits)

 Scalar Array
Measure

Benchmark Mean
Standard
Deviation

Skewness

Kurtosis Mean

Standard
Deviation

Skewness

Kurtosis

Dijkstra (32-32) 137281.4062 61404.8151 1.9006 5.915 17.25 73.2525 5.1275 28.0888
Dijkstra (64-64) 32165.5469 16284.4695 1.8282 8.5207 1.0781 6.6172 7.7257 61.1232
Dijkstra (a32-s64) 32165.5156 16284.4528 1.8282 8.5208 17.4688 76.7211 5.2023 28.6579
Dijkstra (a32-s128) 6295.7578 6605.3763 3.2048 18.197 32383.5078 53792.3955 5.2023 28.6579
AES (a32-s32) 485188.625 150513.208 0.5424 2.4639 941.2812 4365.5708 5.1901 28.5629
AES (a64-s64) 159564.9531 89381.895 1.6113 5.6647 0.6719 3.6255 7.6274 60.1015
AES (a32-s64) 159556.8906 89390.1215 1.6112 5.6629 885.4375 4088.4034 5.1557 28.2783
AES (a32-s128) 24076.2969 41659.1486 7.6905 69.4319 8442.0156 59650.6805 5.0916 27.7194

Table 7: Results with variable size Array and Scalar caches (misses)

 Unified Scalar Array

Measure

Benchmark

Mean
Standard
Deviation

Skewness

Kurtosis Mean
Standard
Deviation

Skewness

Kurtosis Mean
Standard
Deviation

Skewness

Kurtosis
Qsort 8222.78 20045.83 13.56 197.37 14236.82 12533.69 6.705 49.88 31.98 242.21 11.15 125.49

Dijkstra 6317.21 9123.08 9.04 94.03 6295.77 6605.39 3.21 18.20 0.156 1.17 10.56 116.57

AES 33236.85 54126.65 4.70 30.25 2309.05 4010.85 7.68 69.29 0.164 1.018 9.65 102.16
String Search 37.91 187.97 12.62 178.22 33.54 51.13 2.45 9.34 37.91 187.97 10.44 114.76

GCC 46276.77 446648.20 14.03 210.79 97403.59 391157.16 6.13 47.29 46276.77 446648.20 11.17 125.91

4. Results

In this section, we are going to use 4 central moments
(mean, standard-deviation, skewness and kurtosis) to
more carefully analyze the benchmarks. Before we
describe the affect of our split caches on the non-
uniformity of accesses to L-1 data cache sets, we want to
show that split data caches do reduce the total number of
misses (as we have described in our previous or split
caches research). Table 3 shows number access and
misses when using a unified data cache and when using
separate array and scalar caches. Here we are using 256
sets (32Byte per line) unified cache and 128 sets each for
array and scalar caches. In principle the total number data
access should be the same whether we are using a unified
or split caches. However, the out-of-order Simplescalar
simulator generates slightly different number of access
under different runs, where the differences are very small
(less than 1%).

We now show the 4 central moments (mean,
standard-deviation, skewness and kurtosis) for cache
accesses and misses. The data is shown in Tables 4 (hits)
and 5 (misses). The tables include data for both unified
data cache and split data caches. It should be noted that
for our purpose (exploring uniformity of accesses),
Kurtosis is more useful than other moments. Since our
distribution only contains non-negative probabilities (in
terms of hits and misses), skewness is not as useful.
Looking at the data in Table 4, it appears that split data
caches reduce Kurtosis, implying that the accesses to
cache sets exhibit more uniform behavior when compared
with unified cache. For some benchmarks, the reduction
in Kurtosis is very significant.

When it comes to misses (Table 5), the Kurtosis
value alone does not show the affect of our split caches.
For example, for GCC, the Kurtosis values for both scalar
and array cache are higher than for the unified cache.
However, it is necessary to consider the actual number of
cache misses for the two cache designs. Our split caches
results in a significant reduction in actual cache misses
(see Table 3). But the higher Kurtosis means that our split
caches are causing more conflict misses on some specific
sets. This is in part because array and scalar caches are
smaller than the unified cache. As we have shown in our
previous work [2], different applications need different
sizes for array and scalar caches. With this in mind, we
repeated our simulations using different sized array and
scalar caches for two benchmarks: dijkstra and AES, two
benchmarks that have shown increased values for kurtosis
with cache misses. From the following tables (Tables 6
and 7) one can see the for both benchmarks, a smaller

array and a larger scalar cache result in better
performance (smaller Kurtosis values).

