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Abstract
The gap between processing and storage speeds remains a
concern for computer system designers and application de-
velopers. This disparity can be bridged in part by eliminat-
ing unnecessary stores, thereby reducing the amount of traf-
fic that flows from the processor and first-level caches to
the slower components of the storage subsystem. Reducing
the “write” traffic can improve program performance, save
power, and increase the longevity of storage components that
have limited write endurance. Techniques have been pro-
posed and evaluated for identifying various classes of stores
that can be silenced. A relatively unexplored class of such
stores are those that would write data that is dirty, but dead.
Such data appears as if it needs to be written back to mem-
ory from cache, yet it can be proven that the application can
never subsequently access the data.

In this paper, we suggest identifying garbage (trash) in
cache, so that the dirty bytes associated with the trash need
not be written to memory. We propose and evaluate a simple
technique based on reference counting that finds a subset of
these “eternally silent” (dead) stores. When applied to pop-
ular benchmarks, our results show that a significant fraction
of the writes to memory can be silenced based on the impos-
sibility of an application subsequently accessing the data.

Categories and Subject Descriptors B.3.2 [Design Styles]:
Cache memories; C.0 [General]: [Hardware/software inter-
faces]; D.3.4 [Processors]: Memory management; D.4.2
[Storage Management]: Garbage collection

Keywords Write back, reference count, cache

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
The memory wall (the gap between processing and storage
speeds) remains a concern to computer designers and appli-
cation developers. Moreover, many groups are now research-
ing non-volatile memories such as flash and phase change
memories that can provide more scalable storage as opposed
to DRAM, but which also have limited write endurance.
Both of these problems can be alleviated if techniques can be
found that decrease the amount of data that is written from
the processor and first-level caches to other caches and main
memories.

Several approaches forsilencing stores are summarized in
Section 2. All such techniques attempt tosquash (eliminate)
write operations from a running program, with the goal of
saving time, power, and wear. In this paper, we present and
evaluate a new technique for discovering data that is dirty,
but dead, in a cache. Because the data is dirty, eviction would
cause such data to be written from the cache, perhaps to
an intervening cache, perhaps to main memory. Where our
analysis is successful, such data is provendead, in the sense
that the running application cannot possibly access the data
at any time in the future. Such data need not be written from
cache, and we follow the work of others in saying that those
writes have beensilenced.

The most closely related work to ours uses explicit deal-
location instructions (in languages such as C++) to clear
the dirty bits of any deallocated storage still contained in
cache [4]. Our technique is concerned with languages (such
as Java) in which dead storage is automatically collected.
The challenge here is to detect dirty but dead storage (i.e.,
trash) in cache, prior to the data’s eviction and without any
explicit advice from the running application that the data is
dead.

This kind of information could be harvested from an ac-
tual garbage-collection cycle, except that the execution of
such a cycle would surely cause most, if not all, data in cache
to be evicted before it could be proven dead. We therefore
turn to less invasive techniques, even though they are con-
servative in determining dead storage. In this paper we ap-
ply a specialized form ofreference counting to detect dead
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data, which is implemented solely in the cache itself, requir-
ing no extra storage or activity outside of the cache. We have
prototyped our approach and conducted experiments whose
results show that a significant fraction of the writes issued
from DaCapo benchmarks can be found dead prior to evic-
tion.

Our paper is organized as follows. Section 2 presents
some background and related work. Section 3 details our
approach. Section 4 describes our experiments and their
results. Section 5 presents some conclusions and future work
based on our results.

2. Background and Related Work
As originally defined, asilent store instruction writes val-
ues that exactly match the values already stored at the speci-
fied memory address [10]. One study [10] showed that 20%
to 68% of the store instructions issued by some common
benchmarks were silent. Efficient techniques for identifying
this class of silent stores andsquashing them have been con-
sidered. One study [9] reports the squashing of between 31%
and 50% of a program’s silent store instructions, implying
that only 6% to 34% of the benchmarks’total store instruc-
tions are squashed. Those results imply there is room to find
and eliminate more silent stores, and our paper presents one
such effort.

