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ABSTRACT
The promise of 3D-stacked memory solving the memory wall
has led to many emerging architectures that integrate 3D-
stacked memory into processor memory in a variety of ways
including systems that utilize different memory technolo-
gies, with different performance and power characteristics,
to comprise the system memory. It then becomes neces-
sary to manage these memories such that we get the perfor-
mance of the fastest memory while having the capacity of
the slower but larger memories. Some research in industry
and academia proposed using 3D-stacked DRAM as a hard-
ware managed cache. More recently, particularly pushed by
the demands for ever larger capacities, researchers are ex-
ploring the use of multiple memory technologies as a single
main memory. The main challenge for such flat-address-
space memories is the placement and migration of memory
pages to increase the number of requests serviced from faster
memory, as well as managing overhead due to page migra-
tions.

In this paper we ask a different question: can traditional
prefetching be a viable solution for effective management of
hybrid memories? We conjecture that by tuning well-known
prefetch mechanism for hybrid memories we can achieve sub-
stantial performance improvement. To test our conjecture,
we compared the state of the art CAMEO migration policy
with a Markov-like prefetcher for a hybrid memory consist-
ing of HBM (3D-stacked DRAM) and Phase Change Mem-
ory (PCM) using a set of SPEC CPU2006 and several HPC
benchmarks. We find that CAMEO provides better perfor-
mance improvement than prefetching for 2/3rd of the work-
loads (by 59%) and prefetching is better than CAMEO for
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the remaining 1/3rd (by 19%). The EDP analysis shows
that the prefetching solution improves EDP over the no-
prefetching baseline whereas CAMEO does worse in terms of
average EDP. These results indicate that prefetching should
be reconsidered as a supplementary technique to data mi-
gration.

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems;

Keywords
Prefetching; hybrid memory system

1. INTRODUCTION
The demand for memory capacity and bandwidth contin-

ues to rise faster than what current DRAM (DDR) mem-
ory systems can provide. However, there have been some
new memory technologies that may address these needs.
These include 3D-stacked DRAM (3D-DRAM) for provid-
ing performance and non-volatile memories (NVM), includ-
ing Phase Change Memories (PCM) for providing high ca-
pacity at a low cost [29, 31, 36]. Vendors have already
announced systems with either integrated 3D-DRAM or as
off-chip memories [20, 8, 26] and in the coming years NVM
is likely to replace or augment DRAM in a system. Emerging
non-volatile DIMM (NVDIMM) standards [22] and recent
industry announcements of 3D Xpoint [9] and Phase Change
Memory (PCM) [32, 5] provide larger capacity than con-
ventional DRAM and better performance than flash based
NVM but are still much slower than conventional DRAMs.
Also higher write energy and lower endurance are still chal-
lenges for PCM. As a result we expect that in coming years
systems will have a variety of memory technologies to ad-
dress the performance, power and cost challenges resulting
in a heterogeneous (hybrid) memories [36, 21, 34, 27, 4, 30,
11].

The ultimate goal, as traditional caches, is to make the
average memory access equal to that of the faster main mem-
ory while providing the larger capacity of the slower mem-
ory. There has been significant research in this area [36, 21,



34, 27, 4] which primarily focuses on either managing fast
memory as a cache for slower memory or using both fast
and slow memories as part of a single address space (“flat
address space”) with direct load/store access. In cache-based
configurations [30, 11], research deals with storing and ef-
ficiently accessing large number of tags for GBs of memory.
An obvious advantage of cache-based schemes is that exist-
ing software can run without any changes as 3D-DRAM is
just another level of cache. However, in this case the memory
capacity of faster 3D-DRAMs is not visible to the operating
system (OS) and is not available for applications to allocate
space there. Flat-address-space configurations [36, 21, 34, 4]
have focused on policies for migrating (moving) frequently
accessed “hot” pages from a slower memory to the faster
memory and efficient methods to update the page mappings
(required for correct address translation). While efficient mi-
gration and remapping methods are challenging, exposing all
memory capacity will benefit capacity-constrained applica-
tions [21, 4]. The challenge with flat-address-space schemes
lies in maintaining auxiliary structures to support profil-
ing individual pages (for 100 GB memory with 4K pages
and 8-bit counters results in approximately 20 MB storage),
and intelligent mechanisms to reduce the impact of costly
page remapping (page table updates and translation looka-
side buffer-TLB shootdowns). Moreover, in order to adapt
quickly to changes in access behaviors of applications, these
schemes need to profile access at a finer granularity than
page granularity.

