Trash in Cache: Detecting Eternally Silent Stores

Jonathan Shidal Zachary Gottlieb Krishna M. Kavi
Ron K. Cytron University of North Texas
Washington University in St. Louis Krishna.Kavi@unt.edu

shidalj@wustl.edu zachgottlieb@gmail.com
cytron@wustl.edu

Abstract 1. Introduction

The gap between processing and storage speeds remains Bhe memory wall (the gap between processing and storage
concern for computer system designers and application de-speeds) remains a concern to computer designers and appli-
velopers. This disparity can be bridged in part by eliminat- cation developers. Moreover, many groups are now research-
ing unnecessary stores, thereby reducing the amount ef traf ing non-volatile memories such as flash and phase change
fic that flows from the processor and first-level caches to memories that can provide more scalable storage as opposed
the slower components of the storage subsystem. Reducingo DRAM, but which also have limited write endurance.
the “write” traffic can improve program performance, save Both of these problems can be alleviated if techniques can be
power, and increase the longevity of storage componerits thafound that decrease the amount of data that is written from
have limited write endurance. Techniques have been pro-the processor and first-level caches to other caches and main
posed and evaluated for identifying various classes oéstor memories.
that can be silenced. A relatively unexplored class of such Several approaches fatencing stores are summarized in
stores are those that would write data that is dirty, but dead Section 2. All such techniques attempttpiash (eliminate)
Such data appears as if it needs to be written back to mem-write operations from a running program, with the goal of
ory from cache, yet it can be proven that the application can saving time, power, and wear. In this paper, we present and
never subsequently access the data. evaluate a new technique for discovering data that is dirty,

In this paper, we suggest identifying garbage (trash) in but dead, in a cache. Because the data is dirty, evictiondvoul
cache, so that the dirty bytes associated with the trash needcause such data to be written from the cache, perhaps to
not be written to memory. We propose and evaluate a simplean intervening cache, perhaps to main memory. Where our
technique based on reference counting that finds a subset o&nalysis is successful, such data is protgead, in the sense
these “eternally silent” (dead) stores. When applied to-pop that the running application cannot possibly access thee dat
ular benchmarks, our results show that a significant fractio at any time in the future. Such data need not be written from
of the writes to memory can be silenced based on the impos-cache, and we follow the work of others in saying that those
sibility of an application subsequently accessing the.data writes have beeslenced.

The most closely related work to ours uses explicit deal-

Categoriesand Subject Descriptors B.3.2 [Design Styles]: location instructions (in languages such as C++) to clear
Cache memories; C.Ggneral]: [Hardware/software inter- the dirty bits of any deallocated storage still contained in
faces]; D.3.4 Processors]: Memory management; D.4.2 cache [4]. Our technique is concerned with languages (such

[Storage Management]: Garbage collection as Java) in which dead storage is automatically collected.
The challenge here is to detect dirty but dead storage (i.e.,

Keywords Write back, reference count, cache trash) in cache, prior to the data’s eviction and without any
explicit advice from the running application that the data i
dead.

This kind of information could be harvested from an ac-
tual garbage-collection cycle, except that the execution o
such a cycle would surely cause most, if not all, data in cache
to be evicted before it could be proven dead. We therefore
turn to less invasive techniques, even though they are con-
servative in determining dead storage. In this paper we ap-

ply a specialized form ofeference counting to detect dead
[Copyright notice will appear here once 'preprint’ opticrémoved.]

1 2014/4/3

data, which is implemented solely in the cache itself, requi on eviction, the data would not be written back from cache.

ing no extra storage or activity outside of the cache. We have However, a block of storage may be dead, in the sense that

prototyped our approach and conducted experiments whosehe application will not subsequently access its bytes,esom

results show that a significant fraction of the writes issued time before that block is explicitly deallocated by the pro-

from DaCapo benchmarks can be found dead prior to evic- gram. This period of time in which an objectristting (dead

tion. but not yet buried) may be important, because the object’s
Our paper is organized as follows. Section 2 presents bytes may suffer eviction prior to the application issuihg t

some background and related work. Section 3 details ourexplicit deallocation. Those bytes would be written need-

approach. Section 4 describes our experiments and theidessly from the cache.

results. Section 5 presents some conclusions and futute wor ~ Our focus in this paper is on languages such as Java

based on our results. that feature automatic storage management. The challenge
here is to find dead data in cache sufficiently quickly and