The idea of silent stores has been generalized totempo-
rally silent stores [11]. Such store instructions write a value
to memory that changes its contents temporarily. A subse-
quent store instruction will revert the stored value to a pre-
vious value of interest, perhaps one that was once stored in
memory or one that is available (but perhaps invalid) in an-
other processor’s cache. In a study of the latter case, over
40% of the communication misses due to supposedly invalid
cache lines can be avoided if the stores that cause the inval-
idation are determined to be silent. This is particularly sig-
nificant for multi-threaded applications running on multicore
systems.

A related effort [7] sought to decrease memory traf-
fic that was introduced to accomplish reference counting.
Reference counts often change briefly and then return to
a previous value. This form of Lepak’s temporally silent
stores [11] takes advantage of knowing that the stores are
due to (compiler-generated) reference counting. The exper-
iments conducted using that idea squashed almost all of the
increase in memory traffic that was attributable to reference
counting. However, those studies were conducted without an
accurate cache model.

The most closely related work to the approach we present
here is a recent effort [4] that proposed squashing the stores
of data that have been explicitly deallocated. The focus of
that study was the energy saved by avoiding write backs of
explicitly deallocated data. When an application written in a
language such as C++ issues adelete operation, the dirty
bits of the affected data are reset. If those bits are still clear

on eviction, the data would not be written back from cache.
However, a block of storage may be dead, in the sense that
the application will not subsequently access its bytes, some
time before that block is explicitly deallocated by the pro-
gram. This period of time in which an object isrotting (dead
but not yet buried) may be important, because the object’s
bytes may suffer eviction prior to the application issuing the
explicit deallocation. Those bytes would be written need-
lessly from the cache.

Our focus in this paper is on languages such as Java
that feature automatic storage management. The challenge
here is to find dead data in cache sufficiently quickly and
noninvasively so as to squash the write backs of such data
from cache. Our technique does not collect such data in the
sense of garbage collection. Instead, we use a noninvasive
garbage-collection approach to determine that the data is
dead and then reset the dirty bits of such data to avoid write
backs.

Because the data we find using this approach is truly dead
in the running program, the program cannot subsequently
reference the data’s addresses until an actual garbage collec-
tion cycle is performed and the associated storage became
eligible for allocation again. It is thus provably safe for us to
squash the writes of such data.

While our work concerns the dynamic discovery of data
that need not be written to memory, complementary research
efforts have tried to reduce the generation of that dead data
in the first place. Generally, calledbloat reduction, both
static [2] and dynamic [6] techniques have been proposed.
Combining bloat reduction with our technique is the subject
of future work, once bloat-reduction program transformers
are available.

3. Approach
The goal of our work is to determine data that is dead in
cache prior to that data’s eviction. Dead data cannot be
referenced by an application, and such data would eventually
be reclaimed via garbage collection.

An exact approach to this problem would involve running
an accurate and complete garbage collection algorithm. For
example, a mark-and-sweep algorithm [13] marks all of an
application’s live data. Any data left unmarked is dead, and
the garbage collection algorithm could reclaim that data for
subsequent allocation. At the same time, such data could also
be marked nondirty if the data resides in cache. This idea
suffers from the following difficulties:

• There is some time lapse between data becoming dead
and the garbage collection algorithm’s execution. While
the dead data is rotting, it may be evicted from cache
prior to the garbage collector’s execution, and thereby be
unnecessarily written from cache.

• Garbage collection is a memory-intensive activity, and as
such it tends to make full use of the cache. Thus, it is
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likely that the very execution of the garbage collector will
evict most, if not all, data from cache before any of that
data can be proven dead. Such data is also unnecessarily
written from cache.

Because of these difficulties, we propose a limited applica-
tion of reference counting to determine dead data in cache.

3.1 Reference Counting

Reference counting [13] associates a counter with each ob-
ject in the runtime heap (the area from which objects are dy-
namically allocated). For each objectT , its reference count
accurately reflects the number of references toT . These ref-
erences can come from any object (includingT itself), from
the stack, from registers, or from statically allocated struc-
tures. Maintenance of reference counts is typically accom-
plished via awrite barrier: a segment of code that executes
whenever an application executes an instruction that can af-
fect reference counts. Such instructions include those that
modify the contents of the runtime heap, change the values
of registers, change the contents of the stack, or change the
values of static variables.