In this research, we posit that by revising conventional
prefetching techniques, we can provide an additional and
potentially less complex solution to bridge the performance
gap between faster and slower memories. NVM can pro-
vide higher capacity than conventional DRAM but comes
with other performance constraints, hence in our study we
want to hide the drawbacks of NVM by exploiting advan-
tageous features of 3D-DRAM. In this paper we study a
hybrid flat address space memory consisting of HBM and
PCM. We first present hardware based Distance prefetch-
ing [14] which is a Markov-like prefetching policy [12] spe-
cially adapted for hybrid memory systems and then compare
the prefetching solution with the state of the art CAMEO
model [4] which employs both hardware caching and migra-
tion techniques for such hybrid memories. Our experiments
show that on average prefetching and CAMEO improve per-
formance by 15% and 50% respectively over no-prefetching
baseline. CAMEO outperforms prefetching for 2/3rd of the
workloads by 59% whereas for the remaining 1/3rd work-
loads, prefetching outperforms CAMEO by 19%. Moreover,
as compared to the no-prefetching baseline Energy Delay
Product (EDP), prefetching EDP is improved by 8% and
CAMEO EDP is degraded by 2.5 times on average. Hence,
we feel that prefetching can be a promising technique that
needs to be revisited to optimize hybrid memory systems.

2. BACKGROUND

2.1 Emerging Memory Technology
3D-Stacked DRAM is a new memory technology where

multiple DRAM dies are stacked vertically and are con-
nected by high density through-silicon vias (TSVs). As
TSVs are essentially on-chip connections, they can provide
very high bandwidth, consuming much less energy compared
to off-chip memory accesses. Each memory stack also pro-

vides a greater number of channels (8 in the case of HBM)
compared to a single channel provided by a conventional
DDR-DRAM memory module. It has been reported that
a 3D-DRAM provides 8x higher bandwidth and consumes
∼70% less energy than conventional DRAM [16]. Thus 3D-
DRAM is a suitable memory technology to satisfy memory
bandwidth requirements of data-intensive applications.

Phase Change Memory (PCM) is one of the most promis-
ing and widely-studied NVMs [29, 31, 36, 15]. It can be
much denser than conventional DRAMs, particularly when
multiple bits can be stored in a single cell (Multi-Level Cell,
or MLC PCM) and consumes low static power. However,
it has higher access latency (∼2x for reads and 5x-32x for
writes), consumes higher cell access energy (2x for read and
10x-140x for writes) when compared to conventional DRAM,
depending on the number of bits/cell [39]. PCM has limited
write endurance [29]. However, PCM is a promising mem-
ory technology since it can satisfy large memory capacity
requirements of data-intensive applications.

2.2 Background on Heterogeneous Memory Sys-
tems

There have been a number of research efforts on manag-
ing and architecting heterogeneous memory systems com-
prised of two or more different memory technologies with
different characteristics. In some studies, the faster mem-
ory (either 3D-DRAM with respect to traditional DRAM or
DRAM with respect to PCM) has been used as a cache for
the slower memory [36, 21, 34, 27, 4, 30, 11]. One of the
immediate advantages of a cache approach is that existing
software can run unmodified, as 3D-DRAM (HBM) is just
another level of cache. One of the challenges of managing
a multi-gigabyte cache is efficiently accessing and storing
the large number of tags (e.g., for a 4GB direct-mapped
HBM cache with 64B line size, tag storage is approximately
384MB) that cannot fit in an on-chip SRAM. Consequently,
there has been a large body of research that proposed meth-
ods to maintain the large tag space and to efficiently per-
form tag accesses [30, 15]. One of the major drawbacks of
using HBM as a cache is that the HBM capacity (several
GBs) is not visible to software, which can be detrimental
for memory-capacity-constrained applications [4]. More-
over, when HBM is used as a cache, the available memory
bandwidth (from processor’s point of view) is limited by the
HBM bandwidth, while exposing both memory types can
yield improved performance due to the combined bandwidth
and memory-level parallelism (MLP).

There are other studies that manage two different memory
technologies as part of a single physical address space that
is visible to the OS. For such system organizations the main
challenge is to intelligently place and migrate data between
the different memories to ensure optimal performance and
energy efficiency. Meswani et al., [21] proposed minimal
hardware that tracks page access counts to identify most
frequently accessed “hot” pages, while others use demand
driven [4] approaches or set dueling methods [34] to trigger
page migrations. When we migrate a page into faster mem-
ory, an infrequently accessed “cold” page is evicted and mi-
grated from faster to slower memory (unlike a cache, which
stores a copy of the page). Since PCM has limited write en-
durance, higher write latency and higher write energy, evic-
tions to PCM will add overheads, and decrease the life of
PCM memories. In such systems it is also necessary to ad-



dress the challenge of page remapping to maintain correct
physical addresses across page migrations by updating TLBs
and page tables: these activities can be very costly (10s of
microseconds [21, 27]). Some proposed to lower the remap-
ping cost by migrating at very coarse intervals of 100s of
milliseconds [21], or using cache-like methods [4] or remap-
ping tables in the memory controller (MC) [34].