2. Background and Related Work noninvasively so as to_squash the write backs of such_ data

o _ . . _ . from cache. Our technique does not collect such data in the

As originally defined, asilent store instruction writes val- sense of garbage collection. Instead, we use a noninvasive

ues that exactly match the values already stored at the-specigarbage-collection approach to determine that the data is
fied memory address [10]. One study [10] showed that 20% dead and then reset the dirty bits of such data to avoid write
to 68% of the store instructions issued by some common packs.

benchmarks were silent. Efficient techniques for iderntidyi Because the data we find using this approachiis truly dead
this class of silent stores asguashing them have been con- in the running program, the program cannot subsequently
sidered. One study [9] reports the squashing of between 31%reference the data’s addresses until an actual garbage<oll

and 50% of a program’s silent store instructions, implying tion cycle is performed and the associated storage became
that only 6% to 34% of the benchmarkstal store instruc- eligible for allocation again. It is thus provably safe ferto

tions are squashed. Those results imply there is room to findsquash the writes of such data.

and eliminate more silent stores, and our paper presents one While our work concerns the dynamic discovery of data

such effort. that need not be written to memory, complementary research
The idea of silent stores has been generalize@rtpo- efforts have tried to reduce the generation of that dead data

rally silent stores [11]. Such store instructions write a value in the first place. Generally, calledloat reduction, both

to memory that changes its contents temporarily. A subse- static [2] and dynamic [6] techniques have been proposed.

quent store instruction will revert the stored value to & pre Combining bloat reduction with our technique is the subject

vious value of interest, perhaps one that was once stored inof future work, once bloat-reduction program transformers
memory or one that is available (but perhaps invalid) in an- gre available.

other processor’s cache. In a study of the latter case, over

40% of the communication misses due to supposedly invalid

cache lines can be avoided if the stores that cause the inval3- APProach

idation are determined to be silent. This is particulary-si The goal of our work is to determine data that is dead in

nificant for multi-threaded applications running on mudtie cache prior to that data’s eviction. Dead data cannot be

systems. referenced by an application, and such data would evegtuall
A related effort [7] sought to decrease memory traf- be reclaimed via garbage collection.

fic that was introduced to accomplish reference counting. An exact approach to this problem would involve running

Reference counts often change briefly and then return toan accurate and complete garbage collection algorithm. For

a previous value. This form of Lepak’s temporally silent example, a mark-and-sweep algorithm [13] marks all of an

stores [11] takes advantage of knowing that the stores areapplication’s live data. Any data left unmarked is dead, and

due to (compiler-generated) reference counting. The exper the garbage collection algorithm could reclaim that data fo

iments conducted using that idea squashed almost all of thesubsequent allocation. At the same time, such data coudd als

increase in memory traffic that was attributable to refeeenc be marked nondirty if the data resides in cache. This idea

counting. However, those studies were conducted without ansuffers from the following difficulties:

accurate cache model. i i)
The most closely related work to the approach we present ® There is some time lapse between (’jata becoming dead

here is a recent effort [4] that proposed squashing thesstore ~ 2nd the garbage collection algorithm’s execution. While

of data that have been explicitly deallocated. The focus of ~the dead data is rotting, it may be evicted from cache

that study was the energy saved by avoiding write backs of ~ Pior to the garbqge collector’s execution, and thereby be

explicitly deallocated data. When an application writteri unnecessarily written from cache.

language such as C++ issueddlete operation, the dirty e Garbage collection is a memory-intensive activity, and as

bits of the affected data are reset. If those bits are sghicl such it tends to make full use of the cache. Thus, it is

2 2014/4/3

likely that the very execution of the garbage collector will 3.2 Cache-Only Reference Counting

evict most, if not all, data from cache before any of that \ye essentially propose architectural support for refezenc
data can be proven dead. Such data is also unnecessarily, nting solely within the cache. Outside of the cache, ref-

written from cache. erence counts do not exist (at least, for our purposes). We re

Because of these difficulties, we propose a limited applica- quire no (software) write barrier, and we do not use refezenc

tion of reference counting to determine dead data in cache. counting to collect dead objectdnstead, we use a reference
count’s transition td to clear the dirty bits of the associated

3.1 ReferenceCounting object. The reference counts themselves are not contained
in memory. They are allocated instead in the cache, which

Reference counting [13] associates a counter with each ob- : ;
manages their values as described below.