The write barrier for reference counting is interested only
in operations that affect references (pointers). When a refer-
encer is modified, the write barrier considers the old value
of r (rold) and the value ofr established by the instruction
(rnew). If rold is not null, then the reference count associ-
ated with the object referenced byrold is decremented. Sim-
ilarly, if rnew is not null, then the reference count at its ref-
erenced object is incremented. Finally, if a reference count
becomes0, no references exist to its associated object, and
the storage associated with the object is then known to be
dead.

Although some applications of reference counting are
somewhat common (for example, smart pointers in C++),
the technique is not widely implemented to manage entire
heaps for the following reasons:

• Extra storage is required throughout the heap to contain
the objects’ reference counts.

• Extra cost is incurred at each store due to the write bar-
rier’s activity.

• Maintenance of the reference counts increases the traffic
between the CPU and memory.

• If an objectT participates in a structure with cycles of
references, then the reference count ofT can never be-
come0. Correspondingly, any object referenced directly
or indirectly from T will always have a positive refer-
ence count, and therefore be ineligible for collection by
this technique. Common examples of such cycles include
doubly-linked lists and trees whose nodes also reference
their parent.

Except for the last issue, the form of reference counting we
propose does not share the above disadvantages.

3.2 Cache-Only Reference Counting

We essentially propose architectural support for reference
counting solely within the cache. Outside of the cache, ref-
erence counts do not exist (at least, for our purposes). We re-
quire no (software) write barrier, and we do not use reference
counting to collect dead objects.1 Instead, we use a reference
count’s transition to0 to clear the dirty bits of the associated
object. The reference counts themselves are not contained
in memory. They are allocated instead in the cache, which
manages their values as described below.

allocate(A,n): a new object ofn bytes is allocated at
addressA.

refstore(p,q): a reference field at addressp is set to the
value (object address)q

refload(q): a reference to the object at addressq is loaded
onto the runtime stack.

framepush: a new frame is pushed onto the runtime stack,
in response to a method call.

framepop: the topmost frame on the runstack is popped, in
response to a method’sreturn.

returnref(q): the currently executing method is terminat-
ing, returning a reference to (object address)q.

Figure 1. Directives that interface between the running ap-
plication and the cache.

Our approach requires the cache to detect the actions
performed by the running application as described in Fig-
ure 1. Languages like Java have type systems that allow run-
time knowledge of which stores are data and which stores
are references. It is thus possible to interpret the above
actions exactly. It is easiest to conceive of these actions
as realized by instructions explicitly executed by the pro-
gram. The Java Virtual Machine (JVM) conveniently has
operations that map well to these actions. For example, the
JVM’s putfield andputstatic operations correspond to
a refstore instruction when the affected storage is a ref-
erence. Other instances of those JVM instructions store data
(of type int, double, etc.) instead of references. Where
such instructions are not available, a cache can be similarly
advised by cache directives in the spirit of the PowerPC’s
data cache instructions.

As an overview of our approach, we begin by describing
the most favorable scenario.

• An objectT is allocated, and all of its bytes are contained
in cache, perhaps spread across multiple cache lines as de-
picted in Figure 2. Throughout the rest of this description,
we assume (ideally) that none of the bytes ofT suffers an
eviction. The reference count held by the cache forT is
initialized to0 and is incremented to1 as the reference to
the newly allocatedT is stored onto the runtime stack.

1 However, in Section 5 we propose an approximation of this.

3 2014/4/3



• Subsequent toT ’s allocation, the running program changes
a field of objectU , previously null, so that it references
T by arefstore instruction. This action increments the
reference count in the cache forT to 2.

• Subsequently, the field ofU that referencesT may or may
not be evicted from cache.

• In either case, a subsequentrefstore to that field (say, to
null) will cause the reference count in cache forT to drop
to 1.

• Now the only reference toT is from the runtime stack.
A subsequent pop of the stack frame referencingT will
decrement the reference count forT to 0, which causes
the cache to regard the bytes associated withT as dead.

• The dirty bits associated withT ’s bytes are cleared.

• Finally, the reference fields contained withinT are visited,
and the reference counts of any objects they reference are
decremented.