In our research, we propose to prefetch pages from slower
memories into an on-chip (core-side) small prefetch buffer,
instead of migrating pages between faster and slower mem-
ories. The advantage of prefetching over migration is that
it provides faster access while avoiding costly updates to
page tables and TLBs. It also avoids writing any clean copy
of data from core-side prefetch buffer back to PCM. While
traditional caching also makes a copy and has similar ad-
vantages as our buffered data, the difference lies in when
and which data is prefetched into the buffer. Caches fetch
on a demand miss and the data that is cached may or may
not exhibit temporal locality. Our prefetching policies rely
on analyzing memory access patterns and predicting data
usage and prefetch it in advance of a demand for it. Unlike
caching, prefetching is done opportunistically only when the
memory is not busy serving the demand misses. Thus, the
policy for data fetching is the key difference between caching
and prefetching.

2.3 Hardware Prefetching Overview

2.3.1 Traditional Hardware Prefetching Background
Traditional on-chip prefetching mechanisms attempt to

pro-actively fetch data from lower level memories (farther
from core) to higher level memories (nearer to core) before it
is requested by the processor. Stride prefetching [6], stream
buffers [13] and Markov prefetching [12] are some com-
mon approaches for cache-level hardware prefetching. Stride
prefetching relies on a hardware structure that detects recur-
ring strides in the sequence of load addresses. This structure
is then typically indexed by the program counter (PC) of the
current instruction to predict the stride of future accesses.
Depending on the prefetching degree N, the prefetcher then
brings the next N elements based on the predicted stride.
Markov prefetching relies on address correlation prefetching
and stores the history of the miss address stream. For ex-
ample, we have below miss address stream-

miss address stream: a, d, x, m, a, p, j, j, a

There is one entry for each unique miss address (e.g., “a”)
in the correlation table and the entry also records one or
more miss addresses (e.g., “d” and “p”) that followed the
first miss address (“a”). When address “a” misses again, the
table is indexed using this address to find out which miss
addresses followed “a” last time (in our example they are “d”
and “p”). Distance prefetching [14], another kind of correla-
tion prefetching can be seen as generalized Markov prefetch-
ing. The correlation table stores one entry for each unique
“delta” between any two consecutive miss addresses instead
of storing the miss address itself. Each entry records the
history of deltas seen right after the current “delta” instead
of recording the actual miss addresses as done in Markov
prefetching. The correlation table is indexed by deltas of
the global miss addresses.
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Figure 1: High level organization of on-chip
prefetcher (figure is not drawn to the scale).

2.3.2 Prefetching for Hybrid Memories
A number of publications have explored prefetching for

emerging memory technologies. Ahn et al. [3] proposed a
two-level prefetcher for systems with Hybrid Memory Cube
(HMC) as main memory. One of them is a conventional on-
chip prefetcher between last-level cache (LLC) and mem-
ory. The other is a specialized prefetcher that prefetches
from HMC DRAM memory layers to a small SRAM prefetch
buffer within the HMC module. In this design, in-memory
prefetching employs a simple stream prefetcher [13] at cache
line (64 byte) granularity with a prefetch degree 4. Oskin
et al. [27] have proposed the use of stride prefetching while
using HBM as an OS page cache for conventional DRAM
memory. Stride prefetching at page size (4KB) granularity
with small prefetch degree was found to be beneficial. Yoon
et al. proposed [38] to use conventional DRAM as a row
buffer cache for PCM. This work caches the PCM row buffers
that have high access counts but also incur more row con-
flicts (i.e., have lower temporal locality) in DRAM to save
repetitive activation of the same row.

3. METHODOLOGY
In this section, we first discuss the organization of the on-

chip (core-side) prefetcher and then provide a brief overview
on the prefetch technique and the data migration technique
that we have studied. We evaluate a baseline system with
HBM and PCM memory as part of the same flat-address-
space; details are provided in section 4.

3.1 Organization of On-chip Prefetcher
Traditional prefetchers actively fetch data from lower level

memories to higher level memories before it is requested by
the processor. In our study, the prefetch buffer, which holds
the prefetched data from the slower memory (PCM in this
case) sits on the core-side global prefetch controller (GPC),
as shown in the Figure 1. We assume the prefetch buffer is
SRAM. Since such on-chip storage is a scarce resource we
only prioritize prefetching from the slower memory (PCM).
In the Figure 1, for better visibility we are showing only one
memory channel for each type of memories, actually there



are more of them. We assume there is one memory controller
per channel. The prefetch policy engine (PPE) implements
the necessary prefetching policy and sends the prefetch re-
quests to the PCM memory controller. The prefetch queue
(Pref. Q) sitting inside the PCM memory controller, holds
the prefetch requests for the PCM channel. The prefetching
path is shown in Figure 1 by the dotted path 1 and 2. On a
demand memory request, the prefetch buffer is checked first
and on a prefetch buffer hit, the data is moved to the LLC
as shown in Figure 1 by solid path 1 and 2. On a prefetch
buffer miss, the request goes to the read queue (RDQ) for a
memory read and finally the request is served by the mem-
ory channel, this path is shown in Figure 1 by solid path 1,
3, and 4.