jectin the runtime heap (the area from which objects are dy-
namically allocated). For each obj€eEt its reference count allocate(An): a new object ofn bytes is allocated at
accurately reflects the number of referencef td@hese ref- addressa.
erences can come from any object (includingself), from

the stack, from registers, or from statically allocatedictr
tures. Maintenance of reference counts is typically accom-
plished via anrite barrier: a segment of code that executes
whenever an application executes an instruction that can af
fect reference counts. Such instructions include those tha |framepush: anew frame is pushed onto the runtime stack,

refstore(p,q): a reference field at addregsis set to the
value (object addresg)

refload(q): areference to the object at address loaded
onto the runtime stack.

modify the contents of the runtime heap, change the values in response to a method call.
of registers, change the contents of the stack, or change the | framepop: the topmost frame on the runstack is popped, in
values of static variables. response to a methoditurn.

The write barrier for reference counting is interested only | returnref(q): the currently executing method is terminat-
in operations that affect references (pointers). Whenexref ing, returning a reference to (object addregs)

encer is modified, the write barrier considers the old value
of r (r,14) and the value of- established by the instruction
(Tnew)- If 714 1S Not null, then the reference count associ-
ated with the object referenced by, is decremented. Sim-
ilarly, if r,. is not null, then the reference count at its ref- Our approach requires the cache to detect the actions
erenced object is incremented. Finally, if a reference toun performed by the running application as described in Fig-
becomed), no references exist to its associated object, and ure 1. Languages like Java have type systems that allow run-
the storage associated with the object is then known to betime knowledge of which stores are data and which stores
dead. are references. It is thus possible to interpret the above

Although some applications of reference counting are actions exactly. It is easiest to conceive of these actions
somewhat common (for example, smart pointers in C++), as realized by instructions explicitly executed by the pro-
the technique is not widely implemented to manage entire gram. The Java Virtual Machine (JVM) conveniently has
heaps for the following reasons: operations that map well to these actions. For example, the
JVM’'s putfield andputstatic operations correspond to
arefstore instruction when the affected storage is a ref-
erence. Other instances of those JVM instructions stowe dat
* Extra cost is incurred at each store due to the write bar- (of type int, double, etc.) instead of references. Where

Figure 1. Directives that interface between the running ap-
plication and the cache.

e Extra storage is required throughout the heap to contain
the objects’ reference counts.

rier's activity. such instructions are not available, a cache can be sigilarl
* Maintenance of the reference counts increases the trafficadvised by cache directives in the spirit of the PowerPC's
between the CPU and memory. data cache instructions.

As an overview of our approach, we begin by describing

If an objectT participates in a structure with cycles of .
*) P P Y the most favorable scenario.

references, then the reference counfo€an never be-
come0. Correspondingly, any object referenced directly An objectT is allocated, and all of its bytes are contained
or indirectly from T will always have a positive refer- in cache, perhaps spread across multiple cache lines as de-
ence count, and therefore be ineligible for collection by picted in Figure 2. Throughout the rest of this description,
this techniqgue. Common examples of such cycles include we assume (ideally) that none of the bytegduffers an
doubly-linked lists and trees whose nodes also reference eviction. The reference count held by the cacheZfas

their parent. initialized to0 and is incremented tb as the reference to

. . the newly allocated” is stored onto the runtime stack.
Except for the last issue, the form of reference counting we

propose does not share the above disadvantages. LHowever, in Section 5 we propose an approximation of this.

3 2014/4/3

¢ Subsequentt®’s allocation, the running program changes directive, we describe below the actions taken by the cache
a field of objectU, previously null, so that it references and how those actions can be realized as architectural sup-
T by arefstore instruction. This action increments the port in hardware. We organize our discussion according the
reference count in the cache f6rto 2. the heap and stack activity of a program running in a JVM.

« Subsequently, the field &f that reference® may or may AItho.ugh it may appear that registers have been ignored, the
not be evicted from cache. JVM implements registers as stack cells. Thus, our treatmen

i i of stack activity also covers register loads and storesén th
* In either case, a subsequertstoreto thatfield (say,to j/m.