It should be noted that for these benchmarks (AES
and Dijkstra) large scalar and array caches cause higher
Kurtosis values (both for hits and misses). This implies
that, for these applications, larger caches are not very
useful since the number of sets utilized (hits and misses)
remain small. To fully use large L-1 caches, it will be
necessary to use more complex techniques to spread data
accesses across available sets. In our current research we
are investigating profiling cache accesses to identifying
program variables that are mapping to highly utilized sets
and reassigning them to new memory addresses.

5. Conclusions

In this paper we show that split data caches

significantly mitigate the problem for several embedded
benchmarks (from MiBench) and some SPEC
benchmarks, in terms of improving uniformity of accesses
to cache sets. However, we do not claim that split data
caches completely solve the non-uniformity of cache
accesses for all applications. Thus different applications
need different approaches to solve the non-uniform
accesses. In some cases our split-caches are adequate.
However in some cases profiling and compile time
analyses or additional hardware may be needed to relocate
data that maps to highly utilized sets. Currently we are
also exploring how profiling and compile time analyses
can be used to uniformly distribute data among all cache
sets.

6. Acknowledgment

This research is supported in part by NSF grants
#0649748, #0855939 and by the NSF Net-Centric
IUCRC industrial memberships.

7. References

[1] A. Naz, K. Kavi, P. Sweany and W. Li. "A study of
reconfigurable split data caches and instruction caches",
in the Proceedings of the 19th ISCA Parallel and
Distributed Computing Systems, San Francisco Sept 2006.
[2] A. Naz, K.M. Kavi, P.H. Sweany and M. Rezaei. "A
study of separate array and scalar caches" in the
Proceedings of the 18th International Symposium on High
Performance Computing Systems and Applications
(HPCS 2004), Winnipeg, Manitoba, Canada, May 2004.
 [3] A. Agarwal, J. Hennessy, and M. Horowitz. Cache
performance of operating systems and
multiprogramming. ACM Transactions on Computer
Systems, 6(4):39343 1, Nov.1988.

[4] A. Agarwal and S. Pudar. “Column associative
caches: A technique for reducing miss rate of direct-
mapped caches”, in Proceedings of the 20th Annual
International Symposium on Computer Architecture,
May 1993.
[5] A. Seznec. “A case for two-way skewed-associative
caches”, In Proceedings of the InternationalSymposium
on Computer Architecture, June 1993.
 [6] B. Chung and J. PMF. “LRU-based column
associative caches”, Camp. Arch. News 26, 2, 9–17, 1998.
 [7] C. Zhang. “Reducing Cache Misses Through
Programmable Decoders”, ACM Transactions on
Architecture and Code Optimization, Vol. 4, No. 4,Article
24, January 2008.
 [8] C. Zhang. “Balanced cache: Reducing conflict misses
of direct-mapped caches through programmable
decoders”, In Proceedings of the International
Symposium on Computer Architecture, June , 2006.
[9] C. Zhang, X. Zhang, and Y. Yan. “Two fast and high-
associativity cache schemes”, IEEEMicro 17, 1997.
[10] D. Burger and T. M. Austin. “The SimpleScalar Tool
Set, Version 2.0”, Tech. Rep. CS-1342, University of
Wisconsin-Madison, June 1997.
 [11] http://www.mathworks.com/
[12] J. Peir, Y. Lee, and W. Hsu. “Capturing dynamic
memory reference behavior with adaptive cache
topology”, In Proceedings of the 8th International
Conference on Architectural Support forProgramming
Language and Operating Systems, 1998.
 [13] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin,
B. Jacob, C. Tseng, and D. Yeung, “BioBench: A
benchmark suite of bioinformatics applications”, in
Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software, Austin
TX, March 2005.
 [14] L. Henning. "SPEC CPU2000: Measuring CPU
Performance in the New Millennium", IEEE Computer,
33(7), pp. 28-35, July 2000.
[15] M. Guthaus, J. Ringenberg, T. Austin, T. Mudge, R.
Brown, "MiBench: A free, commercially representative
embedded benchmark suite, in Proceedings of the IEEE
4th Annual Workshop on Workload Characterization,"
Austin, TX, December 2001.