3.2 Distance Prefetching
We implement the distance prefetching policy [14] which

is a correlation based policy and a generalized form of Markov
prefetching [12]. The general idea is to look at the past
history of deltas (differences) between memory addresses
(those that miss the LLC) to predict the future addresses
and prefetch them. Distance prefetching uses a correlation
table with one entry for each unique delta between any two
consecutive miss addresses. This delta serves as the index
into this table. Each entry stores the history of deltas seen
right after the current delta. In our study, we explored dis-
tance prefetching since it is more generalized than Markov
preteching, does not depend on the PC value and is useful
in detecting repeating sequences even with non-unit strides.
We used the Global History Buffer (GHB) structure to im-
plement the distance prefetcher as presented in Nesbit et al.
[25] and call it Global Delta Correlation (GDC) prefetch-
ing policy. In the GDC prefetching policy, the width degree
implies how many different paths we want to explore and
the depth degree suggests how far into future we want to
prefetch; more details are available in Nesbit et al [25]. For
our core-side prefetcher we evaluated GDC policy with width
degree 1 and depth degree 4. We choose the GHB method
for implementation since it requires smaller storage, provides
higher accuracy and fewer conflicts as compared to the other
table based implementations. For example, for a 512 entry
Index table and a 512 entry GHB table the storage overhead
is only 8KB [25].

3.3 CAMEO
One state of the art two level memory management study

by Chou et al. proposes CAMEO (CAche-like MEmory Or-
ganization) [4], which integrates 3D-stacked DRAM (faster
memory) and commodity DRAM (slower memory) in a hy-
brid main memory system. In CAMEO both the faster and
slower memory are visible to the OS as flat address space,
increasing the total physical memory capacity and also the
faster memory serves as a hardware cache providing faster
access to the recently accessed data. The cache works with
conventional cache line size (64 byte) granularity, exploiting
the data locality on a fine-grained basis. When a cache line
is requested from the slower memory, CAMEO swaps the
requested cache line with another cache line in the faster
memory allowing subsequent request to the same cache line
being serviced by a low latency and high bandwidth access
to the faster memory. This swapping process ensures that
there is only one copy of the line in the entire memory and
hence the memory capacity is maximized. The swapping

mechanism in CAMEO is handled by a table (Line Location
Table or LLT) which tracks the physical location of the data
lines. The advantage of CAMEO over related page migra-
tion policies lies in the simplicity of operation; it relies on
well-known cache policies and does not require access count
mechanisms of other related work [21, 34].

In this study, we want to evaluate the performance of
CAMEO for heterogeneous memory systems involving NVMs.
We employ a heterogeneous memory system involving HBM
and PCM in a CAMEO like model, where HBM serves as
the faster memory and PCM serves as the slower memory.

4. EXPERIMENTAL SETUP

Processor Values
Number of cores 16
Core frequency 3.2 GHz
Issue width 4-wide Out-of-Order
ROB size 128 entries
Caches Values
L1 I-cache (private) 32 KB, 2-way set associative
L1 D-cache (private) 16 KB, 4-way set associative
L2 cache (shared) 16 MB, 16-way set associative
PCM Memory Values
Channels, capacity 2, 16 GB (2 x 8 GB)
Memory Controller (MC) 1 per channel
Ranks, banks 1 rank/channel, 8 banks/rank
Row buffer size 2 KB
Read queue 64 entries/MC
Write queue 256 entries/MC
Prefetch queue 32 entries/MC
Read latency 80 ns (6ns tPRE +

69ns tSENSE + 5ns tBUS)
Write latency 250 ns tCWL
Bus (per channel) 64-bit, 400MHz

(LPDDR 800MHz)
HBM Memory Values
Channels, capacity 8, 1 GB (8 x 128 MB)
Memory Controller (MC) 1 per channel
Ranks, banks 1 rank/channel,

2 bank groups/rank,
4 banks/bank group

Row buffer size 2 KB
Read queue 32 entries/MC
Write queue 32 entries/MC
tCAS-tRCD-tRP-tRAS 14 ns - 14 ns - 14 ns - 34 ns
Bus (per channel) 128-bit, 500MHz

(DDR 1.0 GHz)

Table 1: Baseline configuration

4.1 Simulation Infrastructure
We use Ramulator [17] to simulate a 16-core system with

main memory comprised of 1 GB HBM and 16 GB PCM.
Detailed configuration parameters are shown in Table 1. We
follow [24] for PCM latency parameters. The simulator is
used in trace-driven mode with a CPU model to estimate
instruction-per-cycle (IPC). The traces were generated us-
ing PinPlay kit [10] to identify and capture load/stores
from a region of interest (ROI) of one billion instructions
for each of the benchmarks in the case of single-threaded