null) will cause the reference count in cachefoto drop

to1l. 3.3.1 Heap Activity

* Now the only reference t@ is from the runtime stack. =~ Theallocate instruction specifies that bytes of storage
A subsequent pop of the stack frame referendihwill have been allocated starting at addrds$-or Java, this di-
decrement the reference count fBrto 0, which causes rective is due to aew, newarray, Or clone program oper-
the cache to regard the bytes associated Wits dead. ation. Similar gestures in other languages are easily accom

modated by our approach. For Java, all bytes of the specified

.] . . o storage are initialized t6. This initialization is explicit in

* Finally, the reference fields contained withlirare visited, 354 “and so the values must behave as if written to storage,
and the reference counts of any objects they reference arghough they may reside only in cache just after allocation.
decremented. The cache responds to this directive as follows. Given the

e This in turn can trigger similar actions taken on other dead starting addressl and extent of the allocation, each line
objects in cache. Although these decrements cannot becan determine which of its bytes, if any, are contained in
done concurrently, they can be performed off the critical this allocation. The line then records a mapping between the
path(in subsequent cycles) to avoid a significant delay in object (which can be represented by the starting addtgss
program execution. and that range of bytes. This action can be performed con-

currently for each line in the cache.

Each cache line may host storage from diffeesiifocate

tructions. For the purposes of our study, we placed no

limit on the number of storage blocks a given cache line

might host. However, no cache line can host more thah

. X . blocks, where: is the number of bytes in a cache line and

dwelled in cache long enough for it to be determined dead. is the smallest block (least number of bytes) that can be allo

;O(; thgse lines off tEat arﬁ eV|tcted prrllotrhto deter_m;nl?g_ cated. For each cache line, our simulator maintains a list of
b tea} ’ Qturgpplioa;c cou hno gq“‘?‘s_t_ | € a:_ss_oma eb 'trwmappings between objects and the range of bytes associated
yies WrIe Dacks from cache. Lur inftial optimism about - ;h the objects in that cache line. Hardware could place a

the success of our approach stemmed from the widely ac-

; .) ~~ limit on how many objects are recorded, and devote circuitry
cepted observation that objects tend to die young [1], which to recording the mapping of those objects. For those objects
has been verified for Java [8]. In other words, it is likelyttha

: , beyond the capacity of that hardware, their bytes would be
a newly a_lllocated Obje(?t will become d_e?d (whether we can written back from cache even if those objects are dead. In
_detect _th|s or not) relatlvely_soon after it is allocatedop‘- any case, the goal of this operation is to remember which
Jects (.j'e. young, then thgre IS a gqod chance that their bytesportions of a cache line are associated with the blocks of
are stillin caqhe atthe time of their degth. . . allocated storage hosted by the cache line.

The experimental results we report in Section 4 confirm

the viability of our approach. In the remainder of this sec- 19 % ®o%
tion, we describe our implementation in greater detail and j
point out its inherent and addressable shortcomings.

¢ The dirty bits associated with's bytes are cleared.

As for T', the running program could not possibly access
its bytes after it has been determined dead. When the byteﬁns
associated witl” are evicted, they will not be written back
from cache because their dirty bits have been cleared.
Crucial to the success of the above description is That

r o

3.3 Cachelmplementation Details .

Our experimental setup described in Section 4 includes a ZLLLhh. - G - A; A DAY

custom cache simulator, in which we implemented the cache

protocol described here. Although the protocol is realized Figure 2. Illustration ofallocate instructions. The cache

in software for this paper, we developed it with a hardware shown here has 5 lines, each with 32 bytes.

realization in mind. The relevant details are describedim t

section. An illustration of a series ohllocate instructions is
The cache responds to the directives issued by the run-shown in Figure 2. Suppose afilocate occurs for object

ning application that are shown in Figure 1. For each such T that occupies the portions of lin@s- 2 as shown. Subse-

4 2014/4/3

guently amllocate occurs foru that occupies the portions To track the stack activity, theefload instruction in-
of lines2 — 4 as shown. Mappings are established for the forms the cache that a reference has been loaded onto the

cache lines as follows: stack, pointing ta;. The cache must determine whether this
Line Hosted objects is the first reference from the stack, and if so, remember the
0 T-{20...31} frame associated with the stack’s referenceg,tsumma-
1 T1—{0...31} rized by the last-to-be-popped frame. In support of deter-
2 T—{0...15},U—{28...31} mining the proper frame, the cache is continually advised
3 U—{0...31} about stack activity via théramepush and framepop in-
4 U—{0...31} structions.

This stack-summarizing optimization [5] works only for a
single thread. We therefore detect if multiple threads conc
rently have stack references to an object, and if this ogcurs
we cause the object’s reference count to stick permanently
at its highest value. Thus, we cannot currently squash the
writes of objects referenced in this manner. We return t® thi
issue in Section 4.2. Another limitation of our current ap-
proach is that object liveness cannot be tracked for pastion
of objects that suffer eviction prior to death.

