
A Study of Reconfigurable Split Data Caches and Instruction Caches  
 

Afrin Naz                        Krishna Kavi               Philip Sweany         Wentong Li   
                             afrin@cs.unt.edu            kavi@cse.unt.edu          Philip@cse.unt.edu   wl@cs.unt.edu 

Department of Computer Science and Engineering 
 P.O. Box 311366, University of North Texas, Denton, Texas 76203 

 
 

Abstract 
 

In this paper we show that cache memories for 
embedded applications can be designed to both increase 
performance and reduce energy consumed. We show that 
using separate (data) caches for indexed or stream data 
and scalar data items can lead to substantial 
improvements in terms of cache misses. The sizes of the 
various cache structure should be customized to meet 
applications’ needs. We show that reconfigurable split 
data caches can be designed to meet wide-ranging 
embedded applications’ performance, energy and silicon 
area budgets. The optimal cache organizations can lead 
to on average 62% and 49% reduction in the overall 
cache size, 37% and 21% reduction in cache access time 
and 47% and 52% reduction in power consumption for 
instruction and data cache respectively when compared 
to an 8k byte instruction and an 8k byte unified data 
cache for media benchmarks from MiBench suite. 

 
Keywords: Embedded Systems, Cache memories, Split 
data cache, Victim Cache, Reconfigurability. 

 
1          Introduction 

 
Studies have found that the on-chip cache is 

responsible for 50% of an embedded processor’s total 
power dissipation [3, 5]. For that reason we feel that it is 
worthwhile investigating new reconfigurable cache 
organizations to address both performance and the power 
requirements of embedded applications. Our experiments 
show that  instruction cache with prefetching and split 
data caches (scalar data cache augmented with victim 
cache, and a separate array data cache) are effective in 
embedded systems when used in conjunction with 
dynamic reconfigurability of cache components. 

Our goal is to reduce (silicon) area, access time, 
and dynamic power consumed by cache memories while 
retaining performance gains. In our design, we first 
address the problem of improving cache performance in 
embedded systems through the use of reconfigurability in 
separate array and scalar data caches. Then we extend our 
architecture by augmenting the scalar cache with a victim 
cache [14]. Victim caches are based on the fact that 
reducing cache misses due to line conflicts for data 
exhibiting temporal locality is an effective way of 

improving cache performance, without increasing the 
overall cache associativity. Inspired by the reduction in 
silicon areas, and power consumptions resulting from our 
split caches we then implemented reconfigurability with 
our instruction cache, which is augmented by a small 
prefetch buffer. The prefetch buffer will utilize the silicon 
area savings achieved in our data cache designs.  By 
setting a few bits in a configuration register, the cache can 
be configured by software for optimum sizes for each of 
our four structures (array cache, scalar cache, instruction 
cache and prefetch buffer) and use the rest of the unused 
area for other processor activities. The cache system can 
also be configured to shutdown certain regions in order to 
effectively reduce energy consumption. For both cases, 
the reconfiguration hardware leads to only a small 
overhead in terms of time, power, silicon area and 
hardware complexity. In this paper, we provide the details 
of our configurable cache. Our results show excellent 
reductions in both memory size and memory access time, 
translating into reduced power consumption. Our cache 
architecture reduces the cache area by as much as 85% 
and 78%, cache access time by as much as 72% and 36%, 
and energy consumption by as much as 75% and 67% for 
instruction and data  caches respectively (when compared 
with an 8k byte instruction and 8k byte unified data 
caches). These reductions can be profound when working 
with small L-1 caches often found in embedded systems. 
We believe there are three reasons behind the success of 
our cache architecture. First the separation of array and 
scalar data items eliminates mutual interference caused by 
these two types of data (and reduces conflict misses). The 
second reason is the greater reconfigurable design space 
afforded by our cache structures which allows more 
chances of improvement. Finally adding a small prefetch 
buffer to the instruction cache allows us to reduce cold 
misses in instruction access. Even with the additional 
power consumed by the prefetching for instruction cache, 
our studies show significant reductions in total energy 
consumed by our caches. 

The space savings resulting from our cache 
structures may be used for many architectural features 
such as instruction reuse buffers  and branch prediction 
buffers to further improve the performance of embedded 
applications. In this paper we survey possible 
optimization techniques to be implemented in our saved 
area. 
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The rest of the paper is organized as follows. 
Section 2 provides a survey of related work, while section 
3 describes interactions between different cache 
parameters in embedded systems. In section 4, we 
describe the architectural design of our reconfigurable 
cache. In section 5 we evaluate our reconfigurable cache 
and in section 6 we provide a survey of different 
optimization techniques. Finally we present our 
conclusions in section 7. 