No. Workload Benchmarks MPKI Footprint (GB)
1 mcf 16x mcf 65.04 16.03
2 lbm 16x lbm 44.21 6.30
3 milc 16x milc 23.05 9.05
4 omnetpp 16x omnetpp 18.96 2.06
5 astar 16x astar 16.80 2.63
6 GemsFDTD 16x GemsFDTD 9.59 10.59
7 zeusmp 16x zeusmp 8.14 3.32
8 bwaves 16x bwaves 6.90 6.82
9 cactusADM 16x cactusADM 3.70 2.31
10 xalancbmk 16x xalancbmk 4.50 2.89
11 mix1 mcf-sphinx-astar-lbm-gcc-soplex-mcf-libquantum

-lbm-soplex-astar-milc-milc-mcf-omnetpp-libquantum 29.36 5.64
12 mix2 lbm-mcf-dealII-soplex-dealII-bzip2-cactusADM-soplex

-GemsFDTD-soplex-lbm-lbm-GemsFDTD-mcf-cactusADM-dealII 20.47 5.08
13 mix3 GemsFDTD-libquantum-milc-dealII-sphinx-leslie3d-cactusADM

-gcc-bzip2-sphinx-leslie3d-cactusADM-GemsFDTD-astar-gcc-milc 10.99 3.34
14 mix4 mcf-libquantum-soplex-GemsFDTD-milc-leslie3d-lbm-gcc-bzip2

-soplex-cactusADM-dealII-soplex-libquantum-libquantum-bzip2 18.27 3.60
15 mix5 mcf-lbm-soplex-lbm-mcf-soplex-mcf-mcf

-soplex-lbm-soplex-soplex-lbm-lbm-mcf-lbm 42.51 7.61
16 mix6 libquantum-omnetpp-gcc-omnetpp-sphinx-milc-libquantum-gcc

-libquantum-sphinx-sphinx-astar-libquantum-milc-gcc-omnetpp 19.64 2.11
17 xsbench XSBench multi-threaded (16 threads) 22.01 14.68
18 lulesh LULESH multi-threaded (16 threads) 13.51 6.80
19 miniFE 16x miniFE 6.72 10.66
20 CoMD 16x CoMD 1.41 2.30

Table 2: Evaluated workloads

benchmarks or for each of the threads in the case of multi-
threaded benchmarks. Then we generate a 16-core multi-
programmed/multi-threaded memory access trace (details
are provided in section 4.2) using the multicore cache simu-
lator Moola [33]. In our evaluation, we use hybrid memory
system as shown in Table 1 without any prefetching and any
data migration as our baseline.

4.2 Workloads
We choose 17 memory-intensive benchmarks from the SPEC

CPU2006 suite [35]. Additionally, we used four HPC bench-
marks, XSBench [2], LULESH [18], CoMD [23] and miniFE
[7] which are representative benchmarks from the US De-
partment of Energy (DOE) for evaluating HPC systems [1].
As shown in Table 2, there are 20 different workloads made
up by mixing applications from the above mentioned bench-
marks. To generate a multi-programmed workload (1-16, 19,
and 20 in Table 2) we take 16 ROI traces (16 copies of traces
of one application or traces from different applications) and
bind each trace to one core of Moola cache simulator and
generate a 16-core multi-programmed memory access trace
that can then be used by Ramulator. To generate a multi-
threaded workload (17 and 18 in Table 2) we take ROI traces
from each of the threads of a 16-threaded application and
similarly use Moola to generate a 16-core multi-threaded
memory access trace that can then be used by Ramulator.

5. EVALUATION
For all of our experiments, the baseline is a hybrid mem-

ory system as shown in Table 1 without any prefetching or

migration. We first analyze the prefetching policies in sec-
tion 5.1. In the next section 5.2 we compare the performance
improvement provided by our best core-side prefetching pol-
icy with CAMEO. In section 5.3 we show the Energy Delay
Product (EDP) analysis of the techniques discussed in sec-
tion 5.2. We present the prefetch buffer capacity sensitivity
and PCM access latency sensitivity studies in section 5.4.

5.1 Prefetching Policy Analysis
We assume the on-chip prefetch buffer is a SRAM with

2 MB capacity organized as a 16-way set associative, write-
back with least recently used (LRU) eviction policy buffer.
After performing capacity sensitivity analysis for on-chip
buffer sizes (1/2/4 MB sizes as presented in section 5.4),
we found that 2 MB is reasonable since it is small enough
to be placed on-chip and it provides similar performance
improvement as a 4 MB buffer. We evaluate GDC prefetch-
ing with two different granularities- conventional cache line
size granularity (64 bytes) and main memory row buffer size
granularity (2 KB, we simply refer to it as block granular-
ity). In case of block granularity (2 KB) prefetching, for a
miss address we take the block address containing the cache
line instead of the cache line address. Hence, we use Dis-
tance prefetching to predict the block sequence and a similar
approach was taken in [27].