After an allocation instruction, subsequent program ac-
tivity may cause some (or perhaps all) of the lines associ-
ated with the allocation to be evicted from cache. For those
evicted lines, our ability to determine dead but dirty bytes
lost. Such is the price paid for limiting the scope of refer-
ence counting to the cache itself. Howeay cache lines
that remain unevicted can still be tracked by our approach.
In the example above, suppose that tnis evicted. The af-
fected portions off andU are no longer eligible for write
back squashing by our approach. However, the other por- .
tions of T andu remain candidates for finding dead but dirty 4 Experimental Results
storage. Thus it is possible that we squash some, but not all,There are two phases to the experiments we conducted:
of an object’s dirty write backs from cache. We study the
effectiveness of our approach in Section 4.

A refstore instruction specifies that a reference field
located at addregsis modified to point to address The
cache must act at this point to account for the affected ref- 2. We ran each trace through a cache simulator that includes
erence counts of storage blocks that are still contained in the in-cache reference-counting as described in Section 3.

.CaChﬁ' Asf described in Sfecr:lonb?a_.l, this efntalls dgcrement-.l.o generate the traces, we instrumented the JVM (Java Vir-
Ny t. ere ek:.ence countp the o ject t@(?te erencea (saz, tual Machine) inDpenJDK (version 1.8.0). The JVM was in-
r) prior to thisref count |n_struct|on_, and incrementing the strumented to generate the instructions detailed in Figure
referenf:e COUT“ .Of the objegtthat is referenced after the along with loads and stores of non-pointers and garbage col-
|ns_t|_rtl11F:t|on. This is i?h'eved as(;‘.(;.llovys. . lection cycles. Although the above does include all activ-

. Isrefstore reflects a modification to storage, in par- ity generateddirectly by the application, it is important to
ticular to the field at addregs As such, that field must be in note that some memory traffic is not included, namely the
cache, which means that its valudefore the instruction is activity of the JVM itself. The JVM makes aIIoc'ations out-
in cache as vyell. The cache line that contgiean announce giqe of the garbage collected heap that are managed explic-
LO a;lll cache I|neds that t_t;e(;ef;argnce COlIJInEOf (r)]b]edltzoull_d itly with (C++) new and delete operators, which we do not

© ecremente » provide t nqt nUll. Each cache lin€ 406 Thus our results are accurate as if the Java code were
can consult its mapping to determine if it holds any portion compiled and its instructions were executed without inter-
of objectr, and, if so, can decrement the reference count for pretation. Moreover, the previous work we mention in Sec-

r. Our cache simulator works in that fashion. Alternatively, -5 oo eliminating dead writes in explicitly managed lan-

the cache can rr;?lntalr;?jglobalﬂ(am(;ng all cache I|_nes) ref'guages [4] could address this traffic and could be combined

erence courr:t taf e, anc ¢ ecrsm Bireference countinre- i our work without interference. Our results would also

sponse to the aforementioned announcement. hold for data caches that candptit according to application
The cache line that contains the field at addgess| also activity [12]

see the newly stored valug and a similar annou_ncemer_n We wrote a trace-based cache simulator to implement our
can be ma_lde that the refergnce co_unt(s) associatedgwith approach as described in Section 3. This simulator is highly
should be incremented, provided tigas not null. componentized and greatly simplified our experimentation.
o The simulator processes the instructions shown in Figure 1
3.3.2 Stack Activity with the following exception. We assume that an application
Reference counts in cache must also account for references$evel garbage-collection cycle will evict most, if not dihes
that are sourced from outside the heap. Because stack framem a cache. As such, the collection cycle effectively flushes
exhibit last-in, first-out behavior, the references frore th the cache. Moreover, the collection cycle could change the
stack can be optimized as we have prevoiusly shown [5]. location of objects. For those reasons, it would be unfair fo

1. For each benchmark we tested, we gathered a trace of
data loads/stores into the heap as well as the cache direc-
tives described in Figure 1 issued by that benchmark.

5 2014/4/3

us to assume we could continue our approach through suchconflict misses and thus fewer evictions, allowing us more
a cycle. We therefore simulate a cache flush at the onset oftime to find objects’ lines dead prior to their eviction. Fig-
JVM garbage collection and do not resume our approachure 3 shows the fraction of squashed write backs found in
until the cycle is complete. Any write backs that may occur caches ranging in size from 8KB to 128KB.

during a garbage-collection cycle are not counted in our

statistics. We believe the impact of these write backs would o Fracton of squashed wrte backs for vaning cache sizes

be minimal as less than 0.3% of lines in each trace file are

created during garbage collection cycles.