• This in turn can trigger similar actions taken on other dead
objects in cache. Although these decrements cannot be
done concurrently, they can be performed off the critical
path(in subsequent cycles) to avoid a significant delay in
program execution.

As for T , the running program could not possibly access
its bytes after it has been determined dead. When the bytes
associated withT are evicted, they will not be written back
from cache because their dirty bits have been cleared.

Crucial to the success of the above description is thatT

dwelled in cache long enough for it to be determined dead.
For those lines ofT that are evicted prior to determining
T dead, our approach could not squash the associated dirty
bytes’ write backs from cache. Our initial optimism about
the success of our approach stemmed from the widely ac-
cepted observation that objects tend to die young [1], which
has been verified for Java [8]. In other words, it is likely that
a newly allocated object will become dead (whether we can
detect this or not) relatively soon after it is allocated. Ifob-
jects die young, then there is a good chance that their bytes
are still in cache at the time of their death.

The experimental results we report in Section 4 confirm
the viability of our approach. In the remainder of this sec-
tion, we describe our implementation in greater detail and
point out its inherent and addressable shortcomings.

3.3 Cache Implementation Details

Our experimental setup described in Section 4 includes a
custom cache simulator, in which we implemented the cache
protocol described here. Although the protocol is realized
in software for this paper, we developed it with a hardware
realization in mind. The relevant details are described in this
section.

The cache responds to the directives issued by the run-
ning application that are shown in Figure 1. For each such

directive, we describe below the actions taken by the cache
and how those actions can be realized as architectural sup-
port in hardware. We organize our discussion according the
the heap and stack activity of a program running in a JVM.
Although it may appear that registers have been ignored, the
JVM implements registers as stack cells. Thus, our treatment
of stack activity also covers register loads and stores in the
JVM.

3.3.1 Heap Activity

Theallocate instruction specifies thatn bytes of storage
have been allocated starting at addressA. For Java, this di-
rective is due to anew, newarray, or clone program oper-
ation. Similar gestures in other languages are easily accom-
modated by our approach. For Java, all bytes of the specified
storage are initialized to0. This initialization is explicit in
Java, and so the values must behave as if written to storage,
though they may reside only in cache just after allocation.
The cache responds to this directive as follows. Given the
starting addressA and extent of the allocationn, each line
can determine which of its bytes, if any, are contained in
this allocation. The line then records a mapping between the
object (which can be represented by the starting addressA)
and that range of bytes. This action can be performed con-
currently for each line in the cache.

Each cache line may host storage from differentallocate

instructions. For the purposes of our study, we placed no
limit on the number of storage blocks a given cache line
might host. However, no cache line can host more than⌈a

b
⌉

blocks, wherea is the number of bytes in a cache line andb

is the smallest block (least number of bytes) that can be allo-
cated. For each cache line, our simulator maintains a list of
mappings between objects and the range of bytes associated
with the objects in that cache line. Hardware could place a
limit on how many objects are recorded, and devote circuitry
to recording the mapping of those objects. For those objects
beyond the capacity of that hardware, their bytes would be
written back from cache even if those objects are dead. In
any case, the goal of this operation is to remember which
portions of a cache line are associated with the blocks of
allocated storage hosted by the cache line.
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Figure 2. Illustration ofallocate instructions. The cache
shown here has 5 lines, each with 32 bytes.

An illustration of a series ofallocate instructions is
shown in Figure 2. Suppose anallocate occurs for object
T that occupies the portions of lines0 − 2 as shown. Subse-
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quently anallocate occurs forU that occupies the portions
of lines 2 − 4 as shown. Mappings are established for the
cache lines as follows:

Line Hosted objects
0 T→{ 20 . . . 31 }
1 T→{ 0 . . . 31 }
2 T→{ 0 . . . 15 }, U→{ 28 . . . 31 }
3 U→{ 0 . . . 31 }
4 U→{ 0 . . . 31 }

After an allocation instruction, subsequent program ac-
tivity may cause some (or perhaps all) of the lines associ-
ated with the allocation to be evicted from cache. For those
evicted lines, our ability to determine dead but dirty bytesis
lost. Such is the price paid for limiting the scope of refer-
ence counting to the cache itself. However,any cache lines
that remain unevicted can still be tracked by our approach.
In the example above, suppose that line2 is evicted. The af-
fected portions ofT andU are no longer eligible for write
back squashing by our approach. However, the other por-
tions ofT andU remain candidates for finding dead but dirty
storage. Thus it is possible that we squash some, but not all,
of an object’s dirty write backs from cache. We study the
effectiveness of our approach in Section 4.