It is important to note that we prefetch only from the
slower memory (in our case which is PCM). We adopt this
approach since HBM is already much faster and provide
higher bandwidth than PCM hence we do not want the
data lines/blocks prefetched from PCM to be evicted by the
data lines/blocks coming from HBM. In other words, we do
not want to introduce thrashing like situation in the much



Policy Configuration
Legend in Figure Description

GDC 64B GDC policy, width degree=1 and depth degree=4, 64 byte prefetch granularity
GDC 2KB GDC policy, width degree=1 and depth degree=4, 2 KB prefetch granularity

Table 3: Experimental configurations of prefetching policies

smaller prefetch buffer by prefetching from both faster and
slower memory. Details of the policies are provided in Ta-
ble 3. These prefetching policies are hardware implemented
and they do not require the load/store PC (or instruction
pointer-IP) information to generate prefetch requests.

Figure 2 presents the IPC improvement (in percentages)
provided by different core-side prefetching policies over the
baseline without any prefetching/migration using the left
y-axis. The positive y-axis on the left shows IPC improve-
ment whereas the negative y-axis on the left shows perfor-
mance degradation. The GDC 2KB scheme provides the
best average IPC improvement of 15%, whereas GDC 64B
provides 8% average IPC improvement. The result shows
that prefetching at larger granularity provides better per-
formance improvement. To analyze the result further we
use two different metrics- Accuracy and Coverage to eval-
uate the prefetching policies. Following [19] we define the
metrics below-

Accuracy = Num of useful prefetches ÷Num of prefetches

Coverage = Num of prefetch hits÷ (Num of demand requests
to PCM + Num of prefetch hits)

Note that we calculate the Coverage metric with respect
to the demand memory requests going to PCM only, since
we do not prefetch from HBM. Figure 3 shows the Accu-
racy (in percentages) and Figure 4 shows the Coverage (in
percentages) of the prefetching policies. For the most work-
loads we observe that better prefetch Accuracy and Cover-
age together lead to better IPC improvement as expected.
For three of the workloads (omnetpp, astar and xalancbmk)
we observe exceptions that GDC 64B policy has the best
Accuracy and Coverage but it does not provide better per-
formance than GDC 2KB policy. We further investigate on
this and found that since the GDC 2KB policy prefetches in
2KB granularity it generates memory requests to contiguous
memory addresses which fall in the same row buffers (actu-
ally two row buffers over two PCM memory channels since
we use cache line level address interleaving over the chan-
nels), hence it achieves higher row buffer hits for prefetch re-
quests and can prefetch faster than GDC 64B. On the other
hand GDC 64B policy prefetches in cache line granularity
and may send prefetch requests to a number of different row
buffers, hence it has lower row buffer hits. Also, for these
workloads, GDC 2KB introduces more row buffer hits even
for demand requests than GDC 64B scheme. We next inves-
tigate lbm’s performance degradation for GDC 64B policy.
Though we prefetch opportunistically when there is no de-
mand read request pending to the same bank, the existing
prefetch request which is being serviced currently need to
be completed first before the next demand request to the
same bank can be serviced, hence the demand request may
be delayed. We found that for lbm GDC 64B policy intro-
duces 10x more row buffer conflicts for prefetch reads than

GDC 2KB policy leading to performance degradation.

5.2 Performance Analysis
Figure 5 shows IPC performance improvements (in per-

centages) of core-side prefetching (GDC 2KB) policy and
CAMEO over the baseline without any prefetching/migration.
A positive y-axis on the left shows IPC improvement whereas
the negative y-axis on the left shows degradation. The right
y-axis shows CAMEO hit-rate in percentages for analysis
purposes. The hit-rate represents the fraction of memory
requests that were found in HBM over the total number of
demand memory requests. The overall IPC improvements
for CAMEO and core-side prefetching over the baseline are
50% and 15% respectively.

CAMEO-based migration technique outperforms the core-
side prefetching for 2/3rd of the workloads in this study
as shown in Figure 5. For workloads (mcf, omnetpp, as-
tar, mix1, mix2, mix3, mix5, and mix6) which have higher
IPC improvements by CAMEO (at-least 54% over core-side
prefetching and 70% over no-prefetching) also show higher
CAMEO hit rates (over 74%). The six of the best per-
forming (with respect to CAMEO) workloads (mcf, om-
netpp, astar, mix1, mix5 and mix6) exhibit very low spa-
tial locality (on logical 2 KB block granularity) and thus
they adopt well with CAMEO since it leverages locality
on cache line basis. On the other hand, for around 1/3rd