Our tests were conducted using several oD&@apo-9. 12-bach
benchmarks [3]. For each benchmark, the first 50 million
lines of tracing were captured. We observed that this prefix
of a complete trace was sufficient to allow the JVM its ini-
tialization and to allow the benchmark to exhibit its starda
(steady-state) execution behavior. The traces were deate
using an initial application heap size of 64MB.

While our results call for further experimentation on a aviora fop lusearch pmd sunfow xalan
wider variety of cache configurations, we limited our exper- Benchmark
iments for the purposes of this paper as follows. For our first
experiments, we used the following configuration parame- Figure 3. Fraction of squashed write backs found for vary-
ters: ing cache sizes, each having 32-byte lines.

" 8k cache s

0.6 - 32k cachemw—m -
128k cachemmwmm

Fraction of squashed write backs

« 2-way associativity, a single dirty bit per line These results show that for a reasonably sized 32KB level
1 cache we can squash an average fraction 2f9 writes

from the level 1 cache to other levels of memory.

» Object reference counts limited to two bits The start of each of our traces includes the JVM and

« Write backs performed at the line level Dacapo Benchmark Suite initialization. While our resudts f
those portions of the traces are quite good, we also examined
our approach as measured on the steady-state portion of the

With only two bits to represent a reference count, the max- traces._Figure 4 shows the fraction of squashed Write_ backs
imum value of a reference count is 3, and at that point the found in each benchmark’s steady state of execution by
reference count igticky and cannot be decremented. Exper- SKiPPing the first 10 million lines of each trace. At this pin
iments justifying this choice are left out for space conside N the trace, each benchmark was beginning its standard
ations. execution behavior. Figure 4 uses the same configuration as

We track the death of data in a cache line at the level of the previous experim_ent. In the_steady state, we continue to
the line's dirty bit, namely across the entire line. Thus, in Sduash 13% of all write backs given a 32KB cache.
this implementation, an entire line is either dead or notaAs
result, the write backs from a line are either squashed acros 08
the entire line, or, if the line is dirty, the entire line isitten
back. We study this implementation because of its reduced
cost for realization in hardware.

Although the above configuration details generally place
us somewhat at a disadvantage, they seemed realistic in
terms of minimal cost of architectural support for our ap-
proach.

For our experiments, the primary metric of interest is
the fraction of squashed write backs. By this, we mean the
fraction of writes that would have reached memory without
our technique in place. In other words, if the program would

normally have issuedv writes, but with our technique in = 4 Frach : hed write backs found 1
place, only K writes are issued, then we have squashed . \gure . Fraction ot squashed write backs found for vary-

M=K writes. In this way, the results we report are scaled in ing cache sizes in the applications’ steady state.
the interval(0, 1), where al would correspond to all writes))
being squashed. 4.1 Level-2 Cache Approximation

¢ 32 bytes in each cache line

¢ LRU replacement policy

Fraction of squashed write backs for varying cache sizes - steady state

" 8k cache s

071 32k cachemwmmm |

128k cachemmwmm

Fraction of squashed write backs

avrora fop lusearch pmd sunflow xalan
Benchmark

We study the fraction of squashed write backs as a func- A 128KB or larger level-1 cache may be unrealistic, but such
tion of cache size. A larger cache usually results in fewer a cache might well be deployed as a level-2 cache. To get an

6 2014/4/3

idea of how well our technique may perform when expanded using multiple threads for these benchmarks. This could be
to level-2 cache we ran experiments with a large (512KB) attributed to good fortune: perhaps the threads did nohofte
level-1 cache. The other parameters of the experiment are ahave stack references at the same time to the same object. In
listed: any case, a more complete treatment of this issue should be

¢ 4-way associativity, a single dirty bit per line studied, as discussed in Section 5.