A refstore instruction specifies that a reference field
located at addressp is modified to point to addressq. The
cache must act at this point to account for the affected ref-
erence counts of storage blocks that are still contained in
cache. As described in Section 3.1, this entails decrement-
ing the reference count of the object thatp referenced (say,
r) prior to thisrefcount instruction, and incrementing the
reference count of the objectq that is referenced after the
instruction. This is achieved as follows.

Thisrefstore reflects a modification to storage, in par-
ticular to the field at addressp. As such, that field must be in
cache, which means that its valuer before the instruction is
in cache as well. The cache line that containsp can announce
to all cache lines that the reference count of objectr should
be decremented, provided thatr is not null. Each cache line
can consult its mapping to determine if it holds any portion
of objectr, and, if so, can decrement the reference count for
r. Our cache simulator works in that fashion. Alternatively,
the cache can maintain a global (among all cache lines) ref-
erence count table, and decrementr’s reference count in re-
sponse to the aforementioned announcement.

The cache line that contains the field at addressp will also
see the newly stored valueq, and a similar announcement
can be made that the reference count(s) associated withq

should be incremented, provided thatq is not null.

3.3.2 Stack Activity

Reference counts in cache must also account for references
that are sourced from outside the heap. Because stack frames
exhibit last-in, first-out behavior, the references from the
stack can be optimized as we have prevoiusly shown [5].

To track the stack activity, therefload instruction in-
forms the cache that a reference has been loaded onto the
stack, pointing toq. The cache must determine whether this
is the first reference from the stack, and if so, remember the
frame associated with the stack’s references toq, summa-
rized by the last-to-be-popped frame. In support of deter-
mining the proper frame, the cache is continually advised
about stack activity via theframepush andframepop in-
structions.

This stack-summarizing optimization [5] works only for a
single thread. We therefore detect if multiple threads concur-
rently have stack references to an object, and if this occurs,
we cause the object’s reference count to stick permanently
at its highest value. Thus, we cannot currently squash the
writes of objects referenced in this manner. We return to this
issue in Section 4.2. Another limitation of our current ap-
proach is that object liveness cannot be tracked for portions
of objects that suffer eviction prior to death.

4. Experimental Results
There are two phases to the experiments we conducted:

1. For each benchmark we tested, we gathered a trace of
data loads/stores into the heap as well as the cache direc-
tives described in Figure 1 issued by that benchmark.

2. We ran each trace through a cache simulator that includes
the in-cache reference-countingas described in Section 3.

To generate the traces, we instrumented the JVM (Java Vir-
tual Machine) inOpenJDK (version 1.8.0). The JVM was in-
strumented to generate the instructions detailed in Figure1,
along with loads and stores of non-pointers and garbage col-
lection cycles. Although the above does include all activ-
ity generateddirectly by the application, it is important to
note that some memory traffic is not included, namely the
activity of the JVM itself. The JVM makes allocations out-
side of the garbage collected heap that are managed explic-
itly with (C++) new and delete operators, which we do not
trace. Thus our results are accurate as if the Java code were
compiled and its instructions were executed without inter-
pretation. Moreover, the previous work we mention in Sec-
tion 2 on eliminating dead writes in explicitly managed lan-
guages [4] could address this traffic and could be combined
with our work without interference. Our results would also
hold for data caches that can besplit according to application
activity [12].

We wrote a trace-based cache simulator to implement our
approach as described in Section 3. This simulator is highly
componentized and greatly simplified our experimentation.
The simulator processes the instructions shown in Figure 1
with the following exception. We assume that an application-
level garbage-collection cycle will evict most, if not all,lines
in a cache. As such, the collection cycle effectively flushes
the cache. Moreover, the collection cycle could change the
location of objects. For those reasons, it would be unfair for
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us to assume we could continue our approach through such
a cycle. We therefore simulate a cache flush at the onset of
JVM garbage collection and do not resume our approach
until the cycle is complete. Any write backs that may occur
during a garbage-collection cycle are not counted in our
statistics. We believe the impact of these write backs would
be minimal as less than 0.3% of lines in each trace file are
created during garbage collection cycles.