of the workloads (milc, GemsFDTD, zeusmp, bwaves, cac-
tusADM, lulesh, and miniFE) which have lower CAMEO
hit rates (∼64% and below) show worse performance with
CAMEO than the core-side prefetching. Lower hit rate in
CAMEO leads to more swapping and hence degrades the
performance since PCM is much slower. For these workloads
core-side prefetching provides on average 19% IPC improve-
ment over CAMEO. For zeusmp and bwaves, CAMEO even
performs worse than no-prefetching baseline. We attribute
this behavior to smaller workload footprint (in such cases
the baseline already performs better since a significant por-
tion of the footprint is resident in HBM), as can be seen
with lower CAMEO hit rates (54% and 24% respectively for
zeusmp and bwaves), higher miss-prediction rate and its as-
sociated latency penalty. The lower hit-rate of CAMEO for
some applications may be due to the spatial locality of the
workloads not exploited by CAMEO. However the tempo-
ral locality of all workloads is exploited as CAMEO works
more like a cache storing frequently accessed data lines in
the faster memory. CAMEO uses a direct-mapped HBM
cache organization optimized with co-locating tags with the
data lines, which minimize hit latency. Since direct-mapped
cache has more conflict misses, this may be another reason
for lower hit rates in HBM for some workloads. Also for
core-side prefetching, in a few cases (mcf, astar, mix5, and
xsbench) we observe very little (less than 5%) performance
gains over the baseline. We attribute this to high (over 16)
misses per kilo instruction (MPKI) of the workloads and not
being prefetch friendly. With much larger prefetch buffer
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Figure 2: IPC improvement (%) of different prefetching policies over the baseline without any prefetch-
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Figure 3: Accuracy (%) of different prefetching policies
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and varying the prefetching policy might improve the re-
sults.

5.3 Energy Delay Product Analysis
We also analyze dynamic Energy Delay Product (EDP)

for our workloads, in order to quantify energy versus perfor-
mance trade-offs. Here we only considered dynamic memory
energy. By multiplying the total energy consumed by mem-
ory accesses by the total execution time we get the EDP.
Lower EDP is preferable. For SRAM implemented on-chip
prefetch buffer access energy, we used values obtained from
CACTI [37]. For PCM read/write energy values we used
the numbers as presented in [39] and for HBM access energy
value we relied on publicly available information in [28].

Figure 6 shows the EDP values for GDC 2KB prefetching
policy and CAMEO, normalized with respect to the EDP
values for the baseline without any prefetching/migration.
The EDP values for the prefetching policy follows the trend
of the performance data, as expected. Prefetching improves
EDP for each of the workloads (in few cases by only 1%)
and on average by 8% over the baseline. In the case of
CAMEO, for every miss in HBM we need to read the data
(in cache line granularity) from PCM into HBM (as HBM is
a cache, it needs to be filled on every demand miss). Since
HBM is a direct-mapped cache, to store a new cache line
we have to evict the older cache line residing in the same
set. This evicted cache line from HBM need to be written
back to PCM even if it is clean (since HBM is also part
of the hybrid physical memory address space and there is
only one copy of the data in the entire physical memory).
In other words, every HBM miss results in a write back
to PCM. So for workloads which have higher miss rates,
CAMEO EDP rises since PCM write consumes high energy.
There are three extreme cases- bwaves, xsbench, and miniFE
for which CAMEO EDP is much higher than the baseline
system EDP. We investigated these cases and found that the
actual workloads have fewer writes to PCM in the baseline
configuration but in case of CAMEO they result in very
large number of writes to PCM leading to much higher EDP.
For example, in the baseline configuration for the xsbench
workload only 0.1% of the total demand memory accesses are
writes but in case of CAMEO 75% of the demand accesses
result in writes into PCM, hence the CAMEO EDP is much
higher than the baseline EDP in this particular case. We feel
this is an important observation since for NVMs which have
limited write endurance (e.g., PCM, RRAM [29]) CAMEO
or any page migration policy may decrease the life time of
such memories more rapidly than usual.

5.4 Sensitivity Analysis

5.4.1 Prefetch Buffer Capacity Sensitivity Analysis
Figure 7 shows IPC improvements for GDC 64B and GDC

2KB schemes with buffer capacities of 1, 2 and 4 MB. In the
legends of Figure 7 we augment the policy name with the
respective buffer size. For GDC 64B we generally see perfor-
mance degradation going from smaller buffer size to larger
buffer size. This is partially due to the increased tag array
lookup delay for larger prefetch buffer with smaller prefetch
granularity (64 byte). Since every demand miss to PCM is
checked against the prefetch buffer tag array, a miss adds a
delay overhead to each memory request that ends up going
to PCM memory. To improve overall performance, prefetch

Timing Description
Config. Name

basic PCM timing as presented in Table 1
fast PCM read/write 2x faster than

the basic PCM timing
slow PCM read/write 2x slower than

the basic PCM timing

Table 4: PCM timing configurations

Coverage should be high enough to hide the aforementioned
delay factor introduced by prefetching. But we found that
such increase in buffer size does not provide considerable
improvement in prefetch Coverage. The prefetch buffer is
a 16-way set associative buffer and we expect larger sized
buffer should decrease the number of conflicts among the
prefetched blocks and hence a prefetched block can retain in
the buffer for longer period and provide more hits. But as
we analyze the temporal locality behavior of the workloads
we found that for most of the workloads the re-use distance
of most of the accesses is larger than the time interval that
the block can reside in the prefetch buffer, hence though we
double the buffer size it is still small in absolute scale (up to
only 4MB) which fails to provide much higher prefetch Cov-
erage. For GDC 2KB policy we see negligible performance
improvements for more than half of the workloads for larger
buffer sizes. We note here that for GDC 2KB scheme the
prefetch buffer tag array size is much smaller (∼32x smaller)
than that of GDC 64B scheme since the latter prefetches in
64 byte granularity whereas the former prefetches in 2 KB
granularity (thirty two 64 byte lines require one tag). Hence
for GDC 2KB larger buffer size do not introduce substan-
tial increment in tag array lookup time and we see slight
performance improvement on average.