 
2          Previous Work 

 
Ranganathan et. al [17] proposed a 

reconfigurable unified data cache architecture for general 
purpose processors. They proposed dividing data cache 
into different partitions that can be used for different 
processor activities. Ranganathan et. al. did not provide 
an analysis of silicon area involved in the reconfigurable 
cache, but explored different design alternatives, focusing 
on one option of reconfiguring caches for “instruction 
reuse”. Albonesi et al [9] proposed “selective cache 
ways” to selectively disable portions of unified data 
cache, trading off performance with power. Neither of 
these analyzed the impact of reconfigurabilty on 
instruction cache. Work by Vahid et. al. [4] is closely 
related to our research, as they evaluate reconfigurable 
instruction and unified data caches for embedded 
applications. Unlike this research, we do not see 
associativity as an important reconfigurable design 
parameter. This is because, both our array and scalar  data 
caches are designed as direct mapped caches, and we use 
a victim cache to effectively provide higher associativity 
for scalar data. Also inclusion of a very small instruction 
buffer allows us to remove the cold misses in our direct 
mapped instruction cache.  

The main difference of our work when compared 
with others is, in addition to showing performance gains 
and power reductions, we also analyze silicon area 
savings obtained from our caches. The most significant 
aspect of our work is using separate data cache with 
reconfigurability. Previous research did not consider 
reconfigurable caches within the context of separate data 
caches [4, 9, 13, 15, 17].  

 
3           Influence of different Parameters 

 
In this section we will discuss the impact of 

power and associativity on our proposed cache system.  
 

3.1         Dynamic power consumption 
 

In CMOS circuits the major source of power 
consumption is dynamic power. Dynamic power 
dissipation is due to logic switching current and the 

charging and discharging of the load capacitances. In our 
power consumption evaluation we include energy 
consumed due to cache misses and off-chip accesses. Our 
model uses the following general equations to compute 
the dynamic power consumption of a cache. 

 
power = Hit * power_hit + Miss * power_miss  
power_miss = OPC + PCW + FTM 
 

We obtained values for hits and misses for our 
array and scalar caches by executing the selected 
benchmarks on the Simplescalar simulator [6]. Different 
cache structures have different power_hit values based on 
the cache type, size and hit type of each access. The PCW 
is the power consumed to write an entire line to the cache. 
OPC is the power needed for off-chip access and is 
calculated as 0.5 * Vdd2 * (0.5 *Wdata + Waddr)) * 20pF  
[11, 18], where Wdata and Waddr are the number of bits for 
both the data sent/returned and the address sent to the 
next level of memory on a miss. The last term is the load 
capacitance for off-chip destinations. For any miss the 
overhead for searching in cache is included in FTM (First 
Time Miss). 

 
3.2         Influence of associativity 

 
Higher associativity in both data and instruction 

caches is identified as the most important reconfigurable 
parameter by Vahid et al. [4]. In unified data caches, the 
associativity of the cache plays a significant part in the 
overall performance/power trade-offs. However, when the 
data cache is split (as in our case into array and scalar 
caches), we found that associativity is no longer a 
significant reconfigurable parameter. At L-1 cache (which 
is our primary concern), it is important to maintain a 
balance between miss rates and access times. In our 
design, direct mapped caches provide for such a balance, 
as conflicts between different classes of data (viz., arrays 
and scalars) are eliminated by our split cache 
organizations. Additionally, since we provide for a small 
victim cache with the direct mapped scalar cache, the 
miss rates are further reduced, without having to resort to 
higher associativities. For instruction cache, we believe 
that cold misses are more problematic to performance 
than conflict misses, and we use a small pre-fetch buffer 
to reduce cold misses.   

 
4           Architectural design of proposed cache 

 
Figure 1 shows our proposed reconfigurable split 

cache architecture, with array and scalar data caches, 
victim cache with scalar data cache and the instruction 
cache augmented by a small prefetching buffer. In order 
to speedup access, current implementations partition 
caches into multiple sub-arrays [7, 8]. For example, the 
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SA-110 embedded microprocessor [7] uses 32-way 
associative 16KB L1 instruction and Data caches, each of 
which is divided into 16 fully associative sub-arrays. 
With this partitioning in place, our reconfigurable caches 
can easily be implemented if there are at least as many 
sub-arrays as the maximum number of partitions (because 
for a reconfigurable cache different partitions must be 
implemented in physically different sub-arrays indexed 
by different addresses). Figure 2 shows the structure of a 
cache using SRAM technology. This figure also includes 
the sections where additional multiplexors are added to 
implement reconfigurability (referred by shaded 
numbered blocks) [17]. 