Our tests were conducted using several of theDaCapo-9.12-bach

benchmarks [3]. For each benchmark, the first 50 million
lines of tracing were captured. We observed that this prefix
of a complete trace was sufficient to allow the JVM its ini-
tialization and to allow the benchmark to exhibit its standard
(steady-state) execution behavior. The traces were created
using an initial application heap size of 64MB.

While our results call for further experimentation on a
wider variety of cache configurations, we limited our exper-
iments for the purposes of this paper as follows. For our first
experiments, we used the following configuration parame-
ters:

• 2-way associativity, a single dirty bit per line

• 32 bytes in each cache line

• Object reference counts limited to two bits

• Write backs performed at the line level

• LRU replacement policy

With only two bits to represent a reference count, the max-
imum value of a reference count is 3, and at that point the
reference count issticky and cannot be decremented. Exper-
iments justifying this choice are left out for space consider-
ations.

We track the death of data in a cache line at the level of
the line’s dirty bit, namely across the entire line. Thus, in
this implementation, an entire line is either dead or not. Asa
result, the write backs from a line are either squashed across
the entire line, or, if the line is dirty, the entire line is written
back. We study this implementation because of its reduced
cost for realization in hardware.

Although the above configuration details generally place
us somewhat at a disadvantage, they seemed realistic in
terms of minimal cost of architectural support for our ap-
proach.

For our experiments, the primary metric of interest is
the fraction of squashed write backs. By this, we mean the
fraction of writes that would have reached memory without
our technique in place. In other words, if the program would
normally have issuedN writes, but with our technique in
place, onlyK writes are issued, then we have squashed
N−K

N
writes. In this way, the results we report are scaled in

the interval(0, 1), where a1 would correspond to all writes
being squashed.

We study the fraction of squashed write backs as a func-
tion of cache size. A larger cache usually results in fewer

conflict misses and thus fewer evictions, allowing us more
time to find objects’ lines dead prior to their eviction. Fig-
ure 3 shows the fraction of squashed write backs found in
caches ranging in size from 8KB to 128KB.
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Figure 3. Fraction of squashed write backs found for vary-
ing cache sizes, each having 32-byte lines.

These results show that for a reasonably sized 32KB level
1 cache we can squash an average fraction of0.219 writes
from the level 1 cache to other levels of memory.

The start of each of our traces includes the JVM and
Dacapo Benchmark Suite initialization. While our results for
those portions of the traces are quite good, we also examined
our approach as measured on the steady-state portion of the
traces. Figure 4 shows the fraction of squashed write backs
found in each benchmark’s steady state of execution by
skipping the first 10 million lines of each trace. At this point
in the trace, each benchmark was beginning its standard
execution behavior. Figure 4 uses the same configuration as
the previous experiment. In the steady state, we continue to
squash 13% of all write backs given a 32KB cache.
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Figure 4. Fraction of squashed write backs found for vary-
ing cache sizes in the applications’ steady state.

4.1 Level-2 Cache Approximation

A 128KB or larger level-1 cache may be unrealistic, but such
a cache might well be deployed as a level-2 cache. To get an
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idea of how well our technique may perform when expanded
to level-2 cache we ran experiments with a large (512KB)
level-1 cache. The other parameters of the experiment are as
listed:

• 4-way associativity, a single dirty bit per line

• 64 bytes in each cache line

• Writes performed at line-level

• Object’s reference counts limited to 3 bits

• LRU replacement policy

As we are interested only in seeing how many write backs
can be squashed with larger caches; we do not set up a
hierarchy of caches, but instead increase the size of the level-
1 cache. The parameters chosen are reasonable for modern
level-2 caches. Results are shown in Figure 5.
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Figure 5. Total (steady-state + initialization) and steady-
state fraction of squashed write backs with 512KB cache.