5.4.2 PCM Access Latency Sensitivity Analysis
To evaluate the impact of PCM read/write timing on the

aforementioned prefetching policies and CAMEO, we have
repeated our experiments for a faster and a slower PCM
memories as described in Table 4. Here we cover a tim-
ing range starting from a fictitious highly latency optimized
PCM which may become available in future to much slower
Multi-Level Cell (MLC) PCM. Figure 8 shows the PCM ac-
cess latency sensitivity analysis for the three configurations
shown in Table 4. In Figure 8, for each timing configura-
tion (e.g., fast), IPC improvements (degradations) are shown
with respect to the IPC of no-prefetching in that particular
timing configuration (e.g., fast). The positive y-axis on the
left shows IPC improvement whereas the negative y-axis on
the left shows performance degradation.

In section 5.2 we found that for around 1/3rd of the work-
loads (milc, GemsFDTD, zeusmp, bwaves, cactusADM, lulesh,
and miniFE), GDC 2KB policy provides better performance
than CAMEO. The observation still holds for all the timing
configurations with a few exceptions, CAMEO now outper-
forms GDC 2KB for milc, GemsFDTD, and lulesh for the
fast timing and for miniFE for the slow timing. For fast
PCM the amount of time we save by getting a prefetch buffer
hit or by HBM hit in case of CAMEO is smaller than the
time we save in case of slower PCMs, hence we observe over-
all smaller gain with fast PCM. IPC gains/losses (over base-
line in respective timing configuration) provided by CAMEO
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keeps increasing for slower PCM for all of the workloads ex-
cept five of them (lbm, milc, mix4, xsbench, and lulesh).
For these five workloads IPC gains are decreased for slower
PCMs (note that there are still IPC improvements, only the
gains are lower relative to the faster PCMs). We found that
for most of these workloads PCM row buffer hit rates are
very high (at least 87%) and hence the impact of slower
PCM (increased read time from PCM data array to row
buffer) is not too severe in the baseline case. However, as
CAMEO introduces many row buffer conflicts in PCM for
these workloads, for much slower PCM it incurs a delay
factor and hence the attained IPC improvements are de-
creased. The improvement rate of GDC 2KB policy keeps
improving over no-prefetching for slower PCM for all of the
workloads except five of them (mix2, mix4, mix6, xsbench,
and miniFE). For workloads mix2, mix4, mix6, and xsbench
we see that prefetch Accuracy and Coverage decrease for
slower PCMs and hence there are smaller performance im-
provements. For miniFE though the prefetch Accuracy and
Coverage of GDC 2KB are high for the slow timing config-
uration PCM, we found that, it introduced large number
of demand read row buffer conflicts, which led to overall
performance degradation. For GDC 64B policy we see that
IPC gains/losses (over baseline in respective timing config-
uration) keep increasing monotonically for slower PCM for
most of the workloads.

6. CONCLUSION AND FUTURE WORK
When PCM is employed as a part of system main memory,

our evaluations show that the CAMEO-based data migra-
tion leads to performance improvements over our core-side
prefetching for 2/3rd of the workloads but for 1/3rd of the
workloads the performance is worse than core-side prefetch-
ing and in a few cases even worse than no-prefetching. The
lower performance improvement (or degradation) provided
by CAMEO is due to the large number of accesses to the
slower memory (viz., PCM) in case of lower CAMEO hit
rate. A second insight of our evaluation is that for NVM
(e.g., PCM), CAMEO may cause write endurance issues due
to frequent swaps specially when the hit rates are lower and
this may also lead to high energy consumption. When PCM
is used as a part of main memory, prefetching seems to be a
better choice for some workloads. Also, the prefetching pol-
icy evaluated in this work is a simple implementation but it
can further be optimized to get much higher performance im-
provements for PCM-based hybrid memory systems. How-
ever, CAMEO-based migration seems to perform better for
several benchmarks, thus it may be worthwhile combining
prefetching and migration.

As a continuation of this work, we plan to explore ad-
ditional prefetching policies which will be better suited for
multi-level hybrid memory systems than the conventional
prefetching policies. We also plan to combine both prefetch-
ing and migration in the same hybrid memory system. We
believe such combined approach would be beneficial when
a part of the hybrid memory is made up of NVM which
generally comes with write-related limitations.
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