 

 
 CPU
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L2 cache  
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Figure 1 Reconfigurable split cache organization 
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Figure 2 Additional logic for Reconfigurable cache [17] 
 

In order to implement reconfigurable caches, 
only a small amount of additional logic is required. 
Additional wiring is also necessary from the cache to the 
processor for directing data to/from the various partitions. 
The most challenging part in designing a reconfigurable 
cache is the implementation of a mechanism to divide the 
cache into different (variable sized) partitions and 
designing an addressing scheme that can address any 
partition. Ranganathan et. al. [17] have already proposed 
two partitioning and addressing schemes: “Associativity 
based partitioning” and “Overlapped wide-tag 
partitioning”. In our design we use “Overlapped wide-tag 
partitioning” scheme. In this scheme, the key challenge is 
to devise a mechanism so that the size of the array tag can 
be dynamically changed with the size of partitions (since 
the number of bits in a tag and index fields of the address 
will vary based on the size of the partition). We restrict 

the size of each partition to a power of 2 and support a 
limited number of possible configurations (usually two or 
three).  

The additional logic will add to silicon area, 
access time and power consumed. Ranganathan et. al. 
[17] have studied the impact of reconfigurable cache 
organizations on cache access times and showed that for a 
small number of partitions, reconfigurable caches 
increase the cache access time by less than 5%. In this 
paper we have used the CACTI timing model [18] to 
obtain values for these overheads of our reconfigurability. 

Other major issues in designing reconfigurable 
split caches include determining how to find the best 
configuration and maintaining data consistency. A 
reconfigurable cache can be used in different ways. The 
best configuration for an application can be determined 
by extensive simulations (or actual executions). For 
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detailed information about maintaining data consistency 
see [17]. 

 
5          Evaluation of Reconfigurable Split Cache  

  
In this section we present the results from our 

evaluation, comparing our cache organization with the 
base cache architecture consisting of 8k byte L1 
instruction cache, 8k byte L1 data cache and a 32 k byte 
unified L2 cache. 

 
5.1         Methodology    

 
We use benchmark programs from the MiBench 

suite[12]. The descriptions of the benchmarks used in our 
studies are listed in Table 1.  

 
Table 1: Descriptions of benchmarks 

Benchmark Description %  
load/store 

Name in 
fig 

bit counts Test bit manipulation 11 bc 
qsort Computational 

Chemistry 
52 qs 

dijkstra Shortest path 
problem 

34.8 dj 

blowfish Encription/decription 29 bf 
sha Secure Hash 

Algorithm 
19 sh 

rijndael Encryption Standard 34 ri 
String 

search 
Search mechanism 25 ss 

adpcm PCM standard 7 ad 
CRC32 Redundency check 36 cr 

fft Fast Fourier 
Transform 

23 ff 

 
Our experimental environment builds on the 

SimpleScalar (version 3.0d) simulation tool set [6] 
modeling an out-of-order speculative processor with a 
two-level cache hierarchy. We rely on default parameters 
defined by SimpleScalar. The base cache system  used to 
compare our architecture uses an 8k byte L1 instruction 
cache, an 8k byte L1 data cache and a 32 k byte unified 
L2 cache.  

 
5.2         Results   

 
In Figure 3 we show the reduction in miss rates 

with increasing cache size for both instruction (a) and 
data (b) caches. For several benchmarks (“ad”, “cr”, “bc” 
in Figure 3(a) and “bc” in Figure 3(b)), the miss rates are 
too small (comparing to other benchmarks) to be visible 
in the figure. The three series in Figure 4 represent 
percentage reductions in power, area and access time for 

instruction and data caches respectively. In this figure we 
also show the average power, area and cache access time 
across all 
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Figure 3: Instruction (a) and data (b) cache miss rates 

for increasing cache size 
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Figure 4: Percentage reduction of power, area and 

cycle for instruction (a) and data (b) caches 
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Table 2: Cache configurations yielding lowest power, area and cache access time 
Benchmark Instruction cache Prefetch buffer Array cache Scalar cache 
bit counts 256 bytes 256 bytes 512 bytes 512 bytes 

qsort 256 bytes 512 bytes 1k 4k 
dijkstra 1k 2k 512 bytes 4k 
blowfish 1k 1k 512 bytes 4k 

sha 256 bytes 512 bytes 512 bytes 1k 
rijndael 512 bytes 512 bytes 1k 4k 

string search 256 bytes No prefetching  512 bytes 1k 
adpcm 256 bytes 256 bytes 1k 512 bytes 
CRC32 256 bytes 256 bytes 512 bytes 512 bytes 