* 64 bytes in each cache line)
) . 4.3 Performanceimpact
¢ Writes performed at line-level)) o]
Previous work that examined similar savings for programs

with explicit deallocation [4] squashed write backs in L2
¢ LRU replacement policy cache at the rate of almost 21%. We find on average 47%

As we are interested only in seeing how many write backs squashed write backs in our modeling of an L2 cache (of half

can be squashed with larger caches; we do not set up ahe size of [4]). Lacking explicit deallocation instruatis
hierarchy of caches, but instead increase the size of tee ley W€ find the squashed writes through the architecture sup-

1 cache. The parameters chosen are reasonable for moderﬂOrt presented in this paper. Obtaining strong performance
level-2 caches. Results are shown in Figure 5 for such garbage-collected programs can have a reasonable

impact on energy savings and the longevity of devices with
Fraction of squashed writebacks for 512KB cache |Im|ted Write endurance' Applylng the anaIySiS Of [4]! we
1 \ \ \ \ ol — find the lifetime “gain” for such devices to be 1.87-nearly
doubling the useful life of such devices, as compared ta thei
result of approximately 1.3.

Write backs are generally performed off the critical path
of program execution as write ports are available on upper
levels of memory. Because of this, we do not necessarily
expect to see any direct performance benefit (i.e., cycles
per instruction) from reducing the number of write backs.
However, we would expect to see indirect benefits from
reducing the total memory bandwidth between L1 and L2

¢ Object’s reference counts limited to 3 bits

Fraction of squashed writebacks

avrora fop lusearch pmd sunflow xalan

Benchmark CaCheS-

Our approach requires extra storage and logic on chip.
This added complexity will increase energy costs and could
affect latency of some instructions. A hardware evaluation
is needed to properly analyze the tradeoffs between reduced

As shown in Figure 5 all benchmarks show a signifi- Writes and this added logic. We plan to address this directly
cant increase in the fraction of squashed write backs whenin future work. However, we note that an implementation of
given a larger cache. On average, 47% of all write backs arethe cache actions described in Figure 1 can balance cache
squashed in steady state execution. We neimra gener- latency with write squashing as follows:
ates little memory traffic, as its working set fits almost en-
tirely in a cache this large, so the fraction of total squashe
write backs is dominated by the JVM and Dacapo startup.
This increase in squashed write backs shows our technique
is not limited by imprecision, but instead limited by lines
evicted from cache before being discovered dead. Results
show that expansion of our technique to level-2 caches hase All of the actions in Figure 1 could be performed off
potential for significant write savings to higher levels of the critical path of L1 cache activity, so that the cache’s
memory. reads and writes (hits) are executed at the cache’s lowest
possible latency.

Actions realized off the critical path may be incomplete
As we explained in Section 3.3.2, we pin objects as live 4t the time a cache line is evicted. If so, the writes of
if ever multiple threads reference such objects from their gata from such lines may not be detected as squashable
stacks. Heap references from multiple threads pose no prob- prior to eviction. While such writes may be unnecessary,
lem for our approach. To determine the effect of these gra- o incorrectness follows from their issue.

tuitously pinned objects, we ran the benchmarks in a mode

where they use a single thread. In terms of the squashed writeFurther investigation into these issues is clearly neebed,
backs from cache, the results were only slightly worse when the results we have presented here justify such futuretsffor

Figure 5. Total (steady-state + initialization) and steady-
state fraction of squashed write backs with 512KB cache.

e The reference actions in Figure 1 can be achieved via as-
sociative lookup of objectidentifiers, which are simply the
addresses affected by the operations. Caches are already
equipped with logic and associative structures to perform
such lookups.

4.2 Referencesfrom Multple Threads Stacks

7 2014/4/3

because our technique can eliminate a significant fracfion o [3]
writes.

5. Conclusionsand Future Work)

In this paper we propose a limited form of reference count-

ing in the cache only, with the intention of reducing memory
traffic to slower levels of the memory hierarchy. We have
shown that cache-only reference counting has the potential

to reduce significantly the number of bytes that apparently
must be written from the level-1 cache toward main mem-
ory. The logic required to implement our approach can be
confined to the cache, and the information needed from the [
running program is readily available for languages of inter
est.

The limited application of reference counting in cache
avoids the overheads normally associated with wholesale
reference counting. The results we report in Section 4 are
encouraging, and we hope they will inspire others as well as
ourselves to further this work. We next describe some ideas
and directions for further work. 7]

e The approach described here is for a single cache and
single core. Horizontally, this work should be expanded
to consider multiple cores each with its own cache.