As shown in Figure 5 all benchmarks show a signifi-
cant increase in the fraction of squashed write backs when
given a larger cache. On average, 47% of all write backs are
squashed in steady state execution. We noteavrora gener-
ates little memory traffic, as its working set fits almost en-
tirely in a cache this large, so the fraction of total squashed
write backs is dominated by the JVM and Dacapo startup.
This increase in squashed write backs shows our technique
is not limited by imprecision, but instead limited by lines
evicted from cache before being discovered dead. Results
show that expansion of our technique to level-2 caches has
potential for significant write savings to higher levels of
memory.

4.2 References from Multple Threads’ Stacks

As we explained in Section 3.3.2, we pin objects as live
if ever multiple threads reference such objects from their
stacks. Heap references from multiple threads pose no prob-
lem for our approach. To determine the effect of these gra-
tuitously pinned objects, we ran the benchmarks in a mode
where they use a single thread. In terms of the squashed write
backs from cache, the results were only slightly worse when

using multiple threads for these benchmarks. This could be
attributed to good fortune: perhaps the threads did not often
have stack references at the same time to the same object. In
any case, a more complete treatment of this issue should be
studied, as discussed in Section 5.

4.3 Performance impact

Previous work that examined similar savings for programs
with explicit deallocation [4] squashed write backs in L2
cache at the rate of almost 21%. We find on average 47%
squashed write backs in our modeling of an L2 cache (of half
the size of [4]). Lacking explicit deallocation instructions,
we find the squashed writes through the architecture sup-
port presented in this paper. Obtaining strong performance
for such garbage-collected programs can have a reasonable
impact on energy savings and the longevity of devices with
limited write endurance. Applying the analysis of [4], we
find the lifetime “gain” for such devices to be 1.87–nearly
doubling the useful life of such devices, as compared to their
result of approximately 1.3.

Write backs are generally performed off the critical path
of program execution as write ports are available on upper
levels of memory. Because of this, we do not necessarily
expect to see any direct performance benefit (i.e., cycles
per instruction) from reducing the number of write backs.
However, we would expect to see indirect benefits from
reducing the total memory bandwidth between L1 and L2
caches.

Our approach requires extra storage and logic on chip.
This added complexity will increase energy costs and could
affect latency of some instructions. A hardware evaluation
is needed to properly analyze the tradeoffs between reduced
writes and this added logic. We plan to address this directly
in future work. However, we note that an implementation of
the cache actions described in Figure 1 can balance cache
latency with write squashing as follows:

• The reference actions in Figure 1 can be achieved via as-
sociative lookup of object identifiers, which are simply the
addresses affected by the operations. Caches are already
equipped with logic and associative structures to perform
such lookups.

• All of the actions in Figure 1 could be performed off
the critical path of L1 cache activity, so that the cache’s
reads and writes (hits) are executed at the cache’s lowest
possible latency.

Actions realized off the critical path may be incomplete
at the time a cache line is evicted. If so, the writes of
data from such lines may not be detected as squashable
prior to eviction. While such writes may be unnecessary,
no incorrectness follows from their issue.

Further investigation into these issues is clearly needed,but
the results we have presented here justify such future efforts
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because our technique can eliminate a significant fraction of
writes.

5. Conclusions and Future Work
In this paper we propose a limited form of reference count-
ing in the cache only, with the intention of reducing memory
traffic to slower levels of the memory hierarchy. We have
shown that cache-only reference counting has the potential
to reduce significantly the number of bytes that apparently
must be written from the level-1 cache toward main mem-
ory. The logic required to implement our approach can be
confined to the cache, and the information needed from the
running program is readily available for languages of inter-
est.

The limited application of reference counting in cache
avoids the overheads normally associated with wholesale
reference counting. The results we report in Section 4 are
encouraging, and we hope they will inspire others as well as
ourselves to further this work. We next describe some ideas
and directions for further work.

• The approach described here is for a single cache and
single core. Horizontally, this work should be expanded
to consider multiple cores each with its own cache.

• Vertically this work should be expanded to consider ap-
plications of cache-only reference counting past the first-
level cache. The results presented in Section 4.1 found that
many more writes were squashed for most benchmarks in
a 512KB cache than in a 32KB cache.

• Currently when an object dies in cache, its associated
write backs are squashed, but the associated storage can-
not be reused until an actual garbage-collectioncycle finds
it dead. The dead storage in cache could berecycled so
that it can satisfy a subsequent allocation request. We are
currently studying this idea, which could save traffic in
both directions between cache and memory.