FFT 1k 1k 1k 4k 

 
the benchmarks used in our experiments. As can be seen, 
for instruction cache, on average we achieve 47% 
reduction in power, 62% in area and 37% in access 
time.Here it should be mentioned that for benchmark “ss” 
the best configuration was 8k. Hence we did not achieve 
any reduction in power or area. For data caches, on 
average we show more than 50% reduction in both power 
and area. Each of the benchmarks also provides reduction 
in cache access time. For each benchmark we generated 
data and selected the best configuration in optimizing 
power, area and access times. In Table 2 we provide the 
optimum configurations for each benchmark. 
 
6          Utilization of additional area    

 
When provided with larger caches, we can either 

disable unused sub-arrays of cache to save energy or use 
the sub-arrays for purposes other than traditional caching, 
so that execution performance can be further improved. 
We propose our reconfigurable cache to enable its 
dynamic partitions to be assigned to other processor 
activities. Techniques such as hardware prefetching, 
instruction reuse, value prediction and branch prediction 
have been used effectively in desktop applications. 
However, these techniques require additional space for 
implementing look-up tables or buffers and thus these 
techniques are viewed as inappropriate for embedded 
systems [5]. Since we show reductions in cache sizes in 
our designs (while not sacrificing performance or 
increasing power consumptions), these savings may be 
used to implement look-up tables or buffers to implement 
elaborate branch prediction or instruction reuse ideas.  

 
6.1         Hardware and software Prefetching 

 
Prefetching or exploiting the overlap of 

processor computations with data access has proven to be 
effective in tolerating long memory latencies  [2, 10]. 
Prefetching can be either hardware [10] or software based 
[2]. In our reconfigurable cache we can use separate 

partitions for prefetched data and avoid cache pollution. 
The prefetching areas can be implemented in cache arrays 
with minor hardware and software changes. 
 
 
6.2 Hardware optimization techniques with look-   
            up table 

 
Modern processors utilize speculative execution 

of instruction based on branch prediction, instruction 
reuse and function reuse technique to improve 
performance [1, 16]. It has been found that many 
instructions and functions are repeatedly executed with 
the same inputs, producing same outputs [1]. Similarly for 
branch instructions, branch decisions are correlated and 
can be predicted. This observation can be exploited to 
reduce the number of instructions/functions executed 
dynamically as follows: by buffering the previous result 
of the instruction/function, future dynamic instances of 
the same static instruction (or function) can use the result 
by establishing that the input operands in both cases are 
the same [1]. For all of these optimization techniques as 
the microprocessor tries to make the prediction based on a 
record of what this instruction/function has done 
previously, having a larger look up table is very helpful 
[19]. Unfortunately none of these optimization techniques 
have been studied in detail for embedded applications. 
We anticipate that since we can save the space needed for 
cache memories using our cache structures (on average 
62% for instruction cache and 49% for data cache), the 
saved space can be used to build needed look-up tables to 
implement instruction and function reuse. 

 
7          Conclusions  

 
In this paper we introduced a cache architecture 

for embedded microprocessor platforms. Our design uses 
reconfigurability coupled with split data caches (separate 
array and scalar data caches), containing a very small 
victim cache to reduce (silicon) area and dynamic power 
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consumed by cache memories while retaining 
performance gains. To further improve the proposed 
cache organization, we augment the instruction cache 
with a small prefetch buffer. Our cache architecture 
reduces the instruction and data cache size by as much as 
85% (average 62%) and 78% (average 49%), cache 
access times by as much as 72% (average 37%) and 36% 
(average 21%), and energy consumption by as much as 
75% (average 47%) and 67% (average 52%) respectively 
when compared with an 8KB L-1 instruction cache and 
an 8KB L-1 unified data cache with a 32KB level-2 cache 
(for both data and instructions).  

Our design enables the cache to be divided into 
multiple partitions some of which can be used for other 
processor’s activities (such as hardware prefetching, 
instruction reuse, branch predictions) or the cache system 
can also be configured to shutdown certain regions. Since 
our reconfigurable approach leverages the sub-array 
partitioning that is already present in modern caches, only 
minor changes to cache implementations are required. 
The reconfiguration only requires a small overhead in 
terms of silicon area, power and execution times.  

In future we will explore how unused cache 
portions (obtained by our proposed method) can be used 
for instruction reuse, value prediction and branch 
predictions.  
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