(6]

Vertically this work should be expanded to consider ap-
plications of cache-only reference counting past the first-
level cache. The results presented in Section 4.1 found that [8]
many more writes were squashed for most benchmarks in

a 512KB cache than in a 32KB cache.

e Currently when an object dies in cache, its associated
write backs are squashed, but the associated storage can—[g]
not be reused until an actual garbage-collection cycle finds
it dead. The dead storage in cache coulddmycled so
that it can satisfy a subsequent allocation request. We are
currently studying this idea, which could save traffic in

both directions between cache and memory. [10]

¢ Finally, there are other approximate techniques of find-
ing dead objects that might be efficiently implemented in
cache [5]. We plan to experiment with these techniques in

the future.
[11]

References

[1] A. W. Appel. Simple generational garbage collec-
tion and fast allocation. Softw. Pract. Exper., 19(2):
171-183, Feb. 1989. ISSN 0038-0644. URL
http://dx.doi.org/10.1002/spe.4380190206.

[12]

[2] S. Bhattacharya, K. Gopinath, and M. G. Nanda. Combining
concern input with program analysis for bloat detection. In [13]
Proceedings of the 2013 ACM S GPLAN International Con-

ference on Object Oriented Programming Systems Languages

& Applications, OOPSLA ’'13, pages 745-764, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-1.

URL http://doi.acm.org/10.1145/2509136.2509522.

Blackburn, S. Met al. The DaCapo benchmarks: Java bench-
marking development and analysis.Rroceedings of the 21st
annual ACM S GPLAN conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications, 2006.

S. Bock, B. Childers, R. Melhem, D. Mosse, and Y. Zhang.
Analyzing the impact of useless write-backs on the en-
durance and energy consumption of pcm main memory. In
Proceedings of the |IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS '11,
pages 56-65, Washington, DC, USA, 2011. IEEE Com-
puter Society. ISBN 978-1-61284-367-4. URL
http://dx.doi.org/10.1109/ISPASS.2011.5762715.

D. J. Cannarozzi, M. P. Plezbert, and R. K. Cytron. Con-
taminated garbage collection. Proceedings of the ACM

S GPLAN 2000 conference on Programming language design

and implementation, PLDI '00, pages 264-273, New York,
NY, USA, 2000. ACM. ISBN 1-58113-199-2. URL
http://doi.acm.org/10.1145/349299.349334.

A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky,
P. O'Sullivan, T. Parsons, and J. Murphy. Patterns of mem-
ory inefficiency. INnECOOP, pages 383—-407, 2011.

S. Friedman, P. Krishnamurthy, R. Chamberlain, R. K.rGyt
and J. E. Fritts. Dusty caches for reference counting
garbage collection. IrProceedings of the 2005 workshop

on MEmory performance: DEaling with Applications , sys-
tems and architecture, MEDEA '05, pages 3-10, Washing-
ton, DC, USA, 2005. IEEE Computer Society. URL
http://dx.doi.org/10.1145/1147349.1147353.

R. E. Jones and C. Ryder. A study of java object demograph-
ics. In Proceedings of the 7th international symposium on
Memory management, ISMM '08, pages 121-130, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-134-7. . URL
http://doi.acm.org/10.1145/1375634.1375652.

K. M. Lepak and M. H. Lipasti. Silent stores for free.
Proceedings of the 33rd annual ACM/IEEE inter national sym-
posium on Microarchitecture, MICRO 33, pages 22—-31, New
York, NY, USA, 2000. ACM. ISBN 1-58113-196-8. . URL
http://doi.acm.org/10.1145/360128.360133.

K. M. Lepak and M. H. Lipasti. On the value locality of sto
instructions. InProceedings of the 27th annual international
symposium on Computer architecture, ISCA '00, pages 182—
191, New York, NY, USA, 2000. ACM. ISBN 1-58113-232-8.
. URLhttp://doi.acm.org/10.1145/339647.339678.

K. M. Lepak and M. H. Lipasti. Temporally silent stores.
SIGPLAN Not., 37:30—41, October 2002. ISSN 0362-1340.
. URLhttp://doi.acm.org/10.1145/605432.605401.

In

A. Naz, K. Kavi, W. Li, and P. Sweany. Tiny split
data-caches make big performance impact for em-
bedded applications. J. Embedded Comput., 2(2):

207-219, Apr. 2006. ISSN 1740-4460. URL
http://dl.acm.org/citation.cfm?id=1370998.1371002.
P. R. Wilson. Uniprocessor garbage collec-
tion techniqgues (Long Version), 1994. URL

ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.

Unpublished, available d&tp://ftp.cs.utexas.edu/pub/garbage/gcs:

2014/4/3