• Finally, there are other approximate techniques of find-
ing dead objects that might be efficiently implemented in
cache [5]. We plan to experiment with these techniques in
the future.

References
[1] A. W. Appel. Simple generational garbage collec-

tion and fast allocation. Softw. Pract. Exper., 19(2):
171–183, Feb. 1989. ISSN 0038-0644. . URL
http://dx.doi.org/10.1002/spe.4380190206.

[2] S. Bhattacharya, K. Gopinath, and M. G. Nanda. Combining
concern input with program analysis for bloat detection. In
Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages
&#38; Applications, OOPSLA ’13, pages 745–764, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-1. .
URL http://doi.acm.org/10.1145/2509136.2509522.

[3] Blackburn, S. M.et al. The DaCapo benchmarks: Java bench-
marking development and analysis. InProceedings of the 21st
annual ACM SIGPLAN conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications, 2006.

[4] S. Bock, B. Childers, R. Melhem, D. Mosse, and Y. Zhang.
Analyzing the impact of useless write-backs on the en-
durance and energy consumption of pcm main memory. In
Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS ’11,
pages 56–65, Washington, DC, USA, 2011. IEEE Com-
puter Society. ISBN 978-1-61284-367-4. . URL
http://dx.doi.org/10.1109/ISPASS.2011.5762715.

[5] D. J. Cannarozzi, M. P. Plezbert, and R. K. Cytron. Con-
taminated garbage collection. InProceedings of the ACM
SIGPLAN 2000 conference on Programming language design
and implementation, PLDI ’00, pages 264–273, New York,
NY, USA, 2000. ACM. ISBN 1-58113-199-2. . URL
http://doi.acm.org/10.1145/349299.349334.

[6] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky,
P. O’Sullivan, T. Parsons, and J. Murphy. Patterns of mem-
ory inefficiency. InECOOP, pages 383–407, 2011.

[7] S. Friedman, P. Krishnamurthy, R. Chamberlain, R. K. Cytron,
and J. E. Fritts. Dusty caches for reference counting
garbage collection. InProceedings of the 2005 workshop
on MEmory performance: DEaling with Applications , sys-
tems and architecture, MEDEA ’05, pages 3–10, Washing-
ton, DC, USA, 2005. IEEE Computer Society. . URL
http://dx.doi.org/10.1145/1147349.1147353.

[8] R. E. Jones and C. Ryder. A study of java object demograph-
ics. In Proceedings of the 7th international symposium on
Memory management, ISMM ’08, pages 121–130, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-134-7. . URL
http://doi.acm.org/10.1145/1375634.1375652.

[9] K. M. Lepak and M. H. Lipasti. Silent stores for free. In
Proceedings of the 33rd annual ACM/IEEE international sym-
posium on Microarchitecture, MICRO 33, pages 22–31, New
York, NY, USA, 2000. ACM. ISBN 1-58113-196-8. . URL
http://doi.acm.org/10.1145/360128.360133.

[10] K. M. Lepak and M. H. Lipasti. On the value locality of store
instructions. InProceedings of the 27th annual international
symposium on Computer architecture, ISCA ’00, pages 182–
191, New York, NY, USA, 2000. ACM. ISBN 1-58113-232-8.
. URL http://doi.acm.org/10.1145/339647.339678.

[11] K. M. Lepak and M. H. Lipasti. Temporally silent stores.
SIGPLAN Not., 37:30–41, October 2002. ISSN 0362-1340.
. URL http://doi.acm.org/10.1145/605432.605401.

[12] A. Naz, K. Kavi, W. Li, and P. Sweany. Tiny split
data-caches make big performance impact for em-
bedded applications. J. Embedded Comput., 2(2):
207–219, Apr. 2006. ISSN 1740-4460. URL
http://dl.acm.org/citation.cfm?id=1370998.1371002.

[13] P. R. Wilson. Uniprocessor garbage collec-
tion techniques (Long Version), 1994. URL
ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.
Unpublished, available atftp://ftp.cs.utexas.edu/pub/garbage/gcsurve

8 2014/4/3


